留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

我国西北内陆棉花品种生态区划分与试验环境评价

乔银桃 孙世贤 赵素琴 杨晓妮 许乃银

乔银桃, 孙世贤, 赵素琴, 杨晓妮, 许乃银. 我国西北内陆棉花品种生态区划分与试验环境评价[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1301−1308 doi: 10.12357/cjea.20220012
引用本文: 乔银桃, 孙世贤, 赵素琴, 杨晓妮, 许乃银. 我国西北内陆棉花品种生态区划分与试验环境评价[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1301−1308 doi: 10.12357/cjea.20220012
QIAO Y T, SUN S X, ZHAO S Q, YANG X N, XU N Y. Cotton mega-environment investigation and test environment evaluation for the national cotton variety trials in the northwest inland cotton production region[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1301−1308 doi: 10.12357/cjea.20220012
Citation: QIAO Y T, SUN S X, ZHAO S Q, YANG X N, XU N Y. Cotton mega-environment investigation and test environment evaluation for the national cotton variety trials in the northwest inland cotton production region[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1301−1308 doi: 10.12357/cjea.20220012

我国西北内陆棉花品种生态区划分与试验环境评价

doi: 10.12357/cjea.20220012
基金项目: 国家农业技术试验示范与服务支持项目(0120662912003)资助
详细信息
    作者简介:

    乔银桃,主要研究方向为农业生态学。E-mail: qiaoytao@163.com

    通讯作者:

    许乃银, 主要从事棉花品种区域试验和生态适应性模型研究。E-mail: naiyin@126.com

  • 中图分类号: S562.03

Cotton mega-environment investigation and test environment evaluation for the national cotton variety trials in the northwest inland cotton production region

Funds: This work was supported by the National Agricultural Technology Demonstration and Service Supporting Project of China (0120662912003).
More Information
  • 摘要: 在农作物多环境品种试验中基因型与环境互作(GE)现象是普遍存在的, 品种生态区划分和试验环境评价与选择是提高品种选择效率的有效方法。西北内陆棉区是我国目前最重要的主产棉区, 探索该棉区棉花品种生态区划分和品种试验环境科学评价与选择, 有利于试验环境资源的合理利用和棉花品种试验效率的提升。本研究基于2011—2020年西北内陆棉区国家棉花品种区域试验产量数据, 采用LG双标图和GGE双标图方法探索了试验环境间的相关性模式, 并对各试验环境的代表性、鉴别力和理想指数进行了综合评价。结果表明: 1) LG双标图揭示了西北内陆早熟棉区除乌苏外的沙湾、五家渠、奎屯、石河子、敦煌、博乐和精河等试点均属于同一品种生态区; 南疆早中熟棉区除麦盖提外的巴州、阿拉尔、莎车、库车、拜城、库尔勒和图木舒克等试点属于同一品种生态区。2)各试验环境的鉴别力差异不显著, 而早熟棉区的乌苏试点和早中熟棉区的麦盖提点的代表性及理想指数显著差于其余试点, 其他试点间的差异不显著。3)早熟棉区各试验环境依据理想指数的综合优劣排序为沙湾>精河>五家渠>敦煌>博乐>石河子>奎屯>乌苏, 早中熟棉区各试验环境的理想指数综合优劣排序为巴州>图木舒克>阿拉尔>库尔勒>莎车>拜城>库车>麦盖提。可见, 乌苏和麦盖提点在品种试验方案优化中应当考虑更换, 以提高试验的总体效率。本研究充分展示了LG双标图和GGE双标图在区域试验环境评价中的应用效果, 为西北内陆棉区棉花品种试验方案优化提供了理论依据, 也可为其他作物和其他目标区域的类似研究提供参考。
  • 图  1  2011—2020年西北内陆棉区早熟组(a)和早中熟组(b)棉花品种区域试验的LG双标图

    试点图标由各年份试验的平均坐标表示。例如“USU”坐标是2011—2020年期间乌苏点8年试验的平均值; 连接乌苏(USU)的数字表示年份, 如USU-15表示乌苏点2015年的试验结果。试点名称详见表1

    Figure  1.  Location-grouping (LG) biplots of the early-maturing group (a) and medium-early maturing group (b) of cotton variety trials in the Northwest Inland cotton production region in 2011−2020

    The placement of a location is determined by the mean coordinates of all trials conducted at the locations. For example, the placement of “USU” is determined by the placements of the eight trials conducted at Usu during 2011−2020; date linked with it is the trail year, for example, USU-15 is the trial in Usu in 2015. See Table 1 for the detailed names of the locations.

    图  2  2013年西北内陆棉区早中熟组棉花区试点“鉴别力与代表性”GGE双标图

    带*号前缀蓝色图标, 如*Hcm9和*Zms49等为参试品种名称; 红色字母带前缀“+”号的图标为试点名称, 如+Makit和+Alaer等, 试点名称详见表1。Marks in blue prefixed with asterisk are tested varieties, such as *Hcm9 and *Zms49. Marks in red prefixed with plus sign “+” are the test locations, such as +Makit, +Alaer, et al, which are shown in Table 1.

    Figure  2.  “Discrimination and representativeness” view of the GGE biplot for the medium-early maturing cotton trial dataset in the Northwest Inland cotton production region in 2013

    表  1  2011—2020年西北内陆国家棉花品种区域试验环境的地理因子

    Table  1.   Geographical factors of trial environments in the national cotton variety trials in the Northwest Inland cotton production region in 2011−2020

    棉区
    Cotton growing region
    试验环境
    Trial environment
    经度
    Longitude
    纬度
    Latitude
    海拔
    Altitude (m)
    土壤类型
    Soil type
    试验年限
    Test years
    早熟棉区
    Early-maturing cotton region
    博乐 Bole83°50′44°57′501沙壤土 Sandy loam7 (2014—2020)
    敦煌 Dunhuang94°42′40°11′1139灌淤土 Cumulated irrigated soil9 (2011—2018, 2020)
    精河 Jinghe82°57′44°39′320沙壤土 Sandy loam8 (2011—2016, 2018—2019)
    沙湾 Shawan85°35′44°50′457沙壤土 Sandy loam10 (2011—2020)
    五家渠 Wujiaqu87°34′44°10′552灰漠土 Desert grey soil10 (2011—2020)
    奎屯 Kuytun84°54′44°26′461黏壤土 Clay loam10 (2011—2020)
    石河子 Shihezi86°20′44°20′443草甸土 Meadow soil10 (2011—2020)
    乌苏 Usu84°19′44°25′479沙壤土 Sandy loam9 (2011—2019)
    早中熟棉区
    Medium-early maturing cotton region
    阿拉尔 Alaer82°40′41°30′1011沙壤土 Sandy loam9 (2011—2014, 2016—2020)
    图木舒克 Tumxuk79°10′39°90′1098沙壤土 Sandy loam10 (2011—2020)
    巴州 Bazhou86°70′41°44′1500草甸土 Meadow soil10 (2011—2020)
    库车 Kuqa82°54′41°21′1099沙壤土 Sandy loam10 (2011—2020)
    莎车 Shache77°20′38°40′1236沙壤土 Sandy loam10 (2011—2020)
    麦盖提 Makit77°70′38°90′1180灌淤土 Cumulated irrigated soil7 (2011—2016, 2018)
    拜城 Baicheng81°53′41°48′1240沙壤土 Sandy loam9 (2012—2020)
    库尔勒 Korla86°16′41°20′936沙壤土 Sandy loam6 (2014, 2016—2020)
    下载: 导出CSV

    表  2  2011—2020年西北内陆棉区早熟组棉花品种皮棉产量的试验环境间相关系数

    Table  2.   Average Pearson correlation coefficients among test locations across tested genotypes based on the lint yield data of the early-maturing cotton variety trials in the Northwest Inland cotton production region in 2011−2020

    试验环境
    Test location
    博乐
    Bole
    敦煌
    Dunhuang
    精河
    Jinghe
    奎屯
    Kuytun
    沙湾
    Shawan
    石河子
    Shihezi
    乌苏
    Usu
    五家渠
    Wujiaqu
    平均值
    Average
    博乐 Bole1.0000.265a
    敦煌 Dunhuang0.4241.0000.266a
    精河 Jinghe0.3170.2971.0000.336a
    奎屯 Kuytun0.2050.2400.3561.0000.221a
    沙湾 Shawan0.2960.2670.4250.2721.0000.351a
    石河子 Shihezi0.4310.2690.3700.1380.4141.0000.275a
    乌苏 Usu−0.0420.0520.0840.1020.278−0.0211.0000.084b
    五家渠 Wujiaqu0.2170.3510.4880.2440.4860.3600.0881.0000.322a
      “平均值”列数据后不同小写字母表示P<0.05水平差异显著。Different lowercase letters in the “Average” column mean significant differences at P<0.05 level.
    下载: 导出CSV

    表  3  2011—2020年西北内陆棉区早中熟组棉花品种试验环境间平均相关系数矩阵

    Table  3.   Average Pearson correlation coefficients among test locations across tested genotypes based on the lint yield data of the medium-early maturing cotton variety trials in the Northwest Inland cotton production region in 2011−2020

    试验环境
    Test location
    阿拉尔
    Alaer
    巴州
    Bazhou
    拜城
    Baicheng
    库车
    Kuqa
    库尔勒
    Korla
    麦盖提
    Makit
    莎车
    Shache
    图木舒克
    Tumxuk
    平均值
    Average
    阿拉尔 Alaer1.0000.352a
    巴州 Bazhou0.2931.0000.274a
    拜城 Baicheng0.4900.3001.0000.348a
    库车 Kuqa0.3550.3630.4911.0000.342a
    库尔勒 Korla0.2950.3560.3040.3051.0000.283a
    麦盖提 Makit0.135−0.1470.062−0.236−0.0481.000−0.035b
    莎车 Shache0.3510.2490.3080.3770.3190.1241.0000.314a
    图木舒克 Tumxuk0.4690.3940.4630.4500.370−0.2390.4361.0000.352a
      “平均值”列数据后不同小写字母表示P<0.05水平差异显著。Different lowercase letters in the “Average” column mean significant differences at P<0.05 level.
    下载: 导出CSV

    表  4  2013年西北内陆棉区早中熟组国家棉花品种区域试验环境评价参数

    Table  4.   Standardized trial location evaluation parameters based on “discrimination and representativeness” GGE biplot for the medium-early maturing cotton trial dataset in the Northwest Inland national cotton production region in 2013

    试验环境 Test location鉴别力 Discriminating ability代表性 Representativeness理想指数 Desirability index
    阿拉尔 Alaer0.8930.4790.428
    拜城 Baicheng0.5830.9030.526
    巴州 Bazhou1.0520.9380.987
    库车 Kuqa1.2670.9381.188
    麦盖提 Makit1.4350.4110.590
    莎车 Shache1.3310.9991.330
    图木舒克 Tumxuk1.2790.9981.276
    下载: 导出CSV

    表  5  2011—2020年西北内陆棉区国家棉花品种区域试验环境综合评价参数

    Table  5.   Standardized trial location evaluation parameters based on “discrimination and representativeness” GGE biplot for the Northwest Inland national cotton variety trials from 2011 to 2020

    棉区
    Cotton production region
    试验环境
    Test location
    鉴别力
    Discriminating ability
    代表性
    Representativeness
    理想指数
    Desirability index
    早熟棉区
    Early-maturing cotton
    production region
    博乐 Bole0.882±0.10a0.725±0.05ab0.654±0.09ab
    敦煌 Dunhuang0.923±0.03a0.711±0.11ab0.667±0.11ab
    精河 Jinghe0.814±0.02a0.882±0.06a0.723±0.06ab
    奎屯 Kuytun0.907±0.02a0.619±0.18ab0.582±0.16ab
    沙湾 Shawan0.837±0.07a0.877±0.04a0.731±0.07a
    石河子 Shihezi0.851±0.02a0.729±0.1ab0.622±0.09ab
    乌苏 Usu0.800±0.08a0.484±0.17b0.422±0.14b
    五家渠 Wujiaqu0.857±0.07a0.831±0.06a0.704±0.08ab
    早中熟棉区
    Medium-early maturing cotton
    production region
    阿拉尔 Alaer0.820±0.08a0.851±0.06a0.704±0.09a
    拜城 Baicheng0.920±0.03a0.711±0.08a0.657±0.08a
    巴州 Bazhou0.817±0.03a0.924±0.02a0.757±0.03a
    库尔勒 Korla0.815±0.11a0.805±0.08a0.684±0.12a
    库车 Kuqa0.872±0.03a0.696±0.15a0.627±0.13a
    麦盖提 Makit0.939±0.02a0.105±0.12b0.109±0.11b
    莎车 Shache0.835±0.07a0.804±0.06a0.683±0.08a
    图木舒克 Tumxuk0.817±0.07a0.862±0.07a0.705±0.08a
      同列数据后同一棉区不同小写字母表示P<0.05水平差异显著。Different lowercase letters for the same cotton production region in the same column mean significant differences among different trail environments at P<0.05 level.
    下载: 导出CSV
  • [1] 黄滋康, 崔读昌. 中国棉花生态区划[J]. 棉花学报, 2002, 14(3): 185−190 doi: 10.3969/j.issn.1002-7807.2002.03.014

    HUANG Z K, CUI D C. Ecological regionalization of cotton production in China[J]. Acta Gossypii Sinica, 2002, 14(3): 185−190 doi: 10.3969/j.issn.1002-7807.2002.03.014
    [2] GIAUFFRET C, LOTHROP J, DORVILLEZ D, et al. Genotype × environment interactions in maize hybrids from temperate or highland tropical origin[J]. Crop Science, 2000, 40(4): 1004−1012 doi: 10.2135/cropsci2000.4041004x
    [3] HAUSSMANN B I G, HESS D E, REDDY B V S, et al. Pattern analysis of genotype × environment interaction for Striga resistance and grain yield in African Sorghum trials[J]. Euphytica, 2001, 122(2): 297−308 doi: 10.1023/A:1012909719137
    [4] YAN W K, HUNT L A. Interpretation of genotype × environment interaction for winter wheat yield in Ontario[J]. Crop Science, 2001, 41(1): 19−25 doi: 10.2135/cropsci2001.41119x
    [5] 许乃银, 金石桥, 李健. 利用GGE双标图划分我国棉花纤维品质生态区[J]. 应用生态学报, 2017, 28(1): 191−198

    XU N Y, JIN S Q, LI J. Ecological regionalization of national cotton fiber quality in China using GGE biplot analysis method[J]. Chinese Journal of Applied Ecology, 2017, 28(1): 191−198
    [6] 许乃银, 李健. 我国主产棉区棉花纤维品质性状的区域分布特征[J]. 中国生态农业学报, 2016, 24(11): 1547−1554

    XU N Y, LI J. Regional distribution characteristics of cotton fiber quality in main cotton production areas in China[J]. Chinese Journal of Eco-Agriculture, 2016, 24(11): 1547−1554
    [7] YAN W K, TINKER N A. Biplot analysis of multi-environment trial data: principles and applications[J]. Canadian Journal of Plant Science, 2006, 86(3): 623−645 doi: 10.4141/P05-169
    [8] YAN W K, TINKER N A. An integrated biplot analysis system for displaying, interpreting, and exploring genotype × environment interaction[J]. Crop Science, 2005, 45(3): 1004−1016 doi: 10.2135/cropsci2004.0076
    [9] YAN W K. GGE biplot — A windows application for graphical analysis of multienvironment trial data and other types of two-way data[J]. Agronomy Journal, 2001, 93(5): 1111−1118 doi: 10.2134/agronj2001.9351111x
    [10] 常磊, 柴守玺. GGE双标图在我国旱地春小麦稳产性分析中的应用[J]. 中国生态农业学报, 2010, 18(5): 988−994 doi: 10.3724/SP.J.1011.2010.00988

    CHANG L, CHAI S X. Application of GGE biplot in spring wheat yield stability analysis in rainfed areas of China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(5): 988−994 doi: 10.3724/SP.J.1011.2010.00988
    [11] 许乃银, 荣义华, 李健, 等. GGE双标图在陆地棉高产稳产和适应性分析中的应用−以长江流域棉区国审棉花新品种‘鄂杂棉30’为例[J]. 中国生态农业学报, 2017, 25(6): 884−892

    XU N Y, RONG Y H, LI J, et al. Evaluation of upland cotton yield stability and adaptability using GGE-biplot analysis: A case study of ‘Ezamian 30’ cotton cultivar in Yangtze River Valley[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 884−892
    [12] YAN W K. Mega-environment analysis and test location evaluation based on unbalanced multiyear data[J]. Crop Science, 2015, 55(1): 113−122 doi: 10.2135/cropsci2014.03.0203
    [13] YAN W K, MITCHELL-FETCH J, BEATTIE A, et al. Oat mega-environments in Canada[J]. Crop Science, 2021, 61(2): 1141−1153 doi: 10.1002/csc2.20426
    [14] 汪洲涛, 苏炜华, 阙友雄, 等. 应用AMMI和HA-GGE双标图分析甘蔗品种产量稳定性和试点代表性[J]. 中国生态农业学报, 2016, 24(6): 790−800

    WANG Z T, SU W H, QUE Y X, et al. Analysis of yield stability and test site representativeness of sugarcane trials using combined AMMI and HA-GGE biplot models[J]. Chinese Journal of Eco-Agriculture, 2016, 24(6): 790−800
    [15] YAN W K, RAJCAN I. Biplot analysis of test sites and trait relations of soybean in Ontario[J]. Crop Science, 2002, 42(1): 11 doi: 10.2135/cropsci2002.1100
    [16] YAN W K, HOLLAND J B. A heritability-adjusted GGE biplot for test environment evaluation[J]. Euphytica, 2010, 171(3): 355−369 doi: 10.1007/s10681-009-0030-5
    [17] YAN W K. A systematic narration of some key concepts and procedures in plant breeding[J]. Frontiers in Plant Science, 2021, 12: 724517 doi: 10.3389/fpls.2021.724517
    [18] YAN W. LG biplot: a graphical method for mega-environment investigation using existing crop variety trial data[J]. Scientific Reports, 2019, 9: 7130 doi: 10.1038/s41598-019-43683-9
    [19] 唐淑荣, 许乃银, 杨伟华, 等. 基于GGE分析的西北内陆棉区纤维品质生态区划分[J]. 中国生态农业学报, 2016, 24(12): 1674−1682

    TANG S R, XU N Y, YANG W H, et al. Ecological regionalization of cotton fiber quality in the Northwest Inland Region using GGE analysis[J]. Chinese Journal of Eco-Agriculture, 2016, 24(12): 1674−1682
    [20] BAXEVANOS D, GOULAS C, ROSSI J, et al. Separation of cotton cultivar testing sites based on representativeness and discriminating ability using GGE biplots[J]. Agronomy Journal, 2008, 100(5): 1230−1236 doi: 10.2134/agronj2007.0363
    [21] 许乃银, 张国伟, 李健, 等. 基于HA-GGE双标图的长江流域棉花区域试验环境评价[J]. 作物学报, 2012, 38(12): 2229−2236

    XU N Y, ZHANG G W, LI J, et al. Evaluation of cotton regional trial environments based on HA-GGE biplot in the Yangtze River Valley[J]. Acta Agronomica Sinica, 2012, 38(12): 2229−2236
    [22] 许乃银, 李健, 张国伟, 等. 基于GGE双标图和马克隆值选择的棉花区域试验环境评价[J]. 中国生态农业学报, 2013, 21(10): 1241−1248 doi: 10.3724/SP.J.1011.2013.01241

    XU N Y, LI J, ZHANG G W, et al. Evaluation of regional cotton trial environments based on cotton fiber micronaire selection by using GGE biplot analysis[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1241−1248 doi: 10.3724/SP.J.1011.2013.01241
    [23] 严威凯. 双标图分析在农作物品种多点试验中的应用[J]. 作物学报, 2010, 36(11): 1805−1819

    YAN W K. Optimal use of biplots in analysis of multi-location variety test data[J]. Acta Agronomica Sinica, 2010, 36(11): 1805−1819
    [24] XU N Y, FOK M, ZHANG G W, et al. The application of GGE biplot analysis for evaluating test locations and mega-environment investigation of cotton regional trials[J]. Journal of Integrative Agriculture, 2014, 13(9): 1921−1933 doi: 10.1016/S2095-3119(13)60656-5
    [25] 金石桥, 许乃银. 基于GGE双标图与纤维长度选择的棉花品种生态区探索与划分[J]. 中国农学通报, 2013, 29(33): 165−171 doi: 10.3969/j.issn.1000-6850.2013.33.029

    JIN S Q, XU N Y. Cotton megaenvironment investigation based on GGE biplot and fiber length selection[J]. Chinese Agricultural Science Bulletin, 2013, 29(33): 165−171 doi: 10.3969/j.issn.1000-6850.2013.33.029
    [26] 许乃银, 张国伟, 李健, 等. 长江流域棉花纤维比强度选择的理想试验环境筛选[J]. 棉花学报, 2013, 25(2): 121−128 doi: 10.3969/j.issn.1002-7807.2013.02.005

    XU N Y, ZHANG G W, LI J, et al. Identifying ideal test environments for cotton fiber strength selection in the Yangtze River Valley[J]. Cotton Science, 2013, 25(2): 121−128 doi: 10.3969/j.issn.1002-7807.2013.02.005
    [27] 许乃银, 李健. 利用GGE双标图和综合选择指数划分棉花品种生态区[J]. 中国生态农业学报, 2014, 22(9): 1113−1121

    XU N Y, LI J. Using GGE biplot and comprehensive selection index to investigate mega-environments of cotton cultivar[J]. Chinese Journal of Eco-Agriculture, 2014, 22(9): 1113−1121
  • 加载中
图(2) / 表(5)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  67
  • PDF下载量:  30
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-15
  • 录用日期:  2022-02-09
  • 网络出版日期:  2022-03-01
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回