留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

大气CO2浓度升高对大豆根际微生物代谢功能的影响

高志颖 李彦生 于镇华 金剑 王光华 刘晓冰

高志颖, 李彦生, 于镇华, 金剑, 王光华, 刘晓冰. 大气CO2浓度升高对大豆根际微生物代谢功能的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1417−1424 doi: 10.12357/cjea.20220018
引用本文: 高志颖, 李彦生, 于镇华, 金剑, 王光华, 刘晓冰. 大气CO2浓度升高对大豆根际微生物代谢功能的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1417−1424 doi: 10.12357/cjea.20220018
GAO Z Y, LI Y S, YU Z H, JIN J, WANG G H, LIU X B. Effect of elevated atmospheric CO2 concentration on the metabolic function of microbe in rhizosphere of different soybean cultivars[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1417−1424 doi: 10.12357/cjea.20220018
Citation: GAO Z Y, LI Y S, YU Z H, JIN J, WANG G H, LIU X B. Effect of elevated atmospheric CO2 concentration on the metabolic function of microbe in rhizosphere of different soybean cultivars[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1417−1424 doi: 10.12357/cjea.20220018

大气CO2浓度升高对大豆根际微生物代谢功能的影响

doi: 10.12357/cjea.20220018
基金项目: 国家自然科学基金项目(42177435)和中国科学院青年创新促进会项目(2019233)资助
详细信息
    作者简介:

    高志颖, 主要从事微生物生态学研究。E-mail: gwenne0@163.com

    通讯作者:

    于镇华, 主要从事土壤微生物生态研究, E-mail: yuzhenhua@iga.ac.cn

    刘晓冰, 主要从事作物生理生态学研究, E-mail: liuxb@iga.ac.cn

  • 中图分类号: S565.1

Effect of elevated atmospheric CO2 concentration on the metabolic function of microbe in rhizosphere of different soybean cultivars

Funds: The study was supported by the National Natural Science Foundation of China (42177435) and the Young Innovation Promotion Council of the Chinese Academy of Sciences (2019233).
More Information
  • 摘要: 作为全球气候变化主要因子, 大气CO2浓度升高以植物为媒介间接影响土壤微生物代谢功能, 进而影响由土壤微生物参与的土壤养分循环过程和土壤碳库的平衡。本研究以不同年代培育的大豆品种: ‘小黄金’(XH)、‘牡丰5号’(MF)、‘绥农14号’ (SN)和‘东生1号’ (DS)为试验材料, 采用开顶式气室(OTC)模拟21世纪中叶大气CO2浓度(550 mol∙L−1)升高条件(EC), 并以正常大气CO2浓度为对照(CK), 通过BIOLOG方法, 解析了大气CO2浓度升高条件下大豆根际土壤微生物对不同碳源利用的特征。结果表明, 不同大豆品种根际土壤微生物群落碳源代谢特征不同, 单孔平均颜色变化率(AWCD)总体趋势表现为MF>SN>DS>XH。微生物功能多样性指数和主成分分析结果显示, 大气CO2浓度升高对不同大豆品种根际微生物碳源代谢特征的影响不一致, 其中XH、MF和DS的根际微生物功能受大气CO2浓度升高影响不显著, 而SN的根际微生物功能受大气CO2浓度升高影响显著; 主成分贡献率结果表明, SN的EC碳源变化与主成分1中正相关的碳源种类相关性较强, 而CK的碳源变化与主成分1中负相关的碳源种类相关性较强, 其中L-精氨酸和2-羟基苯甲酸为不利于植物生长的碳源类型, 未来大气CO2浓度升高是否会增加有害/有益根系分泌物的释放有待通过田间原位试验进一步佐证。综上, 未来大气CO2浓度升高对大豆根际微生物碳源代谢功能的影响与大豆品种有关, 同时, 大豆品种和大气CO2升高及其交互作用显著影响部分碳源的代谢。
  • 图  1  正常CO2浓度(a)和CO2浓度升高(b)条件下不同大豆品种根际微生物在BIOLOG-ECO板上的平均颜色变化率(AWCD)

    图例中各缩写代表不同大豆品种: DS, 东生1号; MF, 牡丰5号; SN, 绥农14号; XH, 小黄金。DS, MF, SN and XH stand for soybean cultivars of ‘Dongsheng 1’ ‘Mufeng 5’ ‘Suinong 14’ and ‘Xiaohuangjin’, respectively.

    Figure  1.  AWCD of microbe in rhizosphere of different soybean cultivars under ambient CO2 (a) and elevated CO2 (b) concentrations

    图  2  不同大豆品种根际土壤微生物在大气CO2浓度升高(EC)及不升高(CK)处理下的微生物多样性指数

    “ns”表示两处理间无显著差异, “**”表示两处理间差异显著。各缩写代表不同大豆品种: DS, 东生1号; MF, 牡丰5号; SN, 绥农14号; XH, 小黄金。“ns” means no significant difference between two treatments, while “**” means significant differences between two treatments. DS, MF, SN and XH stand for soybean cutivars of ‘Dongsheng 1’ ‘Mufeng 5’ ‘Suinong 14’ and ‘Xiaohuangjin’, respectively.

    Figure  2.  Diversity indexes of microbe in rhizosphere of different soybean cultivars under elevated CO2 (EC) and ambient CO2 (CK) concentrations

    图  3  不同大豆品种根际微生物功能多样性在大气CO2浓度升高(EC)及不升高(CK)处理下的主成分分析

    各缩写代表不同大豆品种: DS, 东生1号; MF, 牡丰5号; SN, 绥农14号; XH, 小黄金。H2等表示碳源。DS, MF, SN and XH stand for soybean cultivars of ‘Dongsheng 1’ ‘Mufeng 5’ ‘Suinong 14’ and ‘Xiaohuangjin’, respectively. H2, etc. stand for carbon sources.

    Figure  3.  Principal component analysis of microbe in rhizosphere of different soybean cultivars under elevated CO2 EC) and ambient CO2 (CK) concentrations

    表  1  31种碳源在大气CO2浓度升高(EC)及不升高(CK)处理下在第1、2和3主成分上的载荷值

    Table  1.   Carbon substrates loaded on the principal components in analysis of BIOLOG ECO micro-plate data under elevated (EC) and ambient CO2 (CK) conditions

    碳源化学类别 Carbon substrate碳源 Carbon substratePC1PC2PC3
    胺类 Amines/amides腐胺 Putrescine−0.491−0.4480.287
    苯乙胺 Phenylethylamine−0.5120.1530.108
    氨基酸类 Amino acids甘氨酰-L-谷氨酸 Glycyl-L Glutamic Acid−0.5440.038−0.140
    L-精氨酸 L-Arginine−0.551−0.4660.129
    L-天门冬酰胺 L-Asparagine−0.595−0.1090.241
    L-苯丙氨酸 L-Phenylalanine−0.5190.355−0.026
    L-丝氨酸 L-Serine−0.713−0.3760.033
    L-苏氨酸 L-Threonine−0.5870.072−0.467
    糖类 Carbohydratesα-D-乳糖 α-D-Lactose0.1700.5950.224
    β-甲基-D-葡萄糖苷 β-Methyl-D Glucoside−0.7320.343−0.117
    D-纤维二糖 D-Cellobiose−0.6970.004−0.332
    D-甘露醇 D-Mannitol−0.8350.173−0.05
    D-木糖/戊醛糖 D-Xylose−0.1100.6830.078
    i-赤藓糖醇 i-Erythritol−0.6060.1070.208
    N-乙酰-D葡萄糖氨 N-Acetyl-D Glucosamine−0.6960.413−0.270
    羧酸类 Carboxylic acidsγ-羟丁酸 γ-Hydroxybutyric Acid−0.519−0.0530.170
    α-丁酮酸 α-Ketobutyric Acid0.251−0.0100.002
    4-羟基苯甲酸 4-Hydroxy Benzoic Acid−0.3900.4160.669
    2-羟基苯甲酸 2-Hydroxy Benzoic Acid−0.066−0.109−0.186
    D-半乳糖酸γ-内酯 D-Galactonic Acid γ-Lactone−0.537−0.413−0.420
    D-半乳糖醛酸 D-Galacturonic Acid−0.756−0.005−0.226
    D-葡糖胺酸 D-Glucosaminic Acid−0.570−0.0130.226
    D-苹果酸 D-Malic Acid−0.198−0.2420.177
    衣康酸 Itaconic Acid−0.146−0.1740.542
    聚合物 Polymersα-环式糊精 α-Cyclodextrin−0.2890.5500.092
    肝糖 Glycogen−0.4090.264−0.209
    吐温40 Tween 40−0.500−0.3680.312
    吐温80 Tween 80−0.7410.1120.267
    其他类 MiscellaneousD,L-α-磷酸甘油 D,L-α-Glycerol Phosphate−0.764−0.374−0.156
    1-磷酸葡萄糖 Glucose-1-Phosphate−0.6820.285−0.132
    丙酮酸甲酯 Pyruvic Acid Methyl Ester−0.597−0.2310.183
    下载: 导出CSV

    表  2  大气CO2浓度、品种及两者的交互作用对大豆根际土壤微生物不同碳源利用影响的显著性分析

    Table  2.   Significance analysis of effects of atmospheric CO2 concentration, soybean cultivars and their interaction on the utilization of different carbon sources of microbe in rhizosphere of soybean

    胺类 Amines/amides氨基酸类 Amino acids糖类 Carbohydrates
    H4 G4 F4 A4 B4 C4 D4 E4 H1 A2 G1 D2 B2 C2 E2
    CO2 (C) 0.923 0.909 0.801 0.157 0.893 0.264 0.032* 0.744 0.538 0.031* 0.235 0.864 0.318 0.331 0.53
    品种
    Cultivar (V)
    0.082 0.058 0.043* 0** 0.068 0.916 0.010* 0.172 0.790 0.129 0.110 0.104 0.646 0.050 0.062
    C×V 0.023* 0.134 0.146 0.026* 0.010* 0.748 0.012* 0.283 0.365 0.538 0.130 0.602 0.369 0.492 0.540
    羧酸类 Carboxylic acids 聚合物 Polymers 其他类 Miscellaneous
    E3 G3 D3 C3 A3 B3 F2 H3 F3 E1 F1 C1 D1 H2 G2 B1
    CO2 (C) 0.062 0.197 0.208 0.117 0.006** 0.522 0.677 0.783 0.047* 0.506 0.579 0.424 0.678 0.362 0.403 0.406
    品种
    Cultivar (V)
    0.628 0.070 0.177 0.688 0.121 0.034* 0.014* 0.702 0.143 0.277 0.304 0.080 0** 0.120 0.011* 0.029*
    C×V 0.020* 0.176 0.388 0.688 0.527 0.235 0.013* 0.075 0.022* 0.689 0.907 0.042* 0.086 0.082 0.539 0.462
       **和*分别表示在P<0.01和P<0.05水平影响显著。H4: 腐胺; G4: 苯乙胺; F4: 甘氨酰-L-谷氨酸; A4: L-精氨酸; B4: L-天门冬酰胺; C4: L-苯丙氨酸; D4: L-丝氨酸; E4: L-苏氨酸; H1: α-D-乳糖; A2: β-甲基-D-葡萄糖苷; G1: D-纤维二糖; D2: D-甘露醇; B2: D-木糖/戊醛糖; C2: i-赤藓糖醇; E2: N-乙酰-D葡萄糖氨; E3: γ-羟丁酸; G3: α-丁酮酸; D3: 4-羟基苯甲酸; C3: 2-羟基苯甲酸; A3: D-半乳糖酸γ-内酯; B3: D-半乳糖醛酸; F2: D-葡糖胺酸; H3: D-苹果酸; F3: 衣康酸; E1: α-环式糊精; F1: 肝糖; C1: 吐温40; D1: 吐温80; H2: D,L-α-磷酸甘油; G2: 1-磷酸葡萄糖; B1: 丙酮酸甲酯。** and * indicate significant effects at P<0.01 and P<0.05 levels, respectively. H4: Putrescine; G4: Phenylethylamine; F4: Glycyl-L Glutamic Acid; A4: L-Arginine; B4: L-Asparagine; C4: L-Phenylalanine; D4: L-Serine; E4: L-Threonine; H1: α-D-Lactose; A2: β-Methyl-D Glucoside; G1: D-Cellobiose; D2: D-Mannitol; B2: D-Xylose; C2: i-Erythritol; E2: N-Acetyl-D Glucosamine; E3: γ-Gydroxybutyric Acid; G3: α-Ketobutyric Acid; D3: 4-Hydroxy Benzoic Acid; C3: 2-Hydroxy Benzoic Acid; A3: D-Galactonic Acid γ-Lactone; B3: D-Galacturonic Acid; F2: D-Glucosaminic Acid; H3: D-Malic Acid; F3: Itaconic Acid; E1: α-Cyclodextrin; F1: Glycogen; C1: Tween 40; D1: Tween 80; H2: D, L-α-Glycerol Phosphate; G2: Glucose-1-Phosphate; B1: Pyruvic Acid Methyl Ester.
    下载: 导出CSV
  • [1] FIELD C B, BARROS V R, CHANGE I P C, et al (Eds.). IPCC, 2014: Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group Ⅱ to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge, Unite Kingdom: Cambridge University Press, 2014: 1439–1498
    [2] KUZYAKOV Y, HORWATH W R, DORODNIKOV M, et al. Review and synthesis of the effects of elevated atmospheric CO2 on soil processes: no changes in pools, but increased fluxes and accelerated cycles[J]. Soil Biology and Biochemistry, 2019, 128: 66−78 doi: 10.1016/j.soilbio.2018.10.005
    [3] BETTS R A, JONES C D, KNIGHT J R, et al. El Niño and a record CO2 rise[J]. Nature Climate Change, 2016, 6(9): 806−810 doi: 10.1038/nclimate3063
    [4] FONTAINE S, MARIOTTI A, ABBADIE L. The priming effect of organic matter: a question of microbial competition?[J]. Soil Biology and Biochemistry, 2003, 35(6): 837−843 doi: 10.1016/S0038-0717(03)00123-8
    [5] REICH P B, KNOPS J, TILMAN D, et al. Plant diversity enhances ecosystem responses to elevated CO2 and nitrogen deposition[J]. Nature, 2001, 410(6830): 809−812 doi: 10.1038/35071062
    [6] 陈德祥, 李意德, 骆土寿, 等. 短期CO2浓度升高对雨林树种盘壳栎光合特性的影响[J]. 生态学报, 2004, 24(8): 1622−1628 doi: 10.3321/j.issn:1000-0933.2004.08.007

    CHEN D X, LI Y D, LUO T S, et al. Short-term responses of photosynthesis to elevated CO2 in leaves of canopy species Castanopsispatelliformis in tropical mountain rain forest in Jianfengling, Hainan Island[J]. Acta Ecologica Sinica, 2004, 24(8): 1622−1628 doi: 10.3321/j.issn:1000-0933.2004.08.007
    [7] 金奖铁, 李扬, 李荣俊, 等. 大气二氧化碳浓度升高影响植物生长发育的研究进展[J]. 植物生理学报, 2019, 55(5): 558−568

    JIN J T, LI Y, LI R J, et al. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development[J]. Plant Physiology Journal, 2019, 55(5): 558−568
    [8] LIU X B, JIN J, WANG G H, et al. Soybean yield physiology and development of high-yielding practices in Northeast China[J]. Field Crops Research, 2008, 105(3): 157−171 doi: 10.1016/j.fcr.2007.09.003
    [9] 张春雨, 李彦生, 于镇华, 等. 大气CO2浓度和温度升高影响作物产量的光合生理及分子生物学机制[J]. 土壤与作物, 2021, 10(3): 256−265

    ZHANG C Y, LI Y S, YU Z H, et al. Mechanism of photosynthetic physiology and molecular biology of crop yield as affected by elevated atmospheric CO2 concentration and temperature— A review[J]. Soils and Crops, 2021, 10(3): 256−265
    [10] LEAKEY A D B, AINSWORTH E A, BERNACCHI C J, et al. Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE[J]. Journal of Experimental Botany, 2009, 60(10): 2859−2876 doi: 10.1093/jxb/erp096
    [11] 张锦源, 李彦生, 于镇华, 等. 作物-土壤氮循环对大气CO2浓度和温度升高响应的研究进展[J]. 中国农业科学, 2021, 54(8): 1684−1701 doi: 10.3864/j.issn.0578-1752.2021.08.009

    ZHANG J Y, LI Y S, YU Z H, et al. Nitrogen cycling in the crop-soil continuum in response to elevated atmospheric CO2 concentration and temperature— A review[J]. Scientia Agricultura Sinica, 2021, 54(8): 1684−1701 doi: 10.3864/j.issn.0578-1752.2021.08.009
    [12] LI Y S, YU Z H, JIN J, et al. Impact of elevated CO2 on seed quality of soybean at the fresh edible and mature stages[J]. Frontiers in Plant Science, 2018, 9: 1413 doi: 10.3389/fpls.2018.01413
    [13] YU Z H, LI Y S, HU X J, et al. Elevated CO2 increases the abundance but simplifies networks of soybean rhizosphere fungal community in Mollisol soils[J]. Agriculture, Ecosystems and Environment, 2018, 264: 94−98 doi: 10.1016/j.agee.2018.05.006
    [14] LI Y S, YU Z H, YANG S C, et al. Soybean intraspecific genetic variation in response to elevated CO2[J]. Archives of Agronomy and Soil Science, 2019, 65(12): 1733−1744 doi: 10.1080/03650340.2019.1575958
    [15] FEHR W R, CAVINESS C E, BURMOOD D T, et al. Stage of development descriptions for soybeans, Glycine max (L.) Merrill[J]. Crop Science, 1971, 11(6): 929−931 doi: 10.2135/cropsci1971.0011183X001100060051x
    [16] CLASSEN A T, BOYLE S I, HASKINS K E, et al. Community-level physiological profiles of bacteria and fungi: plate type and incubation temperature influences on contrasting soils[J]. FEMS Microbiology Ecology, 2003, 44(3): 319−328 doi: 10.1016/S0168-6496(03)00068-0
    [17] 张燕燕, 曲来叶, 陈利顶. Biolog EcoPlateTM实验信息提取方法改进[J]. 微生物学通报, 2009, 36(7): 1083−1091

    ZHANG Y Y, QU L Y, CHEN L D. An amendment on information extraction of Biolog EcoPlate™[J]. Microbiology, 2009, 36(7): 1083−1091
    [18] 田雅楠, 王红旗. Biolog法在环境微生物功能多样性研究中的应用[J]. 环境科学与技术, 2011, 34(3): 50−57 doi: 10.3969/j.issn.1003-6504.2011.03.012

    TIAN Y N, WANG H Q. Application of Biolog to study of environmental microbial function diversity[J]. Environmental Science & Technology, 2011, 34(3): 50−57 doi: 10.3969/j.issn.1003-6504.2011.03.012
    [19] OKSANEN J, BLANCHET F G, FRIENDLY M, et al. Vegan: Community ecology package[EB/OL]. [2022-3-27]. https://cran.r-project.org
    [20] 王强, 梁玉, 范小莉, 等. 微生物生态研究中BIOLOG方法数据分析及R语言实现[J]. 生态学报, 2021, 41(4): 1514−1527

    WANG Q, LIANG Y, FAN X L, et al. Data analysis and R demonstration for application of BIOLOG microarrays technique in microbial ecology study[J]. Acta Ecologica Sinica, 2021, 41(4): 1514−1527
    [21] ZELLES L. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review[J]. Biology and Fertility of Soils, 1999, 29(2): 111−129 doi: 10.1007/s003740050533
    [22] 金剑, 王光华, 刘晓冰, 等. 1950—2006年间黑龙江省大豆品种农艺性状的演变[J]. 浙江大学学报(农业与生命科学版), 2008, 34(3): 296−302

    JIN J, WANG G H, LIU X B, et al. Agronomic changes of soybean cultivars released during 1950 to 2006 in Heilongjiang Province[J]. Journal of Zhejiang University (Agriculture and Life Sciences), 2008, 34(3): 296−302
    [23] 金剑, 王光华, 陈雪丽, 等. Biolog-ECO解析不同大豆基因型R1期根际微生物群落功能多样性特征[J]. 大豆科学, 2007, 26(4): 565−570 doi: 10.3969/j.issn.1000-9841.2007.04.022

    JIN J, WANG G H, CHEN X L, et al. Analysis of microbial community functional diversity in rhizosphere of different soybean genotypes at R1 stage using Biolog-ECO method[J]. Soybean Science, 2007, 26(4): 565−570 doi: 10.3969/j.issn.1000-9841.2007.04.022
    [24] 朱丽霞, 章家恩, 刘文高. 根系分泌物与根际微生物相互作用研究综述[J]. 生态环境, 2003, 12(1): 102−105

    ZHU L X, ZHANG J E, LIU W G. Review of studies on interactions between root exudates and rhizopheric microorganisms[J]. Ecology and Environmental Sciences, 2003, 12(1): 102−105
    [25] XU Y X, WANG G H, JIN J, et al. Bacterial communities in soybean rhizosphere in response to soil type, soybean genotype, and their growth stage[J]. Soil Biology and Biochemistry, 2009, 41(5): 919−925 doi: 10.1016/j.soilbio.2008.10.027
    [26] GHANNOUM O, CAEMMERER S V, ZISKA L H, et al. The growth response of C4 plants to rising atmospheric CO2 partial pressure: a reassessment[J]. Plant, Cell & Environment, 2000, 23(9): 931−942
    [27] 孙雪, 韩冬雪, 刘岩, 等. 原始红松林土壤理化及微生物碳代谢特征对生长季动态的响应[J]. 南京林业大学学报(自然科学版), 2017, 41(5): 18−26

    SUN X, HAN D X, LIU Y, et al. Responses of soil physicochemical properties and soil microorganism characteristics regareding as carbon metabolism in original Korean pine forest[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2017, 41(5): 18−26
    [28] BAHRAM M, HILDEBRAND F, FORSLUND S K, et al. Structure and function of the global topsoil microbiome[J]. Nature, 2018, 560(7717): 233−237 doi: 10.1038/s41586-018-0386-6
    [29] 荀卫兵, 王伯仁, 冉炜, 等. 不同施肥制度对南方旱地红壤微生物组结构和功能影响研究进展[J]. 农业资源与环境学报, 2021, 38(4): 537−544, 532

    XUN W B, WANG B R, RAN W, et al. Research progress on the effect of different fertilizations on microbiome structure and function in upland red soil in southern China[J]. Journal of Agricultural Resources and Environment, 2021, 38(4): 537−544, 532
    [30] 关健飞, 曹阳. 黑龙江省表层冻土细菌群落结构组成和功能特征[J]. 生态学报, 2020, 40(14): 4929−4941

    GUAN J F, CAO Y. Bacterial community structure analysis of surface frozen soil in Heilongjiang Province[J]. Acta Ecologica Sinica, 2020, 40(14): 4929−4941
    [31] 杨梅, 林思祖, 黄燕华, 等. 邻羟基苯甲酸胁迫下杉木叶片游离氨基酸的变化特征[J]. 东北林业大学学报, 2007, 35(2): 40−41, 63 doi: 10.3969/j.issn.1000-5382.2007.02.016

    YANG M, LIN S Z, HUANG Y H, et al. Variation characteristics of free amino acids in Chinese fir leaves under salicylic acid stress[J]. Journal of Northeast Forestry University, 2007, 35(2): 40−41, 63 doi: 10.3969/j.issn.1000-5382.2007.02.016
    [32] HUANG B R, XU Y. Cellular and molecular mechanisms for elevated CO2-regulation of plant growth and stress adaptation[J]. Crop Science, 2015, 55(4): 1405−1424 doi: 10.2135/cropsci2014.07.0508
  • 加载中
图(3) / 表(2)
计量
  • 文章访问数:  211
  • HTML全文浏览量:  77
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-07
  • 录用日期:  2022-03-01
  • 网络出版日期:  2022-04-07
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回