留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刈割和施氮对豆禾混播草地牧草生长特性及品质的影响

王辛有 曹文侠 师尚礼 王小军 王世林 刘婉婷 白洁 李文

王辛有, 曹文侠, 师尚礼, 王小军, 王世林, 刘婉婷, 白洁, 李文. 刈割和施氮对豆禾混播草地牧草生长特性及品质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1439−1450 doi: 10.12357/cjea.20220021
引用本文: 王辛有, 曹文侠, 师尚礼, 王小军, 王世林, 刘婉婷, 白洁, 李文. 刈割和施氮对豆禾混播草地牧草生长特性及品质的影响[J]. 中国生态农业学报 (中英文), 2022, 30(9): 1439−1450 doi: 10.12357/cjea.20220021
WANG X Y, CAO W X, SHI S L, WANG X J, WANG S L, LIU W T, BAI J, LI W. Effects of mowing and N application on growth characteristics and quality of forage grasses in legume-grass mixtures[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1439−1450 doi: 10.12357/cjea.20220021
Citation: WANG X Y, CAO W X, SHI S L, WANG X J, WANG S L, LIU W T, BAI J, LI W. Effects of mowing and N application on growth characteristics and quality of forage grasses in legume-grass mixtures[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1439−1450 doi: 10.12357/cjea.20220021

刈割和施氮对豆禾混播草地牧草生长特性及品质的影响

doi: 10.12357/cjea.20220021
基金项目: 国家重点研发计划项目(2016YFC0400306)和国家现代农业产业技术体系项目(CARS-34)资助
详细信息
    作者简介:

    王辛有, 主要研究方向为草地生态与管理。E-mail: 1029150153@qq.com

    通讯作者:

    曹文侠, 主要研究方向为草地生态与管理。E-mail: caowx@gsau.edu.cn

  • 中图分类号: S812

Effects of mowing and N application on growth characteristics and quality of forage grasses in legume-grass mixtures

Funds: This study was supported by the National Key Research and Development Project of China (2016YFC0400306) and China Agriculture Research System (CARS-34).
More Information
  • 摘要: 为探究放牧与施肥对河西走廊豆科禾本科(简称“豆禾”)混播草地生产性能与群落结构稳定性的调控机制, 并确定该草地所适用的最佳放牧利用与施肥管理模式, 本研究以‘清水’紫花苜蓿(Medicago sativa ‘Qingshui’)、无芒雀麦(Bromus inermis)和长穗偃麦草(Elytrigia elongate)建植的混播草地为试验对象, 采用L16 (31×42)混合位级正交试验设计, 设20 cm (S1)、30 cm (S2)和40 cm (S3) 3个刈前高度, 2 cm (E1)、5 cm (E2)、8 cm (E3)和11 cm (E4) 4个刈割强度, 0 kg(N)∙hm−2 (N1)、75 kg(N)∙hm−2 (N2)、150 kg(N)∙hm−2 (N3)和225 kg(N)∙hm−2 (N4) 4个施氮量, 分析了不同处理下混播草地群落结构及生产性能。结果表明: 1)刈前高度及施氮量对草地生产性能影响较大, S3E2N4的生物量最大(17 707.80 kg∙hm−2), S1E1N4的混合草粗蛋白含量最高(15.46%), S3E1N3的混合草相对饲用价值最大(184.93)。2)降低刈割强度可增加利用次数, 并使禾本科牧草在群落中的占比增大, 其中S2E3N4、S1E3N3、S1E4N1、S2E4N3和S1E1N1可使豆禾盖度比接近1∶1, S2E3N4、S3E3N1和S3E4N2对草地分枝数的调控作用效果最好。3)与刈割收获干草(区内一年刈割3次)相比, 模拟放牧降低了产草量, 但提高了牧草营养价值, 抑制了群落中紫花苜蓿比例的过快增长, 能维持豆禾草种结构的稳定性。综上, S2E3N4能使混播草地群落结构的稳定性最好, 且具有良好的生产性能(草地生物量为15 173.41 kg∙hm−2, 粗蛋白含量为13.92%, 相对饲用价值为156.93), 是适宜此类混播草地放牧利用与施肥管理的参考指标, 可在河西走廊等类似地区推广应用。
  • 图  1  模拟放牧及施氮前混播草地相关指标

    图中横坐标A为地上生物量(kg∙hm−2), B为分盖度(%), C为分枝数/分蘖数(No.∙m−2), D为粗蛋白含量(%), E为相对饲用价值。In the figure, “A” is the biomass of forage (kg∙hm−2); “B” is the forage coverage (%); “C” is the number of forage branches/tillers (No.∙m−2); “D” is the crude protein content (%); “E” is the relative forage value.

    Figure  1.  Related indexes of legume-grass mixed grassland before and simulated grazing and nitrogen addition

    图  2  不同处理混播草地模拟放牧日期、放牧时间、休牧天数及放牧次数

    各处理具体说明见表1。The description of each treatment is shown in Table 1.

    Figure  2.  Simulated grazing date, grazing time, days of rest grazing and grazing times of legume-grass mixed grassland under different treatments

    图  3  模拟放牧及施氮前后混播草地中禾本科牧草盖度变化

    各处理说明见表1。图中大写字母及其后百分数表示模拟放牧前草地中禾本科牧草盖度之和, 小写字母及其后百分数表示模拟放牧后草地中禾本科牧草盖度之和。The detail description of each treatment is shown in Table 1. In the figure, capital letters and percentages after them represent the sum of grass coverage before the first simulated grazing, while small letters and percentages after them represent the sum of grass coverage after the last simulated grazing.

    Figure  3.  Grass coverage of grass in legume-grass mixed grassland before the first simulated grazing (moving) and after the last simulated grazing under nitrogen addition

    图  4  不同处理下模拟放牧过程中混播草地各牧草分枝及总分枝数变化

    处理序号说明见表1。The treatment number in the figure is the same as that in Table 1.

    Figure  4.  Changes of branches and total branches of each forage in legume-grass mixed grassland during simulated grazing under different treatments

    图  5  与试验前相比不同处理混播草地牧草盖度和分枝数的变化

    处理序号说明见表1。The treatment number in the figure is the same as that in Table 1.

    Figure  5.  Changes of coverage and branch number of forages in legume-grass mixed grassland under different treatments compared with those before experiment

    图  6  不同处理下豆禾牧草及混播草地生物量随利用次数的变化趋势

    各处理说明见表1。The detail description of each treatment is shown in Table 1.

    Figure  6.  Changes of biomass of each forage in legume-grass mixed grassland under different treatments with utilization times

    图  7  与试验前相比不同处理混播草地牧草生物量的变化情况

    处理序号说明见表1。The treatment number in the figure is the same as that in Table 1.

    Figure  7.  Changes of biomass of forages in legume-grass mixed grassland under different treatments compared with those before experiment

    图  8  模拟放牧及施氮对牧草营养价值的影响

    处理序号说明见表1。The treatment number in the figure is the same as that in Table 1.

    Figure  8.  Effects of simulated grazing and nitrogen addition on the nutritional value of herbage

    图  9  不同处理混播草地牧草营养品质增幅情况

    处理序号说明见表1。The treatment number in the figure is the same as that in Table 1.

    Figure  9.  The increase of nutritional quality of forage in mixed grassland under different treatments

    表  1  L16 (31×42)正交矩阵表

    Table  1.   L16 (31×42) orthogonal matrix table

    处理序号
    Treatment
    number
    处理
    Treatment
    刈前高度
    Initial grazing
    height (S)
    (cm)
    刈割强度
    Stubble
    height (E)
    (cm)
    施氮量
    Nitrogen
    application rate (N)
    [kg(N)∙hm−2]
    处理序号
    Treatment
    number
    处理
    Treatment
    刈前高度
    Initial grazing
    height (S)
    (cm)
    刈割强度
    Stubble
    height (E)
    (cm)
    施氮量
    Nitrogen
    application rate
    [kg(N)∙hm−2]
    1S1E1N120209S2E1N230275
    2S1E1N420222510S2E2N13050
    3S1E2N22057511S2E3N4308225
    4S1E2N320515012S2E4N33011150
    5S1E3N22087513S3E1N3402150
    6S1E3N320815014S3E2N4405225
    7S1E4N12011015S3E3N14080
    8S1E4N4201122516S3E4N2401175
    下载: 导出CSV

    表  2  各混播牧草生物量及营养价值的极差(Rj)及各处理因素最佳水平

    Table  2.   Range (Rj) of biomass and nutritional value of each mixed forage and the optimal level of each treatment factor

    测定指标
    Measurement index
    牧草品种 Forage species
    紫花苜蓿
    Medicago sativa
    无芒雀麦
    Bromus inermis
    长穗偃麦草
    Elytrigia elongate
    混合草
    Mixed grass
    SENSENSENSEN
    生物量
    Biomass
    优水平 Optimal level313214222314
    Rj (kg∙hm−2)41712425.35714.30971.40467.251582.50358.05336.15250.953288.903034.502020.80
    顺序 OrderS>E>NN>S>ES>E>NS>E>N
    粗蛋白
    Crude protein
    优水平 Optimal level144224234144
    Rj (%)1.061.471.710.371.301.230.500.742.070.860.731.35
    顺序 OrderN>E>SE>N>SN>E>SN>S>E
    相对饲用价值
    Relative feeding value
    优水平 Optimal level124114342113
    Rj23.4011.3615.2913.855.3710.116.896.627.6610.4924.9712.02
    顺序 OrderS>N>ES>N>EN>S>EE>N>S
      优水平序号及因素代码说明见表1。The number of the optimal level and discription of factors of S, E and N are the same as that in Table 1.
    下载: 导出CSV
  • [1] 白永飞, 玉柱, 杨青川, 等. 人工草地生产力和稳定性的调控机理研究: 问题、进展与展望[J]. 科学通报, 2018, 63(S1): 511−520

    BAI Y F, YU Z, YANG Q C, et al. Mechanisms regulating the productivity and stability of artificial grasslands in China: Issues, progress, and prospects[J]. Chinese Science Bulletin, 2018, 63(S1): 511−520
    [2] 王元素, 蒋文兰, 洪绂曾, 等. 人工混播草地群落稳定性研究进展[J]. 中国草地, 2005, 27(4): 58−63, 73

    WANG Y S, JIANG W L, HONG F Z, et al. A review of studies on stability of artificial mixed-pasture[J]. Grassland of China, 2005, 27(4): 58−63, 73
    [3] 柴强, 胡发龙, 陈桂平. 禾豆间作氮素高效利用机理及农艺调控途径研究进展[J]. 中国生态农业学报, 2017, 25(1): 19−26

    CHAI Q, HU F L, CHEN G P. Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 19−26
    [4] CLEMENSEN A K, ROTTINGHAUS G E, LEE S T, et al. How planting configuration influences plant secondary metabolites and total N in tall fescue (Festuca arundinacea Schreb.), alfalfa (Medicago sativa L.) and birdsfoot trefoil (Lotus corniculatus L.): implications for grazing management[J]. Grass and Forage Science, 2018, 73(1): 94−100 doi: 10.1111/gfs.12298
    [5] NYFELER D, HUGUENIN-ELIE O, SUTER M, et al. Grass-legume mixtures can yield more nitrogen than legume pure stands due to mutual stimulation of nitrogen uptake from symbiotic and non-symbiotic sources[J]. Agriculture, Ecosystems & Environment, 2011, 140(1/2): 155−163
    [6] MASON K M, MULLENIX M K, TUCKER J J, et al. Overseeding eastern gamagrass with cool-season annual grasses or grass-legume mixtures[J]. Crop Science, 2019, 59(5): 2264−2270 doi: 10.2135/cropsci2019.02.0099
    [7] SHARP J M, EDWARDS G R, JEGER M J. Impact of the spatial scale of grass-legume mixtures on sheep grazing behaviour, preference and intake, and subsequent effects on pasture[J]. Animal, 2012, 6(11): 1848−1856 doi: 10.1017/S1751731112000729
    [8] 王平, 周道玮, 张宝田. 禾-豆混播草地种间竞争与共存[J]. 生态学报, 2009, 29(5): 2560−2567 doi: 10.3321/j.issn:1000-0933.2009.05.045

    WANG P, ZHOU D W, ZHANG B T. Coexistence and inter-specific competition in grass-legume mixture[J]. Acta Ecologica Sinica, 2009, 29(5): 2560−2567 doi: 10.3321/j.issn:1000-0933.2009.05.045
    [9] 杨天辉, 成慧, Eun Joong Kim, 等. 黄土高原模拟轮牧对高糖黑麦草生产性能的影响[J]. 草业科学, 2015, 32(9): 1473−1481 doi: 10.11829/j.issn.1001-0629.2014-0253

    YANG T H, CHENG H, KIM E J, et al. Responses of high-sugar ryegrass productive performance to stimulated grazing on the Loess Plateau[J]. Pratacultural Science, 2015, 32(9): 1473−1481 doi: 10.11829/j.issn.1001-0629.2014-0253
    [10] 李振忠, 于徐根, 周省善, 等. 模拟放牧强度试验(1988年)[J]. 江西农业大学学报, 1991, 13(6): 302−306

    LI Z Z, YU X G, ZHOU S S, et al. A trail of simulated stocking rate (1988)[J]. Acta Agriculturae Universitis Jiangxiensis, 1991, 13(6): 302−306
    [11] MCNAUGHTON S J, BANYIKWA F F, MCNAUGHTON M M. Promotion of the cycling of diet-enhancing nutrients by African grazers[J]. Science, 1997, 278(5344): 1798−1800 doi: 10.1126/science.278.5344.1798
    [12] XU F W, LI J J, WU L J, et al. Resource enrichment combined with biomass removal maintains plant diversity and community stability in a long-term grazed grassland[J]. Journal of Plant Ecology, 2020, 13(5): 611−620 doi: 10.1093/jpe/rtaa046
    [13] 徐震, 于应文, 常生华. 放牧强度对黑麦草/白三叶混播草地种群牧草量构成与年生产力的影响[J]. 草业学报, 2003, 12(5): 31−37 doi: 10.3321/j.issn:1004-5759.2003.05.005

    XU Z, YU Y W, CHANG S H. Effect of grazing intensity on the annual productivity and composition of mixed Lolium perenne and Trifolium repens pasture[J]. Acta Pratacultural Science, 2003, 12(5): 31−37 doi: 10.3321/j.issn:1004-5759.2003.05.005
    [14] 刘海泉, 黄文惠. 放牧强度、放牧草丛高度对多年生黑麦草、白三叶混播草地产量及草地组成的影响[J]. 草地学报, 1991, 1(1): 100−105

    LIU H Q, HUANG W H. Effects of grazing intensity and height of grass before grazing on forage yield and grassland composition of mixture of white clover and perennial ryegrass[J]. Acta Agrestia Sinica, 1991, 1(1): 100−105
    [15] BARDGETT R D, BULLOCK J M, LAVOREL S, et al. Combatting global grassland degradation[J]. Nature Reviews Earth & Environment, 2021, 2(10): 720−735
    [16] YANG Z P, MINGGAGUD H, BAOYIN T, et al. Plant production decreases whereas nutrients concentration increases in response to the decrease of mowing stubble height[J]. Journal of Environmental Management, 2020, 253: 109745 doi: 10.1016/j.jenvman.2019.109745
    [17] DEAK A, HALL M H, SANDERSON M A. Grazing schedule effect on forage production and nutritive value of diverse forage mixtures[J]. Agronomy Journal, 2009, 101(2): 408−414 doi: 10.2134/agronj2007.0365
    [18] 王向涛, 张世虎, 陈懂懂, 等. 不同放牧强度下高寒草甸植被特征和土壤养分变化研究[J]. 草地学报, 2010, 18(4): 510−516

    WANG X T, ZHANG S H, CHEN D D, et al. The effects of natural grazing intensity on plant community and soil nutrients in alpine meadow[J]. Acta Agrestia Sinica, 2010, 18(4): 510−516
    [19] XIE K Y, LI X L, HE F, et al. Effect of nitrogen fertilization on yield, N content, and nitrogen fixation of alfalfa and smooth bromegrass grown alone or in mixture in greenhouse pots[J]. Journal of Integrative Agriculture, 2015, 14(9): 1864−1876 doi: 10.1016/S2095-3119(15)61150-9
    [20] 任家兵, 张梦瑶, 肖靖秀, 等. 小麦||蚕豆间作提高间作产量的优势及其氮肥响应[J]. 中国生态农业学报(中英文), 2020, 28(12): 1890−1900

    REN J B, ZHANG M Y, XIAO J X, et al. Wheat and faba bean intercropping to improve yield and response to nitrogen[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1890−1900
    [21] 宗宁, 石培礼, 宋明华, 等. 模拟放牧改变了氮添加作用下高寒草甸生物量的分配模式[J]. 自然资源学报, 2012, 27(10): 1696−1707 doi: 10.11849/zrzyxb.2012.10.008

    ZONG N, SHI P L, SONG M H, et al. Clipping alters the response of biomass allocation pattern under nitrogen addition in an alpine meadow on the Tibetan Plateau[J]. Journal of Natural Resources, 2012, 27(10): 1696−1707 doi: 10.11849/zrzyxb.2012.10.008
    [22] QUEMADA M, GABRIEL J L. Approaches for increasing nitrogen and water use efficiency simultaneously[J]. Global Food Security, 2016, 9: 29−35 doi: 10.1016/j.gfs.2016.05.004
    [23] KLEIN J A, HARTE J, ZHAO X Q. Experimental warming causes large and rapid species loss, dampened by simulated grazing, on the Tibetan Plateau[J]. Ecology Letters, 2004, 7(12): 1170−1179 doi: 10.1111/j.1461-0248.2004.00677.x
    [24] 王世林, 曹文侠, 王小军, 等. 河西走廊荒漠盐碱地人工柽柳林土壤水盐分布[J]. 应用生态学报, 2019, 30(8): 2531−2540

    WANG S L, CAO W X, WANG X J, et al. Distribution of soil moisture and salt of Tamarix ramosissima plantation in desert saline-alkali land of Hexi Corridor Region, China[J]. Chinese Journal of Applied Ecology, 2019, 30(8): 2531−2540
    [25] 王小军, 曹文侠, 王世林, 等. 河西走廊多年生豆禾混播对牧草产量和品质的影响[J]. 草业科学, 2021, 38(7): 1339−1350

    WANG X J, CAO W X, WANG S L, et al. Effects of perennial Legume-Gramineae mixtures on forage yield and quality in the Hexi Corridor Region[J]. Pratacultural Science, 2021, 38(7): 1339−1350
    [26] 曹文侠, 王小军, 齐广平, 等. 一种荒漠盐碱地建植根茎型豆禾混播牧刈兼用草地的方法: CN110447475A[P]. 2019-11-15

    CAO W X, WANG X J, QI G P, et al. A kind of method for establishing rhizome type legume-grass mixtures, grazing and mowing grassland in desert saline-alkali land: CN110447475A[P]. 2019-11-15
    [27] 王辛有, 曹文侠, 王小军, 等. 河西地区豆禾混播草地生产性能对刈割高度与施肥的响应[J]. 草业学报, 2021, 30(4): 99−110 doi: 10.11686/cyxb2020467

    WANG X Y, CAO W X, WANG X J, et al. Herbage production and forage quality responses to cutting height and fertilization of legume-grass mixtures in the Hexi region[J]. Acta Prataculturae Sinica, 2021, 30(4): 99−110 doi: 10.11686/cyxb2020467
    [28] 张丽英. 饲料分析及饲料质量检测技术[M]. 北京: 中国农业大学出版社, 2003

    ZHANG L Y. Feed Analysis and Feed Quality Testing Technology[M]. Beijing: China Agricultural University Press, 2003
    [29] LINN J G, MARTIN N P. Forage quality tests and interpretation[D]. St. Pual, MN, USA: University of Minnesota Extension Service, 1989 (MN AG-FO-02637)
    [30] 王亚玲, 李晓芳, 师尚礼, 等. 紫花苜蓿生产性能构成因子分析与评价[J]. 中国草地学报, 2007, 29(5): 8−15 doi: 10.3969/j.issn.1673-5021.2007.05.002

    WANG Y L, LI X F, SHI S L, et al. Analysis and evaluation on the production performance components of different alfalfa[J]. Chinese Journal of Grassland, 2007, 29(5): 8−15 doi: 10.3969/j.issn.1673-5021.2007.05.002
    [31] 耿慧, 徐安凯, 栾博宇, 等. 苜蓿产量性状的分析与表型选择研究[J]. 草业与畜牧, 2013(6): 14−15

    GENG H, XU A K, LUAN B Y, et al. Analysis of the yield traits and the study on phenotypic selection of alfalfa[J]. Prataculture & Animal Husbandry, 2013(6): 14−15
    [32] 孙帅, 张小晶, 刘金平, 等. 遮阴和干旱对荩草生理代谢及抗性系统影响的协同作用[J]. 生态学报, 2018, 38(5): 1770−1779

    SUN S, ZHANG X J, LIU J P, et al. Synergistic effects of shade and drought on the physiological metabolism and resistance system of Arthraxon hispidus[J]. Acta Ecologica Sinica, 2018, 38(5): 1770−1779
    [33] 刘燕, 贾玉山, 冯骁骋, 等. 紫花苜蓿刈割和晾晒技术研究[J]. 草地学报, 2014, 22(2): 404−408

    LIU Y, JIA Y S, FENG X C, et al. Study on the cutting and drying technology of alfalfa[J]. Acta Agrestia Sinica, 2014, 22(2): 404−408
    [34] 郭正刚, 刘慧霞, 王彦荣. 刈割对紫花苜蓿根系生长影响的初步分析[J]. 西北植物学报, 2004, 24(2): 215−220 doi: 10.3321/j.issn:1000-4025.2004.02.005

    GUO Z G, LIU H X, WANG Y R. Effect of cutting on root growth in lucerne[J]. Acta Botanica Boreali-Occidentalia Sinica, 2004, 24(2): 215−220 doi: 10.3321/j.issn:1000-4025.2004.02.005
    [35] 张璐璐, 王孝安, 朱志红, 等. 模拟放牧强度与施肥对青藏高原高寒草甸群落特征和物种多样性的影响[J]. 生态环境学报, 2018, 27(3): 406−415

    ZHANG L L, WANG X A, ZHU Z H, et al. The effects of simulated grazing intensity and fertilizing on the community characteristics and diversity in alpine meadow of Qinghai-Tibet Plateau[J]. Ecology and Environmental Sciences, 2018, 27(3): 406−415
    [36] 常会宁, 刘春起, 李固江, 等. 刈割对羊茅黑麦草和无芒雀麦蘖转化的影响[J]. 草业学报, 1997, 6(1): 54−57

    CHANG H N, LIU C Q, LI G J, et al. Effects of defoliation on tiller turnover in Festulolium and smooth bromegrass[J]. Acta Pratacultural Science, 1997, 6(1): 54−57
    [37] 石红霄, 侯向阳, 师尚礼, 等. 高寒草甸高原早熟禾个体性状对放牧与围封的响应[J]. 生态学报, 2016, 36(12): 3601−3608

    SHI H X, HOU X Y, SHI S L, et al. Poa alpigena response traits affected by grazing and enclosuersin an alpine meadow on the Qinghai-Tibet Plateau[J]. Acta Ecologica Sinica, 2016, 36(12): 3601−3608
    [38] 于应文, 蒋文兰, 冉繁军, 等. 混播草地不同种群再生性的研究[J]. 应用生态学报, 2002, 13(8): 930−934 doi: 10.3321/j.issn:1001-9332.2002.08.003

    YU Y W, JIANG W L, RAN F J, et al. Regrowth of different plant populations in mixed pasture[J]. Chinese Journal of Applied Ecology, 2002, 13(8): 930−934 doi: 10.3321/j.issn:1001-9332.2002.08.003
    [39] 谢开云, 张英俊, 李向林, 等. 无芒雀麦和紫花苜蓿在(1∶1)混播中的竞争与共存[J]. 中国农业科学, 2015, 48(18): 3767−3778 doi: 10.3864/j.issn.0578-1752.2015.18.020

    XIE K Y, ZHANG Y J, LI X L, et al. Competition and coexistence of alfalfa (Medicago sativa L.) and smooth brome (Bromus inermis Layss.) in mixture[J]. Scientia Agricultura Sinica, 2015, 48(18): 3767−3778 doi: 10.3864/j.issn.0578-1752.2015.18.020
    [40] 章家恩, 刘文高, 陈景青, 等. 不同刈割强度对牧草地上部和地下部生长性状的影响[J]. 应用生态学报, 2005, 16(9): 1740−1744 doi: 10.3321/j.issn:1001-9332.2005.09.030

    ZHANG J E, LIU W G, CHEN J Q, et al. Effects of different cutting intensities on above- and under-ground growth of Stylosanthes guianensis[J]. Chinese Journal of Applied Ecology, 2005, 16(9): 1740−1744 doi: 10.3321/j.issn:1001-9332.2005.09.030
    [41] 谢开云, 曹凯, 万江春, 等. 新疆半干旱区不同豆科/禾本科牧草混播草地生产力的变化研究[J]. 草业学报, 2020, 29(4): 29−40 doi: 10.11686/cyxb2019314

    XIE K Y, CAO K, WAN J C, et al. Change in productivity of swards of different forage legume and grass species monocultures and combinations in the semi-arid region of Xinjiang Province[J]. Acta Prataculturae Sinica, 2020, 29(4): 29−40 doi: 10.11686/cyxb2019314
    [42] 王平, 王天慧, 周雯, 等. 禾-豆混播草地中土壤水分与种间关系研究进展[J]. 应用生态学报, 2007, 18(3): 653−658 doi: 10.3321/j.issn:1001-9332.2007.03.033

    WANG P, WANG T H, ZHOU W, et al. Soil moisture and interspecific relationships between grass and legume on mixed grassland: a research review[J]. Chinese Journal of Applied Ecology, 2007, 18(3): 653−658 doi: 10.3321/j.issn:1001-9332.2007.03.033
    [43] 杨利烨, 杨天辉, 常生华, 等. 不同刈割频率对黄土高原陇东苜蓿产量及其品质的影响[J]. 草业科学, 2020, 37(1): 117−125 doi: 10.11829/j.issn.1001-0629.2019-0384

    YANG L Y, YANG T H, CHANG S H, et al. Effects of cutting frequencies on the yield and quality of Longdong alfalfa in the Loess Plateau[J]. Pratacultural Science, 2020, 37(1): 117−125 doi: 10.11829/j.issn.1001-0629.2019-0384
    [44] 高宪儒, 李飞, 惠文. 不同紫花苜蓿品种在陇东地区的引种表现[J]. 草业科学, 2016, 33(4): 731−738 doi: 10.11829/j.issn.1001-0629.2014-0503

    GAO X R, LI F, HUI W. Performance of introduced alfalfa cultivars in Longdong Region, Gansu[J]. Pratacultural Science, 2016, 33(4): 731−738 doi: 10.11829/j.issn.1001-0629.2014-0503
    [45] IRWIN J A G, LLOYD D L, LOWE K F. Lucerne biology and genetic improvement — an analysis of past activities and future goals in Australia[J]. Australian Journal of Agricultural Research, 2001, 52(7): 699 doi: 10.1071/AR00181
    [46] AIKEN G E, SPRINGER T L. Stand persistence and seedling recruitment for eastern gamagrass grazed continuously for different durations[J]. Crop Science, 1998, 38(6): 1592−1596 doi: 10.2135/cropsci1998.0011183X003800060030x
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  258
  • HTML全文浏览量:  119
  • PDF下载量:  35
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-01-09
  • 录用日期:  2022-03-10
  • 网络出版日期:  2022-04-01
  • 刊出日期:  2022-09-09

目录

    /

    返回文章
    返回