留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

密闭反应器堆肥技术氨减排潜力研究

刘娟 曹玉博 焦阳湄 王选 马林

刘娟, 曹玉博, 焦阳湄, 王选, 马林. 密闭反应器堆肥技术氨减排潜力研究[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1283−1292 doi: 10.12357/cjea.20220100
引用本文: 刘娟, 曹玉博, 焦阳湄, 王选, 马林. 密闭反应器堆肥技术氨减排潜力研究[J]. 中国生态农业学报 (中英文), 2022, 30(8): 1283−1292 doi: 10.12357/cjea.20220100
LIU J, CAO Y B, JIAO Y M, WANG X, MA L. Reducing ammonia emission via reactor composting technology[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1283−1292 doi: 10.12357/cjea.20220100
Citation: LIU J, CAO Y B, JIAO Y M, WANG X, MA L. Reducing ammonia emission via reactor composting technology[J]. Chinese Journal of Eco-Agriculture, 2022, 30(8): 1283−1292 doi: 10.12357/cjea.20220100

密闭反应器堆肥技术氨减排潜力研究

doi: 10.12357/cjea.20220100
基金项目: 河北省重点研发计划项目(20327301D, 19227305D)、黑土地保护与利用科技创新工程专项(XDA28030302)、中国科学院青年创新促进会项目(2021095)和河北省现代农业产业技术体系奶牛产业创新团队项目(HBCT2018120206)资助
详细信息
    作者简介:

    刘娟, 主要从事农业生态学研究。E-mail: liujuan690317@163.com

    通讯作者:

    马林, 主要从事农业生态学和养分管理研究。E-mail: malin1979@sjziam.ac.cn

  • 中图分类号: X713

Reducing ammonia emission via reactor composting technology

Funds: This study was supported by the Key Research and Development Program of Hebei Province (20327301D, 19227305D), the Strategic Priority Research Program of Chinese Academy of Sciences (XDA28030302), the Youth Innovation Promotion Association of Chinese Academy of Sciences (2021095), and Hebei Province Modern Agricultural Industrial Technology System Dairy Cow Industry Innovation Team Project (HBCT2018120206).
More Information
  • 摘要: 堆肥是将粪尿肥料化处理循环利用于土壤的重要技术, 但堆肥过程中约有50%的氮素以氨气形态挥发, 不仅降低了堆肥产品的养分价值, 更诱发了雾霾天气发生, 严重污染大气环境。因此, 减少堆肥过程的氨排放对于提高有机肥品质、降低堆肥过程产生的环境影响具有重要意义。针对实际生产中不同堆肥技术氨排放量不明, 氨减排潜力及经济效益缺乏的问题, 本研究通过生产规模试验, 定量分析了条垛式堆肥和密闭反应器堆肥过程中的氨排放量、氨回收效率及其影响因素, 并对不同堆肥技术进行了经济效益分析。结果表明, 与条垛式堆肥相比, 密闭反应器堆肥可减少氨挥发61.1% (P<0.01), 结合氨气洗涤回收技术(洗气塔)可实现82.3% (P<0.01)的氨减排; 氨气回收效率随吸收时间显著降低, 吸收液温度和铵根离子浓度是影响氨回收效率的关键因素。密闭反应器堆肥技术粪便处理成本(116.9元∙t–1)高于传统条垛式堆肥处理成本(87.4元∙t–1); 然而, 以条垛式堆肥为对照, 密闭反应器堆肥及反应器结合洗气塔技术每减少1 kg氨气的成本为22.0元和16.5元, 低于欧盟氨减排成本。综上所述, 密闭反应器堆肥可显著降低堆肥过程中的氨挥发, 与洗气塔结合使用可将堆肥过程中排放的大部分氨气进行回收, 是一种高效、可行且具有较大氨减排潜力的堆肥技术。
  • 图  1  条垛式堆肥及氨挥发测定装置(a)和密闭反应器及氨回收装置(b)

    Figure  1.  Device of windrow composting and ammonia measurement (a) and device of reactor composting and ammonia recovery (b)

    图  2  条垛式、新型密闭反应器及安装洗气塔后堆肥过程中的氨气排放

    不同大写字母表示在P<0.01水平差异显著。

    Figure  2.  NH3 emissions from windrow composting, reactor composting and scrubber

    Different capital letters mean significant differences at P<0.01.

    图  3  洗气塔氨回收率与吸收时间的关系

    Figure  3.  Change of ammonia recovery efficiency with absorption time

    图  4  洗气塔内氨吸收液在不同吸收时间内的温度、NH4+-N及pH变化及其对氨回收率的影响

    Figure  4.  Temperature, NH4+-N and pH changes in ammonia absorption solution during different absorption time and their effects on ammonia recovery rate in the scrubbing tower

    图  5  不同堆肥方式的年成本、每吨粪的处理成本及反应器的氨气减排成本

    Figure  5.  Annual cost, cost of composting 1 ton manure and ammonia abatement cost of different composting methods

    表  1  堆肥原料的理化性质(以干重计, n=3)

    Table  1.   Physico-chemical characters of raw materials for compost (dry matter, n=3)

    样品
    Sample
    含水率
    Moisture (%)
    pH全氮
    Total nitrogen (g∙kg–1)
    全磷
    Total phosphorus (g∙kg–1)
    全钾
    Total potassium (g∙kg–1)
    羊粪 Sheep manure73.89±0.018.49±0.0921.39±0.1832.96±0.1776.18±1.48
    蘑菇渣 Mushroom residue62.99±0.015.20±0.0219.72±0.0210.30±0.038.86±0.05
    混合物料
    Mixed material
    条垛式 Windrow71.68±0.028.48±0.0421.03±0.2725.92±0.2155.34±0.44
    反应器 Reactor64.53±0.028.48±0.0221.40±0.6629.55±0.4660.28±0.70
    下载: 导出CSV

    表  2  不同堆肥技术成本投入1)

    Table  2.   Cost of different technical implementation treatments1) ¥·a−1  

    项目 Category条垛式
    Windrow
    反应器
    Reactor
    反应器&洗气塔
    Reactor & scrubber
    基础设施成本
    Up-front cost
    土地租赁2) Land use2) 2.3×104 612.5 765.8
    基建3) Infrastructure3) 5.4×105 1.6×103 2.0×103
    基础设备4) Equipment4) 8.6×104 1.5×107 1.5×107
    固定运行成本
    Fixed operation cost
    基建 Infrastructure 4.3×105 0.1×104 0.2×104
    基础设备 Equipment 3.4×104 6.1×105 6.2×105
    可变运行成本
    Variable operation cost
    电力5) Electric5) 2.5×103 7.2×105 8.0×105
    辅料费 Mushroom residue 8.8×105 8.8×105 8.8×105
    人工费 Labor 3.5×105 3.5×105 3.5×105
    基础设备燃油费 Fuel 7.0×105
      1) 2种堆肥方式经济投入在每年处理35 000 t羊粪的基础上进行核算; 2)土地租赁=土地面积×土地价格; 3)基建=基建投入/基建服务年限(20年); 4)基础设备=设备投入/设备服务年限(10年); 5)电力=耗电量×电力价格(0.5元∙kWh–1)。1) Based on 35 000 t of sheep manure per year to calculate the cost of windrow composting and reactor composting; 2) Land use=land area×land price; 3) Infrastructure=infrastructure input/service life (20 years); 4) Equipment=equipment input/ service life (10 years); 5) Electric=electric consumption×electric price (0.5 ¥∙kWh–1).
    下载: 导出CSV
  • [1] CHADWICK D, JIA W, TONG Y A, et al. Improving manure nutrient management towards sustainable agricultural intensification in China[J]. Agriculture, Ecosystems & Environment, 2015, 209: 34−46
    [2] PERGOLA M, PERSIANI A, PALESE A M, et al. Composting: the way for a sustainable agriculture[J]. Applied Soil Ecology, 2018, 123: 744−750 doi: 10.1016/j.apsoil.2017.10.016
    [3] JIANG T, MA X G, YANG J, et al. Effect of different struvite crystallization methods on gaseous emission and the comprehensive comparison during the composting[J]. Bioresource Technology, 2016, 217: 219−226 doi: 10.1016/j.biortech.2016.02.046
    [4] WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13630−13635 doi: 10.1073/pnas.1616540113
    [5] WU Y Y, GU B J, ERISMAN J W, et al. PM2.5 pollution is substantially affected by ammonia emissions in China[J]. Environmental Pollution, 2016, 218: 86−94 doi: 10.1016/j.envpol.2016.08.027
    [6] PAULOT F, JACOB D J, PINDER R W, et al. Ammonia emissions in the United States, European Union, and China derived by high-resolution inversion of ammonium wet deposition data: interpretation with a new agricultural emissions inventory (MASAGE_NH3)[J]. Journal of Geophysical Research: Atmospheres, 2014, 119(7): 4343−4364 doi: 10.1002/2013JD021130
    [7] SUTTON M A, HOWARD C M, ERISMAN J W, et al. The European Nitrogen Assessment (Sources, Effects and Policy Perspectives)[M]. Cambridge: Cambridge University Press, 2011. https://doi.org/10.1017/CBO9780511976988
    [8] NDEGWA P M, HRISTOV A N, AROGO J, et al. A review of ammonia emission mitigation techniques for concentrated animal feeding operations[J]. Biosystems Engineering, 2008, 100(4): 453−469 doi: 10.1016/j.biosystemseng.2008.05.010
    [9] STEVENS C J, DISE N B, MOUNTFORD J O, et al. Impact of nitrogen deposition on the species richness of grasslands[J]. Science, 2004, 303(5665): 1876−1879 doi: 10.1126/science.1094678
    [10] 李艳霞, 王敏健, 王菊思, 等. 固体废弃物的堆肥化处理技术[J]. 环境污染治理技术与设备, 2000(4): 39−45

    LI Y X, WANG M J, WANG J S, et al. The technology of municipal solid wastes composting[J]. Technigues and Equipment for Enviropollcont, 2000(4): 39−45
    [11] LIU Z L, WANG X, WANG F H, et al. The progress of composting technologies from static heap to intelligent reactor: benefits and limitations[J]. Journal of Cleaner Production, 2020, 270: 122328 doi: 10.1016/j.jclepro.2020.122328
    [12] 刘泽龙, 王选, 曹玉博, 等. 立式筒仓反应器堆肥技术工艺优化研究[J]. 中国生态农业学报(中英文), 2020, 28(12): 1979−1989

    LIU Z L, WANG X, CAO Y B, et al. Optimization of composting technology for vertical silo reactor[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1979−1989
    [13] 曹玉博, 张陆, 王选, 等. 畜禽废弃物堆肥氨气与温室气体协同减排研究[J]. 农业环境科学学报, 2020, 39(4): 923−932 doi: 10.11654/jaes.2020-0104

    CAO Y B, ZHANG L, WANG X, et al. Synergistic mitigation of ammonia and greenhouse gas emissions during livestock waste composting[J]. Journal of Agro-Environment Science, 2020, 39(4): 923−932 doi: 10.11654/jaes.2020-0104
    [14] ZHANG N N, BAI Z H, WINIWARTER W, et al. Reducing ammonia emissions from dairy cattle production via cost-effective manure management techniques in China[J]. Environmental Science & Technology, 2019, 53(20): 11840−11848
    [15] KRIS N G, VALDEHUESA G M, NISOLA S L, et al. Removal of odorous compounds emitted from a food-waste composting facility in Korea using a pilot-scale scrubber[J]. Journal of Environmental Science and Health, 2018. DOI: 10.1080/10934529.2018.1474586
    [16] LARA J S, HADLOCON R B, MANUZON, et al. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities[J]. Environmental Technology, 2015, 36(4): 405−416
    [17] 魏宗强, 李吉进, 邹国元, 等. 不同覆盖措施对鸡粪堆肥氨挥发的影响[J]. 水土保持学报, 2009, 23(6): 108−111 doi: 10.3321/j.issn:1009-2242.2009.06.025

    WEI Z Q, LI J J, ZOU G Y, et al. Influence of different cover materials on NH3 volatilization from chicken manure composting[J]. Journal of Soil and Water Conservation, 2009, 23(6): 108−111 doi: 10.3321/j.issn:1009-2242.2009.06.025
    [18] 李星. C50堆肥反应器的研究设计[D]. 北京: 中国农业机械化科学研究院, 2015

    LI X. Research and design of C50 compost bioreactor[D]. Beijing: Chinese Academy of Agricultural Mechanization Sciences, 2015
    [19] JEONG K H, KIM J K, RAVINDRAN B, et al. Evaluation of pilot-scale in-vessel composting for Hanwoo manure management[J]. Bioresource Technology, 2017, 245: 201−206
    [20] TORRETTA V, SCHIAVON M, CARUSON P, et al. Air Pollution XXVII[M]. UK: WIT Press, 2019: 287−296
    [21] HADLOCON L J S, MANUZON R B, ZHAO L Y. Development and evaluation of a full-scale spray scrubber for ammonia recovery and production of nitrogen fertilizer at poultry facilities[J]. Environmental Technology, 2015, 36(1/2/3/4): 405−416
    [22] VALDEHUESA K N G, NISOLA G M, LEE S P, et al. Removal of odorous compounds emitted from a food-waste composting facility in Korea using a pilot-scale scrubber[J]. Journal of Environmental Science and Health, Part A, 2018, 53(12): 1094−1101 doi: 10.1080/10934529.2018.1474586
    [23] WANG X, BAI Z, YAO Y, et al. Composting with negative pressure aeration for the mitigation of ammonia emissions and global warming potential[J]. Journal of Cleaner Production, 2018, 195(SEP.10): 448−457
    [24] LARNEY F J, OLSON A F. Windrow temperatures and chemical properties during active and passive aeration composting of beef cattle feedlot manure[J]. Canadian Journal of Soil Science, 2006, 86(5): 783−797 doi: 10.4141/S06-031
    [25] HAO X Y, CHANG C, LARNEY F J. Carbon, nitrogen balances and greenhouse gas emission during cattle feedlot manure composting[J]. Journal of Environmental Quality, 2004, 33(1): 37−44 doi: 10.2134/jeq2004.3700
    [26] CHEN T L, CHEN L H, LIN Y J, et al. Advanced ammonia nitrogen removal and recovery technology using electrokinetic and stripping process towards a sustainable nitrogen cycle: a review[J]. Journal of Cleaner Production, 2021, 309: 127369 doi: 10.1016/j.jclepro.2021.127369
    [27] YANG K, QIN M H. The application of cation exchange membranes in electrochemical systems for ammonia recovery from wastewater[J]. Membranes, 2021, 11(7): 494 doi: 10.3390/membranes11070494
    [28] GU B J, ZHANG L, VAN DINGENEN R, et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution[J]. Science, 2021, 374(6568): 758−762 doi: 10.1126/science.abf8623
    [29] GIANNADAKI D, GIANNAKIS E, POZZER A, et al. Estimating health and economic benefits of reductions in air pollution from agriculture[J]. The Science of the Total Environment, 2018, 622/623: 1304−1316 doi: 10.1016/j.scitotenv.2017.12.064
    [30] 刘泽龙. 畜禽废弃物反应器堆肥技术及其通气方式优化研究[D]. 北京: 中国科学院大学, 2020

    LIU Z L. Study on reactor composting technology of livestock waste and the optimization of composting reactor aeration method[D]. Beijing: University of Chinese Academy of Sciences, 2020
    [31] KLIMONT Z, WINIWARTER W. Integrated Ammonia Abatement– Modelling of Emission Control Potentials and Costs in GAINS[R]. IIASA Interim Report IR-11-027, Laxenburg, Austria: IIASA, 2020
    [32] WANG H D, ZHAO Z Q, WINIWARTER W, et al. Strategies to reduce ammonia emissions from livestock and their cost-benefit analysis: a case study of Sheyang County[J]. Environmental Pollution (Barking, Essex: 1987), 2021, 290: 118045
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  97
  • HTML全文浏览量:  32
  • PDF下载量:  41
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 录用日期:  2022-03-07
  • 网络出版日期:  2022-03-21
  • 刊出日期:  2022-08-01

目录

    /

    返回文章
    返回