Regulation effects of fulvic acid on tomato yield and quality under saline water irrigation
-
摘要: 针对环渤海盐碱区淡水资源匮乏制约作物生长的问题, 依据区域咸水资源禀赋, 研究黄腐酸对咸水灌溉下番茄产量和品质的调控效应。采用基质栽培水肥一体化试验方法, 设置3个黄腐酸浓度水平: 0 mg·L−1、450 mg·L−1和900 mg·L−1; 5个咸水浓度水平: 1 g·L−1、3 g·L−1、5 g·L−1、7 g·L−1、9 g·L−1, 共15个处理。结果表明, 与不添加黄腐酸相比, 添加黄腐酸对不同浓度咸水灌溉下的番茄均有显著的增产效果(P<0.05), 添加450 mg·L−1和900 mg·L−1黄腐酸分别增产6.14%~21.08%和12.83%~34.63%。随着灌溉咸水浓度的增加, 番茄单果重、单株果实数目、耗水量、产量水分利用效率、果实维生素C和番茄红素含量显著下降, 果实还原性糖含量呈先增加后下降的趋势; 施用450 mg·L−1和900 mg·L−1的黄腐酸均能提高咸水灌溉下番茄单果重、单株果实数、耗水量、产量水分利用效率、果实维生素C含量、番茄红素含量、还原性糖含量。随着黄腐酸浓度的增加, 番茄叶片脯氨酸含量和K+/Na+显著增加, 丙二醛含量和Na+含量显著降低。单株产量和耗水量均与K+/Na+呈极显著正相关, 与脯氨酸含量、丙二醛含量、Na+含量呈极显著负相关; 番茄果实维生素C含量和番茄红素含量均与K+/Na+呈显著正相关, 与丙二醛含量、Na+含量呈极显著负相关; 还原性糖含量与丙二醛含量、Na+含量呈显著负相关。上述结果表明, 黄腐酸主要通过促进有机渗透调节物质脯氨酸积累、提高K+/Na+以及降低膜脂过氧化产物丙二醛的产生缓解咸水灌溉对番茄产量的抑制, 同时还能提高产量水分利用效率、果实维生素C、番茄红素和还原性糖含量, 改善番茄品质。Abstract: In view of the problem that lack of freshwater resources restricts crop growth in saline-alkali areas around Bohai Sea, the regulation effect of fulvic acid on the yield and quality of tomato under saline water irrigation was studied based on regional salt water resource endowment. In this study, the integrated water and fertilizer test method for substrate cultivation was adopted, and three fulvic acid concentrations: 0 mg·L−1, 450 mg·L−1, and 900 mg·L−1; and five salt water concentrations: 1 g·L−1, 3 g·L−1, 5 g·L−1,7 g·L−1, and 9 g·L−1, making a total of 15 treatments, were used for the experiment. The results showed that compared with no fulvic acid addition, fulvic acid addition had significant yield-increasing effects on tomatoes under different saline water concentrations. The yields of tomatoes under 450 and 900 mg·L−1 fulvic acid increased by 6.14%−21.08% and 12.83%−34.63%, respectively. With the increase in salt water concentration, tomato fruit weight, fruits number per plant, water consumption, yield, water use efficiency, vitamin C content, and lycopene content decreased significantly and fruit reducing sugar content increased first and then decreased. Under saline water irrigation, the applications of 450 and 900 mg·L−1 fulvic acid increased tomato single fruit weight, fruits number per plant, water consumption, yield, water use efficiency, vitamin C content, lycopene content, reducing sugar content. With the increase in fulvic acid concentration, proline content and K+/Na+ in tomato leaves increased significantly, whereas malondialdehyde and Na+ contents decreased significantly. The yield and water consumption per plant positively correlated with K+/Na+ and negatively correlated with contents of proline, malondialdehyde, and Na+; vitamin C and lycopene contents in tomato fruit significantly positively correlated with K+/Na+ and negatively correlated with malondialdehyde and Na+ contents. A significant negative correlation was observed between reducing sugar content and malondialdehyde and Na+ contents. The above results showed that fulvic acid could alleviate the inhibition effect of salt water irrigation on tomato yield and also promote the yield, water use efficiency, and vitamin C, lycopene, and reducing sugar contents. Fulvic acid alleviated salt stress mainly by promoting the accumulation of organic osmotic adjustment substance proline, increasing K+/Na+, and reducing the production of the membrane lipid peroxidation product — malondialdehyde.
-
Key words:
- Fulvic acid /
- Saline water irrigation /
- Tomato /
- Yield /
- Quality
-
图 1 黄腐酸对不同浓度咸水灌溉下番茄耗水量和产量水分利用效率的影响
F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同大、小写字母分别表示相同黄腐酸处理不同咸水浓度处理间、相同咸水浓度处理下不同黄腐酸处理间在P<0.05水平差异显著。
Figure 1. Effects of fulvic acid on water consumption (ET) and water use efficiency of tomato yield (WURY) under different concentrations of saline water for irrigation
F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7, 9 g·L−1, respectively. The capital and lowercase letters indicate significant differences among different salt water concentration treatments with the same fulvic acid concentration and different fulvic acid treatments with the same salt water concentration, respectively, at P<0.05 level.
图 2 黄腐酸对不同浓度咸水灌溉下番茄果实还原性糖、维生素C、番茄红素含量的影响
F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同大、小写字母分别表示相同黄腐酸处理不同咸水浓度处理间、相同咸水浓度不同黄腐酸处理在P<0.05水平差异显著。
Figure 2. Effect of fulvic acid on quality indexes of tomato under different concentrations of saline water for irrigation
F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7, 9 g·L−1, respectively. The capital and lowercase letters indicate significant differences among different salt water concentration treatments with the same fulvic acid concentration and different fulvic acid treatments with the same salt water concentration, respectively, at P<0.05 level.
图 3 黄腐酸对不同浓度咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量、K+/Na+的影响
F0、F450、F900分别表示黄腐酸浓度(mg·L−1)为0、450、900; S1、S3、S5、S7和S9分别表示咸水浓度(g·L−1)为1、3、5、7和9。图中不同小写字母表示不同处理间在P<0.05水平差异显著。
Figure 3. Effects of fulvic acid application on proline, malondialdehyde (MDA), Na+ contents and K+/Na+ of tomato leaves under different concentrations of saline water for irrigation
F0, F450, F900 indicate fulvic acid concentrations of 0, 450 and 900 mg·L−1, respectively. S1, S3, S5, S7, S9 indicate salt water concentrations of 1, 3, 5, 7 and 9 g·L−1, respectively. Different lowercase letters in the figure indicate significant differences among different treatments at P<0.05 level.
表 1 不同浓度咸水的盐离子含量
Table 1. Saline ions concentrations in irrigation water with different salinities used for the experiment
g·L−1 咸水浓度
Salinity of salt water (g·L−1)HCO3− Cl− SO42− Ca2+ Mg2+ K++Na+ 1 0.12 0.70 0.12 0.04 0.03 0.44 3 0.12 1.91 0.12 0.04 0.03 1.20 5 0.12 3.30 0.15 0.04 0.03 2.11 7 0.12 4.25 0.15 0.04 0.03 2.71 9 0.12 5.18 0.21 0.04 0.03 3.40 表 2 不同处理的总灌溉量和灌水带入的盐和黄腐酸量
Table 2. Total irrigation amount and the equivalent solid salt amount and fulvic acid (FA) added with irrigation to each pot
黄腐酸浓度
FA concentration (mg∙L−1)咸水浓度
Salinity of salt water (g∙L−1)总灌溉量
Total irrigation amount (mm)灌水带入盐量
Salt amount added to each pot (g)灌水带入黄腐酸量
FA added to each pot (g)0 1(CK) 406.67 45.14 0.00 3 413.33 106.02 0.00 5 378.33 162.02 0.00 7 346.67 189.28 0.00 9 256.67 172.87 0.00 450 1 413.33 45.88 13.95 3 410.00 105.17 13.84 5 350.00 149.89 11.81 7 335.00 182.91 11.31 9 270.00 181.85 9.11 900 1 413.33 45.88 27.90 3 410.00 105.17 27.68 5 326.67 139.90 22.05 7 290.00 158.34 19.58 9 273.33 184.09 18.45 表 3 黄腐酸对不同浓度咸水灌溉下番茄单果重、单株果实个数和单株产量的影响
Table 3. Effects of fulvic acid on single fruit weight, fruits number per plant and yield per plant of tomato under different concentrations of saline water for irrigation
黄腐酸浓度
Fulvic acid concentration (mg∙L−1)咸水浓度
Salinity of salt water (g∙L−1)单果重
Single fruit weight (g)单株果实个数
Number of fruits per plant单株产量
Yield per plant (g)0 1(CK) 57.87±6.80Aa 7.25±0.96Aa 414.84±17.59Ab 3 44.82±4.28Ba 8.00±0.82Aa 355.93±2.72Bb 5 36.78±2.42Ca 7.75±1.26Aa 284.39±46.44Ca 7 31.65±2.14Ca 7.33±0.47Aa 232.00±20.32Ca 9 23.23±5.16Da 5.50±1.29Bb 129.00±51.50Da 450 1 60.76±10.10Aa 7.50±1.00Aa 453.29±86.33Aab 3 48.03±4.04Ba 8.33±0.47Aa 399.77±34.29Aab 5 37.88±3.38Ca 8.00±0.82Aa 301.86±27.47Ba 7 33.86±3.24Ca 7.67±0.47Aa 259.11±23.44Ba 9 25.70±3.36Da 6.00±0.82Bab 156.19±41.43Ca 900 1 61.21±2.93Aa 7.75±1.50ABa 476.49±108.34Aa 3 51.62±7.94Ba 8.50±0.58Aa 439.18±78.68Aa 5 38.58±7.67Ca 8.25±0.50Aa 320.87±83.76Ba 7 35.57±1.85Ca 7.67±0.47ABa 272.11±3.57Ba 9 26.18±1.23Da 6.67±0.94Ba 173.67±15.95Ca 显著性 Significance 咸水 Salt water (S) ** ** ** 黄腐酸 Fulvic acid (F) NS * ** S×F NS NS NS 表中数据为平均值±标准误差, 同列不同大、小写字母分别表示相同黄腐酸浓度不同咸水浓度间、相同咸水浓度不同黄腐酸浓度间在P<0.05水平差异显著; *和**分别表示在P<0.05和P<0.01水平差异显著; NS表示无显著性差异。The data in the table is mean ± standard error. The capital and lowercase letters in the same column indicate significant differences among different salt water concentrations with the same fulvic acid concentration and different fulvic acid concentrations with the same salt water concentration, respectively, at P<0.05 level. * and ** represent significant differences at P<0.05 and P<0.01 levels, respectively. NS indicates no significant difference. 表 4 黄腐酸对不同浓度咸水灌溉下番茄叶片脯氨酸、丙二醛、Na+含量、K+/Na+的双因素方差分析
Table 4. Two factor analysis of variance of fulvic acid on proline, malondialdehyde, Na+ contents and K+/Na+ of tomato leaves under different concentrations of salt water for irrigation
脯氨酸 Proline 丙二醛 Malondialdehyde Na+ K+/Na+ 咸水 Salt water (S) 8745.63** 5681.91** 20 796.02** 2533.45** 黄腐酸 Fulvic acid (F) 3688.22** 8546.86** 1159.20** 296.84** S×F 106.84** 1257.70** 163.99** 87.64** 表 5 番茄产量、耗水、品质与生化指标的相关分析
Table 5. Correlation analysis of tomato yield, water consumption, quality and biochemical indexes
指标 Index Y ET WUEY RS VC Ly Pro MDA Na+ K+/Na+ Y 1.000 ET 0.993** 1.000 WUEY 0.982** 0.967** 1.000 RS 0.632* 0.641** 0.706** 1.000 VC 0.850** 0.859** 0.851** 0.818** 1.000 Ly 0.658** 0.658** 0.660** 0.765** 0.905** 1.000 Pro −0.770** −0.773** −0.723** −0.136 −0.408 −0.091 1.000 MDA −0.747** −0.780** −0.707** −0.615* −0.860** −0.828** 0.354 1.000 Na+ −0.958** −0.962** −0.916** −0.522* −0.793** −0.563* 0.834** 0.695** 1.000 K+/Na+ 0.896** 0.897** 0.814** 0.383 0.698** 0.567* −0.739** −0.647** −0.896** 1.000 表中指标分别为番茄单株产量(Y)、耗水量(ET)、产量水分利用效率(WUEY)、还原性糖(RS)、维生素C (VC)、番茄红素(Ly)、脯氨酸(Pro)、丙二醛(MDA)、Na+、K+/Na+; *和**分别表示相关性达P<0.05和P<0.01显著水平。The indexes in the table were tomato yield per plant (Y), water consumption (ET), yield water use efficiency (WUEY), reducing sugar (RS), vitamin C (VC), lycopene (Ly), proline (Pro), malondialdehyde (MDA ), Na+, K+/Na+. * and ** indicate significant correlation at P<0.05 and P<0.01 levels, respectively. -
[1] 王树强. 地下水资源可持续利用的制度架构−以华北平原为例[J]. 地下水, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03tWANG S Q. Sustainable use of groundwater resources in the system frame — As an example of the North China Plain[J]. Ground Water, 2012, 34(3): 6−8 doi: 10.3969/j.issn.1004-1184.2012.03.03t [2] 闫宗正, 房琴, 路杨, 等. 河北省地下水压采政策下水价机制调控冬小麦灌水量研究[J]. 灌溉排水学报, 2018, 37(8): 91−97, 128YAN Z Z, FANG Q, LU Y, et al. Changing water price to regulate groundwater extraction for irrigating winter wheat in North China Plain[J]. Journal of Irrigation and Drainage, 2018, 37(8): 91−97, 128 [3] 张喜英, 刘小京, 陈素英, 等. 环渤海低平原农田多水源高效利用机理和技术研究[J]. 中国生态农业学报, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162ZHANG X Y, LIU X J, CHEN S Y, et al. Efficient utilization of various water sources in farmlands in the low plain nearby Bohai Sea[J]. Chinese Journal of Eco-Agriculture, 2016, 24(8): 995−1004 doi: 10.13930/j.cnki.cjea.160162 [4] 李四强, 荷洁, 贺书宏. 营养与健康 宏兴隆发展战略之路[J]. 中国食品, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020LI S Q, HE J, HE S H. Nutrition and health Hongxinglong development strategy[J]. China Food, 2012(18): 46−47 doi: 10.3969/j.issn.1000-1085.2012.18.020 [5] 谢碧霞, 李安平. 膳食纤维[M]. 北京: 科学出版社, 2006XIE B X, LI A P. Dietary Fiber[M]. Beijing: Science Press, 2006 [6] 祁春节. 中国园艺产业国际竞争力研究[M]. 北京: 中国农业出版社, 2006QI C J. A study on the international competitiveness of horticultural industry in China[M]. Beijing: China Agriculture Press, 2006 [7] MAGGIO A, PASCALE S D, ANGELINO G, et al. Physiological response of tomato to saline irrigation in long-term salinized soils[J]. European Journal of Agronomy, 2004, 21(2): 149−159 doi: 10.1016/S1161-0301(03)00092-3 [8] SHALHEVET J, YARON B. Effect of soil and water salinity on tomato growth[J]. Plant and Soil, 1973, 39(2): 285−292 doi: 10.1007/BF00014795 [9] CUARTERO J, FERNÁNDEZ-MUÑOZ R. Tomato and salinity[J]. Scientia Horticulturae, 1998, 78(1/2/3/4): 83−125 [10] MARSIC N K, VODNIK D, MIKULIC-PETKOVSEK M, et al. Photosynthetic traits of plants and the biochemical profile of tomato fruits are influenced by grafting, salinity stress, and growing season[J]. Journal of Agricultural and Food Chemistry, 2018, 66(22): 5439−5450 doi: 10.1021/acs.jafc.8b00169 [11] NEBAUER S G, SÁNCHEZ M, MARTÍNEZ L, et al. Differences in photosynthetic performance and its correlation with growth among tomato cultivars in response to different salts[J]. Plant Physiology and Biochemistry: PPB, 2013, 63: 61−69 doi: 10.1016/j.plaphy.2012.11.006 [12] ZHU J K. Salt and drought stress signal transduction in plants[J]. Annual Review of Plant Biology, 2002, 53: 247−273 doi: 10.1146/annurev.arplant.53.091401.143329 [13] MAGÁN J J, GALLARDO M, THOMPSON R B, et al. Effects of salinity on fruit yield and quality of tomato grown in soil-less culture in greenhouses in Mediterranean climatic conditions[J]. Agricultural Water Management, 2008, 95(9): 1041−1055 doi: 10.1016/j.agwat.2008.03.011 [14] QARYOUTI M M, QAWASMI W, HAMDAN H, et al. Influence of nacl salinity stress on yield, plant water uptake and drainage water of tomato grown in soilless culture[J]. Acta Horticulturae, 2007(747): 539−545 [15] BOARI F, CANTORE V, DI VENERE D, et al. Pyraclostrobin can mitigate salinity stress in tomato crop[J]. Agricultural Water Management, 2019, 222: 254−264 doi: 10.1016/j.agwat.2019.06.003 [16] CANTORE V, PACE B, TODOROVIĆ M, et al. Influence of salinity and water regime on tomato for processing[J]. Italian Journal of Agronomy, 2012, 7(1): 10 doi: 10.4081/ija.2012.e10 [17] EL-MOGY M M, GARCHERY C, STEVENS R. Irrigation with salt water affects growth, yield, fruit quality, storability and marker-gene expression in cherry tomato[J]. Acta Agriculturae Scandinavica, Section B — Soil & Plant Science, 2018, 68(8): 727−737 [18] MITCHELL J P, SHENNAN C, GRATTAN S R, et al. Tomato fruit yields and quality under water deficit and salinity[J]. Journal of the American Society for Horticultural Science, 1991, 116(2): 215−221 doi: 10.21273/JASHS.116.2.215 [19] 王斌, 张强, 黄高鉴, 等. 水盐胁迫下脱硫石膏对苏打型碱化土理化性质及玉米产量的影响[J]. 安徽农业科学, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080WANG B, ZHANG Q, HUANG G J, et al. Effect of desulphurization gypsum on physical and chemical characteristics of soda-type of alkaline soil and maize yield under water-salt stress[J]. Journal of Anhui Agricultural Sciences, 2011, 39(5): 2734−2736 doi: 10.3969/j.issn.0517-6611.2011.05.080 [20] 宓永宁, 左建. 沸石对盐碱地玉米增产效果的研究[J]. 盐碱地利用, 1995, 25(1): 26−28MI Y N, ZUO J. Effect of zeolite on increase production of maize in saline-alkali soil[J]. Utilization of Saline-Alkali Soil, 1995, 25(1): 26−28 [21] SHE D L, SUN X Q, GAMARELDAWLA A H D, et al. Benefits of soil biochar amendments to tomato growth under saline water irrigation[J]. Scientific Reports, 2018, 8(1): 14743 doi: 10.1038/s41598-018-33040-7 [22] DU S T, LIU Y, ZHANG P, et al. Atmospheric application of trace amounts of nitric oxide enhances tolerance to salt stress and improves nutritional quality in spinach (Spinacia oleracea L.)[J]. Food Chemistry, 2015, 173: 905−911 doi: 10.1016/j.foodchem.2014.10.115 [23] 何庆元, 向仕华, 吴萍, 等. 硫化氢对盐胁迫条件下大豆抗氧化酶活性的影响[J]. 大豆科学, 2015, 34(3): 427−431HE Q Y, XIANG S H, WU P, et al. Effects of hydrogen sulfide alleviates salt stress in soybean (Glycine max) antioxidative system[J]. Soybean Science, 2015, 34(3): 427−431 [24] 张春平, 何平, 刘海英, 等. 外源CO供体高铁血红蛋白对盐胁迫下决明种子萌发及幼苗生理特性的影响[J]. 中国中药杂志, 2012, 37(2): 189−197ZHANG C P, HE P, LIU H Y, et al. Effect of exogenous carbon monoxide donor hematin on seed germination and physiological characteristics of Cassia obtusifolia seedlings under NaCl stress[J]. China Journal of Chinese Materia Medica, 2012, 37(2): 189−197 [25] MIAO Y X, LUO X Y, GAO X X, et al. Exogenous salicylic acid alleviates salt stress by improving leaf photosynthesis and root system architecture in cucumber seedlings[J]. Scientia Horticulturae, 2020, 272: 109577 doi: 10.1016/j.scienta.2020.109577 [26] 张林青. 盐胁迫下油菜素内酯对番茄产量和品质的影响[J]. 北方园艺, 2012(20): 23−25ZHANG L Q. Effect of brassinolide on yield and quality of tomato under salt stress[J]. Northern Horticulture, 2012(20): 23−25 [27] 郭小俊, 谢成俊. 外源ABA对NaCl胁迫下黄瓜幼苗不同离子含量的影响[J]. 中国蔬菜, 2008(9): 27−30GUO X J, XIE C J. Effect of exogenous ABA on ionic contents of cucumber seedlings under NaCl stress[J]. China Vegetables, 2008(9): 27−30 [28] 束胜, 孙锦, 郭世荣, 等. 外源腐胺对盐胁迫下黄瓜幼苗叶片PSⅡ光化学特性和体内离子分布的影响[J]. 园艺学报, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005SHU S, SUN J, GUO S R, et al. Effects of exogenous putrescine on PSⅡ photochemistry and ion distribution of cucumber seedlings under salt stress[J]. Acta Horticulturae Sinica, 2010, 37(7): 1065−1072 doi: 10.16420/j.issn.0513-353x.2010.07.005 [29] 周艳, 刘慧英, 崔金霞, 等. 外源GSH对NaCl胁迫下番茄幼苗叶片及根系离子微域分布的影响[J]. 植物营养与肥料学报, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311ZHOU Y, LIU H Y, CUI J X, et al. Effects of exogenous glutathione on ions micro-distribution in leaf and root of tomato seedlings under NaCl stress[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(4): 964−972 doi: 10.11674/zwyf.16311 [30] 崔云浩, 梁祎, 王军娥, 等. 纳米硅对盐胁迫下甜椒幼苗生长及抗氧化特性的影响[J]. 山西农业科学, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05CUI Y H, LIANG Y, WANG J E, et al. Effects of nano-silicon on seedling growth and antioxidant characteristics of sweet pepper under salt stress[J]. Journal of Shanxi Agricultural Sciences, 2021, 49(10): 1162−1165 doi: 10.3969/j.issn.1002-2481.2021.10.05 [31] 于学健. 黄腐酸调控甜菊糖苷合成的机理及甜菊糖苷的酶法转化[D]. 北京: 中国农业大学, 2016YU X J. Mechanism of stevioside synthesis regulation by fulvic acid and its enzymatic modification[D]. Beijing: China Agricultural University, 2016 [32] 王学奎, 黄见良. 植物生理生化实验原理与技术[M]. 北京: 高等教育出版社, 2015WANG X K, HUANG J L. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2015 [33] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000 [34] 马芸, 姜瑞, 吴燕. 西瓜中番茄红素含量的测定方法评价[J]. 宁夏农林科技, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041MA Y, JIANG R, WU Y. Evaluation of determination method of lycopene content in watermelon[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2013, 54(10): 88−89 doi: 10.3969/j.issn.1002-204X.2013.10.041 [35] ZHANG P F, DAI Y Y, MASATERU S, et al. Interactions of salinity stress and flower thinning on tomato growth, yield, and water use efficiency[J]. Communications in Soil Science and Plant Analysis, 2017, 48(22): 2601−2611 [36] MUNNS R, TESTER M. Mechanisms of salinity tolerance[J]. Annual Review of Plant Biology, 2008, 59: 651−681 doi: 10.1146/annurev.arplant.59.032607.092911 [37] 亓艳艳, 骆洪义, 公华锐, 等. 黄腐酸对基质栽培番茄生长、产量及品质的影响[J]. 山东农业科学, 2018, 50(5): 87−91QI Y Y, LUO H Y, GONG H R, et al. Effects of fulvic acid treatments on development, yield and quality of tomato in substrate culture[J]. Shandong Agricultural Sciences, 2018, 50(5): 87−91 [38] 李静, 李世莹, 李青松. 黄腐酸用量对番茄产量及品质的影响[J]. 农学学报, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002LI J, LI S Y, LI Q S. Effects of different amounts of fulvic acid on tomato yield and quality[J]. Journal of Agriculture, 2022, 12(2): 54−59 doi: 10.11923/j.issn.2095-4050.cjas2020-0002 [39] 孙倩. 提取腐殖酸及其对土壤环境和植物生长的影响[D]. 南京: 南京农业大学, 2016SUN Q. Derived humic acids and its effects on soil environment and growth of plants[D]. Nanjing: Nanjing Agricultural University, 2016 [40] 朱会调, 高登涛, 白茹, 等. 黄腐酸对阳光玫瑰葡萄果实品质及产量的影响[J]. 石河子大学学报(自然科学版), 2021, 39(5): 590−596ZHU H T, GAO D T, BAI R, et al. Effects of fulvic acid on berry quality and yield of Shine Muscat grape[J]. Journal of Shihezi University (Natural Science), 2021, 39(5): 590−596 [41] 卢林纲. 黄腐酸及其在农业上的应用[J]. 现代化农业, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030LU L G. Fulvic acid and its application in agriculture[J]. Modernizing Agriculture, 2001(5): 9−10 doi: 10.3969/j.issn.1001-0254.2001.05.030 [42] REINA-SÁNCHEZ A, ROMERO-ARANDA R, CUARTERO J. Plant water uptake and water use efficiency of greenhouse tomato cultivars irrigated with saline water[J]. Agricultural Water Management, 2005, 78(1/2): 54−66 [43] SHRIVASTAVA P, KUMAR R. Soil salinity: a serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation[J]. Saudi Journal of Biological Sciences, 2015, 22(2): 123−131 doi: 10.1016/j.sjbs.2014.12.001 [44] 高原, 郭晓青, 李福德, 等. 基施黄腐酸肥料情况下减施化肥提高设施辣椒产量和品质[J]. 植物营养与肥料学报, 2020, 26(3): 594−602GAO Y, GUO X Q, LI F D, et al. Improvement of yield and quality of greenhouse-grown pepper through basal application of fulvic acid fertilizer under chemical fertilizer reduction[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(3): 594−602 [45] 闫嘉欣, 常青, 杨治平, 等. 黄腐酸液体配方肥对大棚黄瓜产量及品质的影响[J]. 中国农学通报, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108YAN J X, CHANG Q, YANG Z P, et al. Fulvic acid formulated liquid fertilizer: effect on greenhouse cucumber yield and quality[J]. Chinese Agricultural Science Bulletin, 2019, 35(10): 47−51 doi: 10.11924/j.issn.1000-6850.casb18120108 [46] 姚东伟. 黄腐酸对番茄生长、产量及光合特性的影响[D]. 太谷: 山西农业大学, 2003YAO D W. Effect of fulvic acid on growth, yield and photosynthetic characteristic of tomato[D]. Taigu: Shanxi Agricultural University, 2003 [47] 海霞, 米俊珍, 赵宝平, 等. 外源亚精胺对盐胁迫下燕麦幼苗生长及生理特性的影响[J]. 西北植物学报, 2021, 41(6): 1003−1011HAI X, MI J Z, ZHAO B P, et al. Effects of exogenous spermidine on the growth and physiological characteristics in oat seedlings under salt stress[J]. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(6): 1003−1011 [48] 刘晓涵. 外源添加生物炭和黄腐酸钾缓解烟草盐胁迫机理研究[D]. 郑州: 河南农业大学, 2020LIU X H. The study on relieving response mechanism of tobacco in salt stress by exogenous biochar and potassium fulvic acid[D]. Zhengzhou: Henan Agricultural University, 2020 [49] DINLER B S, GUNDUZER E, TEKINAY T. Pre-treatment of fulvic acid plays a stimulant role in protection of soybean (Glycine max L.) leaves against heat and salt stress[J]. Acta Biologica Cracoviensia Series Botanica, 2016, 58(1): 29−41 doi: 10.1515/abcsb-2016-0002 [50] 张小冰, 王晓丽. 腐植酸钾浸种对玉米幼苗保护酶及MDA的影响[J]. 运城学院学报, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012ZHANG X B, WANG X L. Effects of soaking seed with potassium humate on the activity of protective enzymes and the level of MDA in maize seedlings[J]. Journal of Yuncheng University, 2011, 29(5): 42−44 doi: 10.3969/j.issn.1008-8008.2011.05.012 -