Activation of phosphorus pools in red soil by maize and soybean intercropping and its response to phosphorus fertilizer
-
摘要: 红壤固磷能力强, 但合理间作可促进磷吸收, 减少磷固定。本研究基于连续4年的田间定位试验, 分别设置玉米大豆间作(MI)和玉米单作(MM) 2种种植模式, 不施磷肥(P0)、施P2O5 60 kg∙hm−2 (P60)、施P2O5 90 kg∙hm−2 (P90)及施P2O5 120 kg∙hm−2 (P120) 4个施磷水平, 采用改良的Hedley磷分级法, 研究了玉米大豆间作对玉米根际土壤磷组分的影响及其磷梯度响应; 通过随机森林模型, 探究了不同磷组分对土壤磷活化系数(PAC)的贡献。玉米大豆间作提高了红壤施磷处理的总磷含量和磷有效性。与玉米单作相比, P0水平下间作玉米根际土壤速效磷含量显著提高70.4% (P<0.01)。玉米大豆间作显著促进了红壤磷的活化和向活性磷库的转化。在P0和P90水平下, 间作土壤PAC较单作分别显著提高87.4% (P<0.05)和34.6% (P<0.01)。间作使红壤活性磷库占总磷比例平均提高15.1%。其中无机活性磷组分中Resin-P在P120水平下含量较单作显著提高53.7% (P<0.05), 有机活性磷库中碳酸氢钠浸提有机磷(NaHCO3-Po)含量在P0、P120水平下分别显著提高117.0%、25.6% (P<0.05)。间作使红壤稳定性磷库占总磷比例降低1.1%, 差异不显著。在P90水平下, 稳定性磷库中稀盐酸浸提无机磷(Conc. HCl-Pi)含量较单作显著降低40.2% (P<0.01)。随机森林模型显示土壤无机磷是PAC的主要决定因素, 其中去除水溶性无机磷(Resin-Pi)的预测值时, 土壤PAC的均方差增加14.7%。玉米大豆间作显著提高了玉米根际土壤有效磷含量及土壤PAC, 提高了玉米根际土壤活性磷库、中稳性磷库的比例, 同时降低了稳定性磷库的比例, 玉米大豆间作对磷库的活化在中低施磷水平下作用显著, 在高施磷水平下活化作用不明显, 而其中土壤无机磷组分对PAC影响较大。说明玉米大豆间作促进了红壤磷的活化和向活性磷库的转化, 特别是在中低施磷条件下, 而在高施磷(P120)条件下间作红壤磷的活化作用不明显。
-
关键词:
- 玉米大豆间作 /
- 施磷水平 /
- 土壤Hedley磷分级 /
- 磷活化系数 /
- 红壤
Abstract: Phosphorus limits the growth of crops and is easily fixated to red soil; however, reasonable intercropping can promote phosphorus absorption and reduce phosphorus fixation. Studying the effects of maize and soybean intercropping on phosphorus transformation and mobilization in red soil in the southwestern drylands under different phosphorus application levels is of great significance. Based on four consecutive years of field positioning experiments, two planting modes — maize and soybean intercropping and maize monocropping — were set; four phosphorus application levels — no phosphate fertilizer (P0), 60 kg∙hm−2 of P2O5 (P60), 90 kg∙hm−2 of P2O5 (P90), and 120 kg∙hm−2 of P2O5 (P120) — were also implemented. The effects of maize and soybean intercropping on phosphorus fractions in maize rhizosphere soil and the response of soil phosphorus to the phosphorus gradient were studied using modified Hedley phosphorus classification method. The contribution of different phosphorus fractions to the soil phosphorus activation coefficient (PAC) was investigated using a random forest model. Maize and soybean intercropping increased the available phosphorus content and phosphorus availability in red soil under phosphorus fertilization. Compared with maize monocropping, at P0 level, the available phosphorus content of the intercropping maize rhizosphere soil increased significantly by 70.4% (P<0.01). Maize and soybean intercropping greatly promoted the mobilization of phosphorus in red soil and conversion to the active phosphorus pool. At P0 and P90 levels, the soil PAC of intercropping was significantly increased by 87.4% (P<0.05) and 34.6% (P<0.01), respectively, compared with that of monocropping. Intercropping also increased the proportion of active phosphorus pool to total phosphorus by 15.1% averagely. Among them, the Resin-P content in the inorganic active phosphorus component at the P120 level was significantly increased by 53.7% (P<0.05), compared with in monocropping. Furthermore, the NaHCO3-Po (organic P extracted by sodium bicarbonate) content in the organic active phosphorus pool was significantly increased by 117.0% and 25.6%, at the P0 and P120 levels, respectively (P<0.05). Intercropping reduced the proportion of stable phosphorus pool in red soil by 1.1% of the total phosphorus. At P90 level, the content of Conc.HCl-Pi (inorganic P extracted from concentrated hydrochloric acid) in the stable phosphorus pool was significantly decreased by 40.2% (P<0.01) compared with maize monocropping. The random forest model showed that soil inorganic phosphorus was the main determinant of PAC, and the mean square error of PAC increased by 14.7% when the predicted value of water-soluble inorganic phosphorus (Resin-Pi) was removed. Maize and soybean intercropping significantly increased the available phosphorus content and PAC in maize rhizosphere soil, increased the proportion of active phosphorus pool and moderately stable phosphorus pool, and decreased the proportion of stable phosphorus pool in maize rhizosphere soil. The mobilization effect of maize and soybean intercropping on the phosphorus pool was significant at low and medium phosphorus levels, but not at high phosphorus level, while soil inorganic phosphorus components had a greater effect on PAC. The results showed that maize and soybean intercropping promoted the mobilization of phosphorus and the conversion of phosphorus to the active phosphorus pool in red soil, especially under conditions of medium and low phosphorus application. However, the effect of the intercropping of maize and soybean on the mobilization of phosphorus in red soil was not obvious under the condition of high phosphorus application. -
图 1 不同施磷水平下玉米大豆间作对红壤玉米根际土壤有效磷(A)和Resin-P (B)含量的影响
MM和MI分别为玉米单作和玉米大豆间作; 图中不同小写字母表示单作模式或间作模式下不同施磷水平间差异显著(P<0.05); 字母后的*和**分别表示同一施磷水平下单作和间作间差异显著(P<0.05). MM and MI are maize monoculture and maize/soybean intercropping. Different lowercase letters indicate significant differences among different P application levels for the monoculture or intercropping mode (P<0.05). * and ** after letters indicate significant differences between monoculture and intercropping under the same P application level at P<0.05.
Figure 1. Effects of maize and soybean intercropping under different P application levels on the contents of available P (A) and Resin-P (B) in maize rhizosphere soil of red soil
图 2 不同施磷水平下玉米大豆间作对红壤玉米根际土壤磷活化系数的影响
MM和MI分别为玉米单作和玉米大豆间作; 图中不同小写字母表示单作模式或间作模式下不同施磷水平间差异显著性(P<0.05); 字母后的*和**分别表示同一施磷水平下单作和间作间差异显著(P<0.05). MM and MI are maize monoculture and maize/soybean intercropping. Different lowercase letters indicate significant differences among different P application levels for the monoculture or intercropping mode (P<0.05). * and ** after letters indicate significant differences between monoculture and intercropping under the same P application level at P<0.05.
Figure 2. Effects of maize and soybean intercropping under different P application levels on P activation coefficient of maize rhizosphere soil in red soil
图 3 不同施磷水平下玉米大豆间作对红壤玉米根际土壤不同活性磷库的影响
M和I分别为玉米单作和玉米大豆间作; P0、P60、P90和P120分别表示施P2O5 0 kg∙hm−2、60 kg∙hm−2、90 kg∙hm−2和120 kg∙hm−2。图中刻度线的值表示磷库的含量值, 单位为mg∙kg−1。M and I are maize monoculture and maize/soybean intercropping; P0, P60, P90 and P120 are P application levels of 0 kg(P2O5)∙hm−2, 60 kg(P2O5)∙hm−2, 90 kg(P2O5)∙hm−2 and 120 kg(P2O5)∙hm−2. The value of the scale line represents the P pool content in mg∙kg−1.
Figure 3. Effects of maize and soybean intercropping under different P application levels on different active P pools in maize rhizosphere soil of red soil
图 4 不同施磷水平下与大豆间作的红壤玉米根际土壤各磷组分占总磷百分比
MM和MI分别为玉米单作和玉米大豆间作。Resin-Pi为交换性树脂浸提的树脂磷, NaHCO3-Pi为碳酸氢钠浸提的无机磷, NaHCO3-Po为碳酸氢钠浸提的有机磷, NaOH-Pi为氢氧化钠浸提的无机磷, NaOH-Po为氢氧化钠浸提的有机磷, Dil.HCl-Pi为稀盐酸浸提的无机磷, Conc.HCl-Pi为浓盐酸浸提的无机磷, Conc.HCl-Po为浓盐酸浸提的有机磷, Residual-P为残余态磷。MM and MI are maize monoculture and maize/soybean intercropping. Resin-Pi is Resin P extracted by exchange Resin, NaHCO3-Pi is inorganic P extracted by sodium bicarbonate, NaHCO3-Po is organic P extracted by sodium bicarbonate, NaOH-Pi is inorganic P extracted by sodium hydroxide, NaOH-Po is organic P extracted by sodium hydroxide, Dil.HCl-Pi is inorganic P extracted from dilute hydrochloric acid, Conc.HCl-Pi is inorganic P extracted from concentrated hydrochloric acid, Conc.HCl-Po is organic P extracted from concentrated hydrochloric acid, and Residue-P is Residual P.
Figure 4. Percentages of P components in total P in rhizosphere soil of maize intercropped with soybean in red soil
图 5 大豆间作的红壤玉米土壤磷组分对磷活化系数(PAC)的影响
**和*分别表示剔除横坐标对应因子预测对象均方差增加量在P<0.01和P<0.05水平显著。Resin-Pi、 NaHCO3-Pi、NaHCO3-Po、NaOH-Pi、NaOH-Po、 Dil.HCl-Pi、Conc.HCl-Pi、Conc.HCl-Po和Residual-P说明见图4的图注。** and * in the figure indicate that the increase in the mean square error of the predicted object after excluding the corresponding factor on the abscissa (IncMSE) is significant at the level of P<0.01 and P<0.05, respectively. Description of Resin-Pi, NaHCO3-Pi, NaHCO3-Po, NaOH-Pi, NaOH-Po, Dil.HCl-Pi, Conc.HCl-Pi, Conc.HCl-Po, Residual-P are shown in the note of Figure 4.
Figure 5. Effect of soil P components on P activation coefficient (PAC) in rhizosphere soil of maize intercropped with soybean in red soil
表 1 种植模式和施磷水平对玉米根际土壤有效磷含量、Resin-P含量和磷活化系数的影响
Table 1. Effects of planting pattern and P application level on available P content, Resin-P content and P activation coefficient in maize rhizosphere soil
因子 Factor 有效磷 Available P 树脂磷 Resin-P 磷活化系数 P activation coefficient 种植模式 Planting pattern (Pp) * ** ** 磷水平 P application level (P) ** ** ** Pp×P ns * ** *: P<0.05; **: P<0.01; ns: P>0.05. -
[1] XU R B, LI T, SHEN M, et al. Evidence for a dark septate endophyte (Exophiala pisciphila, H93) enhancing phosphorus absorption by maize seedlings[J]. Plant and Soil, 2020, 452(1/2): 249−266 [2] 覃潇敏, 农玉琴, 骆妍妃, 等. 施磷量对玉米-大豆间作根际红壤无机磷形态及磷吸收的影响[J]. 中国土壤与肥料, 2022(4): 9−16QIN X M, NONG Y Q, LUO Y F, et al. Effects of different phosphorus rates on inorganic phosphorus forms in rhizosphere red soil and phosphorus uptake in maize and soybean intercropping[J]. Soil and Fertilizer Sciences in China, 2022(4): 9−16 [3] LÓPEZ-ARREDONDO D L, LEYVA-GONZÁLEZ M A, GONZÁLEZ-MORALES S I, et al. Phosphate nutrition: improving low-phosphate tolerance in crops[J]. Annual Review of Plant Biology, 2014, 65: 95−123 doi: 10.1146/annurev-arplant-050213-035949 [4] 吴璐璐, 柳小琪, 张泽兴, 等. 吉林省典型土壤磷素形态及有效性[J]. 西北农业学报, 2021, 30(5): 737−745 doi: 10.7606/j.issn.1004-1389.2021.05.013WU L L, LIU X Q, ZHANG Z X, et al. Forms and availability of phosphorus in typical soil of Jilin Province[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2021, 30(5): 737−745 doi: 10.7606/j.issn.1004-1389.2021.05.013 [5] HEDLEY M J, STEWART J W B. Method to measure microbial phosphate in soils[J]. Soil Biology and Biochemistry, 1982, 14(4): 377−385 doi: 10.1016/0038-0717(82)90009-8 [6] 樊彦波, 李晓秀, 龚艳伟. 不同复垦模式下改进后的Hedley磷分级的研究[J]. 首都师范大学学报(自然科学版), 2014, 35(3): 50−56 doi: 10.19789/j.1004-9398.2014.03.011FAN Y B, LI X X, GONG Y W. A research of improved hedley phosphate fractionation in different reclamation mode[J]. Journal of Capital Normal University (Natural Science Edition), 2014, 35(3): 50−56 doi: 10.19789/j.1004-9398.2014.03.011 [7] 徐晓峰, 米倩, 刘迪, 等. 磷肥施用量对石灰性土壤磷组分和作物磷积累量的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1857−1866XU X F, MI Q, LIU D, et al. Effect of phosphorus fertilizer rate on phosphorus fractions contents in calcareous soil and phosphorus accumulation amount in crop[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1857−1866 [8] NAKAYAMA Y, WADE J, MARGENOT A J. Does soil phosphomonoesterase activity reflect phosphorus pools estimated by Hedley phosphorus fractionation?[J]. Geoderma, 2021, 401: 115279 doi: 10.1016/j.geoderma.2021.115279 [9] WANG J P, WU Y H, ZHOU J, et al. Air-drying changes the distribution of Hedley phosphorus pools in forest soils[J]. Pedosphere, 2020, 30(2): 272−284 doi: 10.1016/S1002-0160(17)60456-9 [10] LI X F, WANG C B, ZHANG W P, et al. The role of complementarity and selection effects in P acquisition of intercropping systems[J]. Plant and Soil, 2018, 422(1/2): 479−493 [11] SAHARAN K, SCHÜTZ L, KAHMEN A, et al. Finger millet growth and nutrient uptake is improved in intercropping with pigeon pea through “biofertilization” and “bioirrigation” mediated by arbuscular mycorrhizal fungi and plant growth promoting rhizobacteria[J]. Frontiers in Environmental Science, 2018, 6: 46 doi: 10.3389/fenvs.2018.00046 [12] ZHANG Y K, CHEN F J, LI L, et al. The role of maize root size in phosphorus uptake and productivity of maize/faba bean and maize/wheat intercropping systems[J]. Science China (Life Sciences), 2012, 55(11): 993−1001 doi: 10.1007/s11427-012-4396-6 [13] TANG X Y, ZHANG C C, YU Y, et al. Intercropping legumes and cereals increases phosphorus use efficiency: a meta-analysis[J]. Plant and Soil, 2021, 460(1/2): 89−104 [14] ZHANG D S, ZHANG C C, TANG X Y, et al. Increased soil phosphorus availability induced by faba bean root exudation stimulates root growth and phosphorus uptake in neighbouring maize[J]. New Phytologist, 2016, 209(2): 823−831 doi: 10.1111/nph.13613 [15] 王宇蕴, 李兰, 郑毅, 等. 基于根系形态对磷吸收的贡献解析小麦||蚕豆间作促进磷吸收的作用[J]. 中国生态农业学报(中英文), 2020, 28(7): 954−959WANG Y Y, LI L, ZHENG Y, et al. Contribution of root morphology to phosphorus absorption in wheat and faba bean intercropping system[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 954−959 [16] 张德闪, 王宇蕴, 汤利, 等. 小麦蚕豆间作对红壤有效磷的影响及其与根际pH值的关系[J]. 植物营养与肥料学报, 2013, 19(1): 127−133ZHANG D S, WANG Y Y, TANG L, et al. Effects of wheat and fababean intercropping on available phosphorus of red soils and its relationship with rhizosphere soil pH[J]. Plant Nutrition and Fertilizer Science, 2013, 19(1): 127−133 [17] ZHAN F D, QIN L, GUO X H, et al. Cadmium and lead accumulation and low-molecular-weight organic acids secreted by roots in an intercropping of a cadmium accumulator Sonchus asper L. with Vicia faba L.[J]. RSC Advances, 2016, 6(40): 33240−33248 doi: 10.1039/C5RA26601G [18] 赵雅姣, 刘晓静, 吴勇, 等. 豆禾牧草间作根际土壤养分、酶活性及微生物群落特征[J]. 中国沙漠, 2020, 40(3): 219−228ZHAO Y J, LIU X J, WU Y, et al. Rhizosphere soil nutrients, enzyme activities and microbial community characteristics in legume-cereal intercropping system in Northwest China[J]. Journal of Desert Research, 2020, 40(3): 219−228 [19] WANG G Z, BEI S K, LI J P, et al. Soil microbial legacy drives crop diversity advantage: linking ecological plant–soil feedback with agricultural intercropping[J]. Journal of Applied Ecology, 2021, 58(3): 496−506 doi: 10.1111/1365-2664.13802 [20] 李海叶, 黄少欣, 朱东宇, 等. 云南中、低供磷能力土壤玉米最佳施磷量研究[J]. 植物营养与肥料学报, 2022, 28(6): 1039−1046LI H Y, HUANG S X, ZHU D Y, et al. Optimizing phosphate fertilization in relation to phosphorus supply capacity of soils in Yunnan maize producing areas[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(6): 1039−1046 [21] 鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000 [22] MOIR J, TIESSEN H. Characterization of available P by sequential extraction[M]. CARTER M R, GREGORICH E G. Soil Sampling and Methods of Analysis. Second Edition. Panama City: CRC Press, 1993 [23] NWOKE O C, VANLAUWE B, DIELS J, et al. Assessment of labile phosphorus fractions and adsorption characteristics in relation to soil properties of West African savanna soils[J]. Agriculture, Ecosystems & Environment, 2003, 100(2/3): 285−294 [24] 陈露, 王秀斌, 朱瑞利, 等. 长江中下游小麦产量、土壤酶活性及微生物群落结构对磷肥减施的响应[J]. 植物营养与肥料学报, 2021, 27(3): 392−402 doi: 10.11674/zwyf.20506CHEN L, WANG X B, ZHU R L, et al. Response of wheat yield and soil microbial activity to phosphorus fertilizer reduction in the middle and lower reaches of the Yangtze River[J]. Journal of Plant Nutrition and Fertilizers, 2021, 27(3): 392−402 doi: 10.11674/zwyf.20506 [25] 陈利军, 蒋瑀霁, 王浩田, 等. 长期施用有机物料对旱地红壤磷组分及磷素有效性的影响[J]. 土壤, 2020, 52(3): 451−457 doi: 10.13758/j.cnki.tr.2020.03.004CHEN L J, JIANG Y J, WANG H T, et al. Effects of long-term application of organic materials on phosphorus fractions and availability in red soil[J]. Soils, 2020, 52(3): 451−457 doi: 10.13758/j.cnki.tr.2020.03.004 [26] RHEINHEIMER D S, ANGHINONI I, KAMINSKI J. Depleção do fósforo inorgânico de diferentes frações provocada pela extração sucessiva com resina em diferentes solos e manejos[J]. Revista Brasileira De Ciência Do Solo, 2000, 24(2): 345−354 [27] 杨芳, 何园球, 李成亮, 等. 不同施肥条件下红壤旱地磷素形态及有效性分析[J]. 土壤学报, 2006, 43(5): 793−799 doi: 10.3321/j.issn:0564-3929.2006.05.013YANG F, HE Y Q, LI C L, et al. Effect of fertilization on phosphorus forms and its availability in upland red soil[J]. Acta Pedologica Sinica, 2006, 43(5): 793−799 doi: 10.3321/j.issn:0564-3929.2006.05.013 [28] 颜晓军, 叶德练, 郑朝元, 等. 磷肥投入对赤砂土磷形态累积及有效性的影响[J]. 南方农业学报, 2019, 50(9): 1945−1952YAN X J, YE D L, ZHENG C Y, et al. Effects of phosphate fertilizer input on phosphorus forms accumulation and availability in red sandy soil[J]. Journal of Southern Agriculture, 2019, 50(9): 1945−1952 [29] LIAO D, ZHANG C C, LI H G, et al. Changes in soil phosphorus fractions following sole cropped and intercropped maize and faba bean grown on calcareous soil[J]. Plant and Soil, 2020, 448(1/2): 587−601 [30] LI G H, LI H G, LEFFELAAR P A, et al. Dynamics of phosphorus fractions in the rhizosphere of fababean (Vicia faba L.) and maize (Zea mays L.) grown in calcareous and acid soils[J]. Crop and Pasture Science, 2015, 66(11): 1151 doi: 10.1071/CP14370 [31] CABEZA R A, MYINT K, STEINGROBE B, et al. Phosphorus fractions depletion in the rhizosphere of young and adult maize and oilseed rape plants[J]. Journal of Soil Science and Plant Nutrition, 2017, 17(3): 824−838 doi: 10.4067/S0718-95162017000300020 [32] GAO X, SHI D, LV A, et al. Increase phosphorus availability from the use of alfalfa (Medicago sativa L.) green manure in rice (Oryza sativa L.) agroecosystem[J]. Scientific Reports, 2016, 6: 36981 doi: 10.1038/srep36981 [33] 谢英荷, 洪坚平, 韩旭, 等. 不同磷水平石灰性土壤Hedley磷形态生物有效性的研究[J]. 水土保持学报, 2010, 24(6): 141−144 doi: 10.13870/j.cnki.stbcxb.2010.06.029XIE Y H, HONG J P, HAN X, et al. Study on soil bioavailability of the hedley P forms in calcareous soil with different phosphorus level[J]. Journal of Soil and Water Conservation, 2010, 24(6): 141−144 doi: 10.13870/j.cnki.stbcxb.2010.06.029 [34] NDAYISABA P C, KUYAH S, MIDEGA C A O, et al. Intercropping desmodium and maize improves nitrogen and phosphorus availability and performance of maize in Kenya[J]. Field Crops Research, 2021, 263: 108067 doi: 10.1016/j.fcr.2021.108067 [35] 潘浩男, 覃潇敏, 肖靖秀, 等. 不同磷水平下间作对红壤团聚体及有效磷特征的影响[J]. 中国土壤与肥料, 2022(4): 1−8 doi: 10.11838/sfsc.1673-6257.20766PAN H N, QIN X M, XIAO J X, et al. Effects of intercropping on soil aggregates and available phosphorus under different phosphorus levels[J]. Soil and Fertilizer Sciences in China, 2022(4): 1−8 doi: 10.11838/sfsc.1673-6257.20766 [36] 覃潇敏, 潘浩男, 肖靖秀, 等. 不同磷水平下玉米-大豆间作系统根系形态变化[J]. 应用生态学报, 2021, 32(9): 3223−3230 doi: 10.13287/j.1001-9332.202109.023QIN X M, PAN H N, XIAO J X, et al. Root morphological changes in maize and soybean intercropping system under different phosphorus levels[J]. Chinese Journal of Applied Ecology, 2021, 32(9): 3223−3230 doi: 10.13287/j.1001-9332.202109.023 [37] 周龙, 苏丽珍, 王思睿, 等. 间作对红壤磷素吸附解吸平衡效应的影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1867−1878ZHOU L, SU L Z, WANG S R, et al. Effect of intercropping on balancing effect of absorption and desorption characteristics of phosphorus in red soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1867−1878 [38] DISSANAYAKA D M S B, WASAKI J. Complementarity of two distinct phosphorus acquisition strategies in maize-white lupine intercropping system under limited phosphorus availability[J]. Journal of Crop Improvement, 2021, 35(2): 234−249 doi: 10.1080/15427528.2020.1808868 [39] 赵德强, 元晋川, 侯玉婷, 等. 玉米||大豆间作对AMF时空变化的影响[J]. 中国生态农业学报(中英文), 2020, 28(5): 631−642ZHAO D Q, YUAN J C, HOU Y T, et al. Tempo-spatial dynamics of AMF under maize soybean intercropping[J]. Chinese Journal of Eco-Agriculture, 2020, 28(5): 631−642 -