Effects of increased atmospheric CO2 concentration and temperature on carbon and nitrogen metabolism in maize at the grain filling stage
-
摘要: 为探讨C4作物玉米对CO2浓度升高、温度升高及其交互作用的响应, 本研究以玉米品种‘先玉335’为材料, 利用人工控制气室设置CK (CO2浓度为400 μmol∙mol−1, 环境温度)、EC (CO2浓度为600 μmol∙mol−1, 环境温度)、ET (CO2浓度为400 μmol∙mol−1, 气温为环境温度+2 ℃)、ECT (CO2浓度为600 μmol∙mol−1, 气温为环境温度+2 ℃) 4个处理, 测定玉米灌浆期叶片光合生理、糖代谢、氮代谢相关指标, 并在成熟后测定玉米生物量。结果表明: 1) CO2浓度升高条件下, 玉米叶片叶绿素含量、蔗糖含量、净光合速率及蔗糖合成酶、丙酮酸激酶和α-酮戊二酸脱氢酶活性显著升高(P<0.05), 但谷氨酸合成酶活性显著降低(P<0.05), 地上部生物量和穗重显著升高35.8%和170.2% (P<0.05)。2)气温升高条件下, 叶片净光合速率、蔗糖合成酶和丙酮酸激酶活性显著升高(P<0.05), 但α-酮戊二酸脱氢酶和谷氨酸合成酶活性显著降低(P<0.05), 地上部生物量、叶重、茎重和穗重显著降低37.0%、28.7%、32.3%和62.2% (P<0.05)。3) CO2浓度和气温均升高条件下, 叶片净光合速率和丙酮酸激酶活性显著升高(P<0.05), 但叶绿素含量、α-酮戊二酸脱氢酶和谷氨酸合成酶活性显著降低(P<0.05), 叶重显著降低23.4% (P<0.05)。总之, CO2浓度升高可通过促进玉米叶片光合速率, 增加糖代谢相关酶活性和光合代谢产物等缓解温度升高对玉米生物量的负效应; CO2浓度升高、气温升高以及二者互作下玉米氮代谢受到抑制, 玉米叶片受到氮素胁迫, 或对玉米品质产生不利影响。Abstract: Future climate change will bring considerable challenges to agricultural production and food security. Presently, research on the effects of elevated CO2 concentration and increased temperature on crops is mostly focused on C3 crops, while research on C4 crops is rare. Maize is the most widely planted C4 crop in the world, it is of great significance to explore the response of maize to elevated CO2 concentration, increased temperature, and their combination to assess the impacts of future climate change on C4 crops. The maize variety ‘Xianyu-335’ was used. Four treatments were set up in controlled chambers: CK (CO2 concentration 400 μmol·mol−1, ambient temperature), EC (CO2 concentration 600 μmol·mol−1, ambient temperature), ET (CO2 concentration 400 μmol·mol−1, 2 ℃ higher than ambient temperature), and ECT (CO2 concentration 600 μmol·mol−1, 2 ℃ higher than ambient temperature). The related indices of photosynthetic physiology, glucose metabolism, and nitrogen metabolism of maize leaves were measured at the grain-filling stage, and the biomass of maize was measured after ripening. The results showed that: 1) under elevated CO2 concentrations, the chlorophyll content, sucrose content, net photosynthetic rate, sucrose synthase activity, pyruvate kinase activity, and α-ketoglutarate dehydrogenase activity in leaves were significantly increased (P<0.05), while glutamate synthase activity was significantly decreased (P<0.05). Additionally, aboveground biomass and spike mass were significantly increased by 35.8% and 170.2%, respectively (P<0.05). 2) At increased temperatures, the net photosynthetic rate, and activities of sucrose synthase and pyruvate kinase of leaves were significantly increased (P<0.05), while α-ketoglutarate dehydrogenase and glutamate synthase activities were significantly decreased (P<0.05), and the above-ground biomass and the biomasses of leaf, stem, and spike were significantly decreased by 37.0%, 28.7%, 32.3%, and 62.2%, respectively (P<0.05). 3) Under the combination of elevated CO2 concentration and increased temperature, the net photosynthetic rate and pyruvate kinase activity of leaves were significantly increased (P<0.05), whereas the chlorophyll content, and activities of α-ketoglutarate dehydrogenase and glutamate synthase were significantly decreased (P<0.05), and the leaf biomass was significantly decreased by 23.4% (P<0.05). In conclusion, elevated CO2 concentration could alleviate the negative impact of increased temperatures on maize biomass by increasing photosynthesis and the activity of enzymes related to glucose metabolism and photosynthetic metabolites. Under elevated CO2, increased temperature, or their combination, nitrogen metabolism in maize is inhibited; thus, leaves are subjected to nitrogen stress, which harms maize quality.
-
Key words:
- Elevated CO2 concentration /
- Increased temperature /
- Maize /
- Metabolism of carbon and nitrogen /
- Biomass
-
图 1 玉米生长季各处理的CO2浓度变化
CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature.
Figure 1. CO2 concentrations of different treatments in maize growing season
图 2 玉米生长季各处理气温变化
CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature.
Figure 2. Temperature of different treatments in maize growing season
表 1 CO2浓度和气温升高对玉米灌浆期叶片光合色素含量的影响
Table 1. Effects of elevated CO2 concentration and increased temperature on photosynthetic pigment content of maize leaves at grain filling stage
处理
Treatment叶绿素a
Chlorophyll a叶绿素b
Chlorophyll b类胡萝卜素
Carotenoids总叶绿素(a+b)
Chlorophyllmg∙g−1(FW) CK 2.10±0.06b 0.15±0.01b 0.46±0.01a 2.24±0.10b EC 2.38±0.02a 0.21±0.01a 0.48±0.01a 2.59±0.02a ET 2.24±0.08ab 0.19±0.01a 0.45±0.02a 2.43±0.09ab ECT 1.64±0.11c 0.12±0.01b 0.35±0.02b 1.77±0.12c PCO2 0.07 0.65 0.04 0.09 PT 0.00 0.03 0.00 0.01 PCO2×T 0.00 0.00 0.01 0.00 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level. 表 2 CO2浓度和气温升高对玉米灌浆期叶片光合参数的影响
Table 2. Effects of elevated CO2 concentration and increased temperature on photosynthetic parameters of maize leaves at grain filling stage
处理
Treatment净光合速率
Net photosynthetic rate
(μmol∙m−2∙s−1)气孔导度
Stomatal conductance
[mol(H2O)∙m−2∙s−1]蒸腾速率
Transpiration rate
[mmol(H2O)∙m−2∙s−1]水分利用效率
Water use efficiency
[μmol(CO2)∙mmol−1(H2O)]CK 23.29±0.61c 0.12±0.01c 3.14±0.06d 7.42±0.06b EC 33.32±0.45a 0.13±0.01b 3.35±0.08c 9.94±0.20a ET 34.55±0.48a 0.14±0.01b 3.56±0.04b 9.70±0.11a ECT 26.65±0.46b 0.15±0.01a 3.80±0.04a 7.01±0.06c PCO2 0.04 0.00 0.00 0.55 PT 0.00 0.00 0.00 0.01 PCO2×T 0.00 0.56 0.78 0.00 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level. 表 3 CO2浓度和气温升高对玉米灌浆期叶片蔗糖和淀粉含量、蔗糖合成酶和蔗糖磷酸合成酶活性的影响
Table 3. Effects of elevated CO2 concentration and increased temperature on the contents of sucrose and starch, the activities of sucrose synthase and sucrose phosphate synthase in maize leaves at grain filling stage
处理
Treatment蔗糖含量
Sucrose content
[mg∙g−1(FW)]蔗糖合成酶活性
Sucrose synthase activity
[mg∙g−1(FW)∙h−1]蔗糖磷酸合成酶活性
Sucrose phosphate synthase activity
[mg∙g−1(FW)∙h−1]淀粉含量
Starch content
[mg∙g−1(FW)]CK 0.05±0.01b 227.84±7.90b 341.00±61.16a 0.42±0.06ab EC 0.27±0.03a 328.01±15.25a 342.69±6.25a 0.32±0.05b ET 0.01±0.01b 322.64±13.04a 347.45±1.79a 0.53±0.07a ECT 0.04±0.02b 242.61±27.74b 342.24±4.67a 0.33±0.02b PCO2 0.00 0.58 0.91 0.04 PT 0.00 0.80 0.93 0.27 PCO2×T 0.00 0.00 0.96 0.50 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level. 表 4 CO2浓度和气温升高对玉米灌浆期叶片丙酮酸激酶、α-酮戊二酸脱氢酶和琥珀酸脱氢酶活性的影响
Table 4. Effects of elevated CO2 concentration and increased temperature on the activities of pyruvate kinase, α-ketoglutarate dehydrogenase and succinate dehydrogenase in maize leaves at grain filling stage
处理
Treatment丙酮酸激酶活性
Pyruvate kinase activityα-酮戊二酸脱氢酶活性
α-Ketoglutarate dehydrogenase activity琥珀酸脱氢酶活性
Succinate dehydrogenase activityU·g−1(FW) CK 260.10±20.91d 230.97±1.68b 123.41±36.08a EC 694.74±1.47a 305.32±1.81a 51.12±17.47a ET 504.39±10.92b 55.18±23.53c 119.01±72.04a ECT 333.38±2.44c 47.76±3.98c 66.29±13.08a PCO2 0.00 0.02 0.12 PT 0.00 0.00 0.88 PCO2×T 0.00 0.01 0.79 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters mean significant differences among treatments at P<0.05 level. 表 5 CO2浓度和气温升高对玉米灌浆期叶片硝酸还原酶、谷氨酰胺合成酶和谷氨酸合成酶活性的影响
Table 5. Effects of elevated CO2 concentration and increased temperature on the activities of nitrate reductase, glutamine synthase and glutamate synthase in maize leaves at grain filling stage
处理
Treatment硝酸还原酶活性
Nitrate reductase activity
[μg(NO2)·g−1(FW)·h−1]谷氨酰胺合成酶活性
Glutamine synthetase activity
[U·g−1(FW)]谷氨酸合成酶活性
Glutamate synthetase activity
[U·g−1(FW)]CK 3.36±0.85a 3.85±0.16a 248.05±67.93a EC 1.45±0.30a 7.30±0.85a 65.17±32.23b ET 9.42±5.09a 4.12±1.43a 83.32±23.39b ECT 9.35±3.71a 6.67±2.15a 71.91±12.09b PCO2 0.76 0.06 0.04 PT 0.06 0.90 0.08 PCO2×T 0.78 0.75 0.06 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters mean significant differences among treatments at P<0.05 level. 表 6 CO2浓度和气温升高对玉米成熟期形态指标的影响
Table 6. Effects of elevated CO2 concentration and increased temperature on morphological index of maize at maturity stage
处理
Treatment株高
Plant height
(cm)茎粗
Stem-diameter
(mm)节数
Internodes number穗位节
Ear nodeCK 206.97±11.46a 7.87±0.79b 12.00±0.00b 7.00±0.00a EC 222.50±5.77a 11.17±0.36a 13.33±0.33a 7.33±0.33a ET 161.17±15.31b 7.71±0.57b 11.33±0.67b 4.33±0.33b ECT 225.67±0.83a 7.94±0.72b 13.67±0.33a 7.33±0.33a PCO2 0.00 0.02 0.00 0.00 PT 0.07 0.03 0.69 0.00 PCO2×T 0.04 0.04 0.26 0.00 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level. 表 7 CO2浓度和气温升高对玉米成熟期生物量的影响
Table 7. Effects of elevated CO2 concentration and increased temperature on biomass of maize at maturity stage
处理
Treatment地上部生物量
Above-ground
biomass叶干重
Leaf dry
mass茎干重
Stem dry
mass穗干重
Spike dry
massg∙plant−1 CK: CO2浓度400 μmol∙mol−1, 环境温度; EC: CO2浓度600 μmol∙mol−1, 环境温度; ET: CO2浓度400 μmol∙mol−1, 环境温度+2 ℃; ECT: CO2浓度600 μmol∙mol−1, 环境温度+2 ℃。CO2: CO2浓度; T: 温度。同列不同小写字母表示处理间差异显著(P<0.05)。CK: CO2 concentration 400 μmol∙mol−1, ambient temperature; EC: CO2 concentration 600 μmol∙mol−1, ambient temperature; ET: CO2 concentration 400 μmol∙mol−1, 2 ℃ higher than ambient temperature; ECT: CO2 concentration 600 μmol∙mol−1, 2 ℃ higher than ambient temperature. Different lowercase letters in the same column mean significant differences among treatments at P<0.05 level. -
[1] IPCC. Summary for Policymakers[M]//MASSON-DELMOTTE V, ZHAI P M, PIRANI A, et al. Climate Change 2021: The Physical Science Basis. Contribution of Working GroupⅠ to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2021: 3−32 [2] 宗毓铮, 张函青, 李萍, 等. 大气CO2与温度升高对北方冬小麦旗叶光合特性、碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(23): 4984−4995 doi: 10.3864/j.issn.0578-1752.2021.23.005ZONG Y Z, ZHANG H Q, LI P, et al. Effects of elevated atmospheric CO2 concentration and temperature on photosynthetic characteristics, carbon and nitrogen metabolism in flag leaves and yield of winter wheat in North China[J]. Scientia Agricultura Sinica, 2021, 54(23): 4984−4995 doi: 10.3864/j.issn.0578-1752.2021.23.005 [3] 黄辉, 王春乙, 白月明, 等. O3与CO2浓度倍增对大豆叶片及其总生物量的影响研究[J]. 中国生态农业学报, 2005, 13(4): 52−55HUANG H, WANG C Y, BAI Y M, et al. Impact of O3 and CO2 concentration doubling on the soybean leaf development and biomass[J]. Chinese Journal of Eco-Agriculture, 2005, 13(4): 52−55 [4] 任宏芳, 李阿立, 郝兴宇, 等. 大气CO2浓度和气温升高对谷子生长及产量的影响[J]. 生态环境学报, 2020, 29(6): 1123−1129REN H F, LI A L, HAO X Y, et al. Effects of elevated atmospheric CO2 concentration and temperature on the growth and yield of millet[J]. Ecology and Environmental Sciences, 2020, 29(6): 1123−1129 [5] MYERS S S, ZANOBETTI A, KLOOG I, et al. Increasing CO2 threatens human nutrition[J]. Nature, 2014, 510(7503): 139−142 doi: 10.1038/nature13179 [6] ZHU C W, KOBAYASHI K, LOLADZE I, et al. Carbon dioxide (CO2) levels this century will alter the protein, micronutrients, and vitamin content of rice grains with potential health consequences for the poorest rice-dependent countries[J]. Science Advances, 2018, 4(5): 1012−1012 doi: 10.1126/sciadv.aaq1012 [7] 张小琴, 郝兴宇, 宗毓铮, 等. CO2浓度升高对大豆糖代谢和脂肪代谢影响的研究[J]. 激光生物学报, 2022, 31(1): 70−78ZHANG X Q, HAO X Y, ZONG Y Z, et al. Effects of elevated CO2 concentration on sugar metabolism and fat metabolism in soybean[J]. Acta Laser Biology Sinica, 2022, 31(1): 70−78 [8] 郝兴宇, 李萍, 杨宏斌, 等. 大气CO2浓度升高对绿豆生长及C、N吸收的影响[J]. 中国生态农业学报, 2011, 19(4): 794−798 doi: 10.3724/SP.J.1011.2011.00794HAO X Y, LI P, YANG H B, et al. Effects of enriched atmospheric CO2 on the growth and uptake of N and C in mung bean[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 794−798 doi: 10.3724/SP.J.1011.2011.00794 [9] WANG Y L, ZHANG Y K, SHI Q H, et al. Decrement of sugar consumption in rice young panicle under high temperature aggravates spikelet number reduction[J]. Rice Science, 2020, 27(1): 44−55 doi: 10.1016/j.rsci.2019.12.005 [10] HU Q, WEISS A, FENG S, et al. Earlier winter wheat heading dates and warmer spring in the US Great Plains[J]. Agricultural and Forest Meteorology, 2005, 135(1/2/3/4): 284−290 [11] TAO F L, ZHANG S, ZHANG Z, et al. Maize growing duration was prolonged across China in the past three decades under the combined effects of temperature, agronomic management, and cultivar shift[J]. Global Change Biology, 2014, 20(12): 3686−3699 doi: 10.1111/gcb.12684 [12] 刘亮, 郝立华, 李菲, 等. CO2浓度和温度对玉米光合性能及水分利用效率的影响[J]. 农业工程学报, 2020, 36(5): 122−129 doi: 10.11975/j.issn.1002-6819.2020.05.014LIU L, HAO L H, LI F, et al. Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(5): 122−129 doi: 10.11975/j.issn.1002-6819.2020.05.014 [13] 张秀云, 姚玉璧, 雷俊, 等. CO2浓度升高与增温对马铃薯产量及品质的复合影响[J]. 干旱地区农业研究, 2019, 37(4): 240−246ZHANG X Y, YAO Y B, LEI J, et al. Collaborative impact of elevated CO2 concentration and temperature on potato yield and quality[J]. Agricultural Research in the Arid Areas, 2019, 37(4): 240−246 [14] 陈楠楠, 周超, 王浩成, 等. 大气二氧化碳含量升高对稻麦产量影响的整合分析[J]. 南京农业大学学报, 2013, 36(2): 83−90 doi: 10.7685/j.issn.1000-2030.2013.02.014CHEN N N, ZHOU C, WANG H C, et al. Impacts of elevated atmospheric CO2 on growth and yield of rice and wheat: a Meta-analysis[J]. Journal of Nanjing Agricultural University, 2013, 36(2): 83−90 doi: 10.7685/j.issn.1000-2030.2013.02.014 [15] 杨小倩, 郅慧, 张辉, 等. 玉米不同部位化学成分、药理作用、利用现状研究进展[J]. 吉林中医药, 2019, 39(6): 837−840YANG X Q, ZHI H, ZHANG H, et al. Research progress on chemical constituents, pharmacological activity and utilization status of different parts of corn[J]. Jilin Journal of Chinese Medicine, 2019, 39(6): 837−840 [16] 李明, 李迎春, 牛晓光, 等. 大气CO2浓度升高与氮肥互作对玉米花后碳氮代谢及产量的影响[J]. 中国农业科学, 2021, 54(17): 3647−3665 doi: 10.3864/j.issn.0578-1752.2021.17.008LI M, LI Y C, NIU X G, et al. Effects of elevated atmospheric CO2 concentration and nitrogen fertilizer on the yield of summer maize and carbon and nitrogen metabolism after flowering[J]. Scientia Agricultura Sinica, 2021, 54(17): 3647−3665 doi: 10.3864/j.issn.0578-1752.2021.17.008 [17] HUANG Y L, FANG R, LI Y S, et al. Warming and elevated CO2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage[J]. Scientific Reports, 2019, 9: 17948 doi: 10.1038/s41598-019-54325-5 [18] 高俊凤. 植物生理学实验指导[M]. 北京: 高等教育出版社, 2006GAO J F. Experimental Guidance for Plant Physiology[M]. Beijing: Higher Education Press, 2006 [19] 郭茜茜. 大豆子粒蛋白质积累与碳代谢关系的研究[D]. 哈尔滨: 东北农业大学, 2010GUO X X. Research on the relationship between protein accumulation and carbon metabolism in soybean grain[D]. Harbin: Northeast Agricultural University, 2010 [20] BHATT R, BAIG M J, TIWARI H S, et al. Growth, yield and photosynthesis of Panicum maximum and Stylosanthes hamata under elevated CO2[J]. Journal of Environmental Biology, 2010, 31: 549−52 [21] 金奖铁, 李扬, 李荣俊, 等. 大气二氧化碳浓度升高影响植物生长发育的研究进展[J]. 植物生理学报, 2019, 55(5): 558−568 doi: 10.13592/j.cnki.ppj.2018.0533JIN J T, LI Y, LI R J, et al. Advances in studies on effects of elevated atmospheric carbon dioxide concentration on plant growth and development[J]. Plant Physiology Journal, 2019, 55(5): 558−568 doi: 10.13592/j.cnki.ppj.2018.0533 [22] 吴雪霞, 张圣美, 张爱冬, 等. 外源褪黑素对高温胁迫下茄子幼苗光合和生理特性的影响[J]. 植物生理学报, 2019, 55(1): 49−60WU X X, ZHANG S M, ZHANG A D, et al. Effect of exogenous melatonin on photosynthetic and physiological characteristics of eggplant seedlings under high temperature stress[J]. Plant Physiology Journal, 2019, 55(1): 49−60 [23] 刘紫娟, 李萍, 宗毓铮, 等. 大气CO2浓度升高对谷子生长发育及玉米螟发生的影响[J]. 中国生态农业学报, 2017, 25(1): 55−60LIU Z J, LI P, ZONG Y Z, et al. Effect of elevated [CO2] on growth and attack of Asian corn borers (Ostrinia furnacalis) in foxtail millet (Setaria italica)[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 55−60 [24] 赵天宏, 黄国宏. 大气二氧化碳浓度升高对植物影响的研究进展[J]. 作物杂志, 2003(3): 3−6ZHAO T H, HUANG G H. Research Progress on the effects of elevated atmospheric carbon dioxide concentration on plants[J]. Crops, 2003(3): 3−6 [25] AINSWORTH E, ROGERS A. The response of photosynthesis and stomatal conductance to rising [CO2]: mechanisms and environmental interactions[J]. Plant, Cell & Environment, 2007, 30(3): 258−270 [26] CURTIS P S, WANG X Z. A meta-analysis of elevated CO2 effects on woody plant mass, form, and physiology[J]. Oecologia, 1998, 113(3): 299−313 doi: 10.1007/s004420050381 [27] 廖轶, 陈根云, 张海波, 等. 水稻叶片光合作用对开放式空气CO2浓度增高(FACE)的响应与适应[J]. 应用生态学报, 2002, 13(10): 1205−1209 doi: 10.3321/j.issn:1001-9332.2002.10.002LIAO Y, CHEN G Y, ZHANG H B, et al. Response and acclimation of photosynthesis in rice leaves to free-air CO2 enrichment (FACE)[J]. Chinese Journal of Applied Ecology, 2002, 13(10): 1205−1209 doi: 10.3321/j.issn:1001-9332.2002.10.002 [28] 谢辉, 范桂枝, 荆彦辉, 等. 植物对大气CO2浓度升高的光合适应机理研究进展[J]. 中国农业科技导报, 2006, 8(3): 29−34XIE H, FAN G Z, JING Y H, et al. Progress of research on photosynthetic acclimation of plant to elevated atmospheric CO2[J]. Review of China Agricultural Science and Technology, 2006, 8(3): 29−34 [29] 胡晓雪, 杜维俊, 杨珍平, 等. 大气CO2浓度和气温升高对野生大豆光合作用的影响[J]. 山西农业科学, 2015, 43(7): 798−801, 853HU X X, DU W J, YANG Z P, et al. Effect of elevated CO2 concentration and increased temperature on the photosynthesis of wild soybean[J]. Journal of Shanxi Agricultural Sciences, 2015, 43(7): 798−801, 853 [30] 赵娜, 孙艳, 王德玉, 等. 外源褪黑素对高温胁迫条件下黄瓜幼苗氮代谢的影响[J]. 植物生理学报, 2012, 48(6): 557−564 doi: 10.13592/j.cnki.ppj.2012.06.007ZHAO N, SUN Y, WANG D Y, et al. Effects of exogenous melatonin on nitrogen metabolism in cucumber seedlings under high temperature stress[J]. Plant Physiology Journal, 2012, 48(6): 557−564 doi: 10.13592/j.cnki.ppj.2012.06.007 [31] LI S H, LI Y M, GAO Y, et al. Effects of CO2 enrichment on non-structural carbohydrate metabolism in leaves of cucumber seedlings under salt stress[J]. Scientia Horticulturae, 2020, 265: 109275 doi: 10.1016/j.scienta.2020.109275 [32] 曹新超. 铁皮石斛蔗糖代谢及抗氧化酶对逆境胁迫的响应[D]. 杭州: 浙江农林大学, 2018CAO X C. Responses of sucrose metabolism and antioxidant enzymes of Dendrobium catenatum to stress[D]. Hangzhou: Zhejiang A & F University, 2018 [33] 王军可, 王亚梁, 陈惠哲, 等. 灌浆初期高温影响水稻籽粒碳氮代谢的机理[J]. 中国农业气象, 2020, 41(12): 774−784 doi: 10.3969/j.issn.1000-6362.2020.12.003WANG J K, WANG Y L, CHEN H Z, et al. Mechanism of high temperature affecting carbon and nitrogen metabolism of rice grain at the early stage of grain filling[J]. Chinese Journal of Agrometeorology, 2020, 41(12): 774−784 doi: 10.3969/j.issn.1000-6362.2020.12.003 [34] 刘昭霖, 宗毓铮, 张东升, 等. 大气CO2浓度和气温升高对大豆叶片光合特性及氮代谢的影响[J]. 中国农业气象, 2021, 42(5): 426−437 doi: 10.3969/j.issn.1000-6362.2021.05.007LIU Z L, ZONG Y Z, ZHANG D S, et al. Effects of elevated atmospheric CO2 concentration and increased air temperature on photosynthetic characteristics and nitrogen metabolism of soybean leaves[J]. Chinese Journal of Agrometeorology, 2021, 42(5): 426−437 doi: 10.3969/j.issn.1000-6362.2021.05.007 [35] LI Y S, YU Z H, LIU X B, et al. Elevated CO2 increases nitrogen fixation at the reproductive phase contributing to various yield responses of soybean cultivars[J]. Frontiers in Plant Science, 2017, 8: 1546 doi: 10.3389/fpls.2017.01546 [36] 李春华, 曾青, 沙霖楠, 等. 大气CO2浓度和温度升高对水稻地上部干物质积累和分配的影响[J]. 生态环境学报, 2016, 25(8): 1336−1342LI C H, ZENG Q, SHA L N, et al. Impacts of elevated atmospheric CO2 and temperature on above-ground dry matter accumulation and distribution of rice (Oryza sativa L.)[J]. Ecology and Environmental Sciences, 2016, 25(8): 1336−1342 [37] SCHIERMEIER Q. Climate change offers bleak future[J]. Nature, 2001, 409(6823): 971 [38] WANG J Q, LIU X Y, ZHANG X H, et al. Size and variability of crop productivity both impacted by CO2 enrichment and warming — A case study of 4 years field experiment in a Chinese paddy[J]. Agriculture, Ecosystems & Environment, 2016, 221: 40−49 [39] MOHAMMED A R, TARPLEY L. High nighttime temperatures affect rice productivity through altered pollen germination and spikelet fertility[J]. Agricultural and Forest Meteorology, 2009, 149(6/7): 999−1008 [40] 宋磊, 次仁央金, 王小强, 等. 小麦对高温胁迫的响应机制研究进展[J]. 中国农学通报, 2021, 37(36): 6−12 doi: 10.11924/j.issn.1000-6850.casb2021-0681SONG L, CIRENYANGJIN, WANG X Q, et al. Response mechanism of wheat to high temperature stress: a review[J]. Chinese Agricultural Science Bulletin, 2021, 37(36): 6−12 doi: 10.11924/j.issn.1000-6850.casb2021-0681 [41] 伍卫, 李永明, 普丽花, 等. 高温多雨寡照对西双版纳州玉米的影响[J]. 现代化农业, 2022(2): 20−22 doi: 10.3969/j.issn.1001-0254.2022.02.007WU W, LI Y M, PU L H, et al. Effects of high temperature and rainfall on maize in Xishuangbanna Prefecture[J]. Modernizing Agriculture, 2022(2): 20−22 doi: 10.3969/j.issn.1001-0254.2022.02.007 -