Effect of nitrogen fertilizer and soil conditioner on soil carbon and nitrogen content, and oat yield
-
摘要: 为探究减氮下调理剂对土壤养分及莜麦产量的调控作用, 以自主研发的新型液态调理剂为研究对象, 设置不施肥(CK)、80%氮肥(N80)、常规施氮(N100)、调理剂+80%氮肥(PN80)、调理剂+常规施氮(PN100) 5个处理, 分析不同氮肥用量添加调理剂对冀西北地区土壤物理性状、不同土层碳氮组分含量及莜麦产量的影响。结果表明, 与常规施氮(N100)处理相比, PN80处理的土壤含水量、田间持水量、孔隙度分别显著提高8.72%、8.22%、17.68% (P<0.05), 土壤容重显著降低9.06% (P<0.05)。对土壤有机碳、全氮及其组分研究表明, PN80处理较N100显著提高0~60 cm土层的有机碳、全氮、硝态氮和20~60 cm土层活性有机碳、微生物量碳, 分别提高4.97%~20.06%、8.43%~11.66%、23.10%~44.96%和11.95%~40.49%、11.43%~40.42% (P<0.05)。不同处理对莜麦养分及产量的影响差异较大, 其中PN80处理效果最为显著。与N100相比, PN80的莜麦全氮、全磷、全钾含量及作物产量分别显著提高12.93%、15.16%、3.69%、18.73% (P<0.05)。同时, 与N100相比, N80在减氮20%的情况下显著降低了莜麦氮磷钾吸收量, 但并未造成莜麦减产。综上所述, 较常规施肥措施, 减氮(80%氮肥)添加调理剂可以改良土壤性状, 增加土壤碳组分含量, 减少硝态氮淋溶的风险, 进而提高莜麦植株的养分及产量, 这对实现农业绿色发展, 减少肥料投入对环境产生的影响, 提高氮肥利用率具有重要意义。Abstract: Soil conditioners have been applied in agriculture due to advantages, such as coordinating soil water and fertilizer, improving soil water-retaining and fertility-reserving capacity. A new type of liquid conditioner was introduced in oat cultivation in this study, its’ effects on soil physical properties, and characteristics of soil organic carbon and nitrogen, and oat yield under nitrogen fertilizer reduction were investigated to explore the driving mechanism of N reduction by conditioners on crop yield and soil nutrients. Five treatments were set: no fertilizer (CK), 80% N fertilizer (N80), regular N application (N100), conditioner + 80% N fertilizer (PN80), and conditioner + regular N application (PN100). The results showed that the fertilizer + conditioner treatments differed from the single fertilizer treatments in terms of physical properties, carbon and nitrogen contents, and oat yield. The treatments with conditioner (PN80 and PN100) significantly increased soil water content, field capacity, porosity, and reduced soil bulk density compared with the treatments with only fertilizer. Furthermore, the nitrogen reduction of 20% (N80) significantly increased soil porosity and reduced soil bulk density compared with conventional nitrogen application (N100). The study showed that 20% N reduction had varying degrees of inhibition on organic carbon, total nitrogen, and its components in different soil layers. Furthermore, the addition of the conditioner significantly increased organic carbon, total nitrogen, nitrate nitrogen, active organic carbon, and microbial carbon in the 0–60 cm soil layer and 20−60 cm soil layer compared with the treatments with N fertilizer alone. The effect of the PN100 treatment was the most significant. The effects of different treatments on the nutrients and yield of oats varied greatly, with that of the PN80 treatment being the most significant. Compared with N100, the total N, P, and K contents and crop yield of oats in PN80 significantly increased by 12.93%, 15.16%, 3.69%, and 18.73%, respectively (P<0.05). Compared with N100, N80 significantly reduced N, P, and K uptake in oats at 20% N reduction, but did not cause yield reduction in oats. In conclusion, compared with conventional fertilization, N80 with a soil conditioner improved soil properties, increased soil carbon content, reduced the risk of nitrate N leaching, and significantly increased the nutrient uptake and yield of oat. The effect of 80% N fertilizer + soil conditioner on the nutrient content and yield of oats was the most significant, while the treatment with 100% N fertilizer + soil conditioner was the most effective in improving soil nutrient content. This is essential to realize the green development of agriculture, reduce the environmental impact of fertilizer input, and improve the utilization rate of nitrogen fertilizers.
-
Key words:
- Oat /
- Soil conditioner /
- Soil organic carbon /
- Soil nitrogen /
- Plant nutrients /
- Yield
-
图 2 不同氮用量添加调理剂对土壤碳组分和碳库管理指数的影响
TOC: 土壤有机碳; LOC: 土壤活性有机碳; SMBC: 土壤微生物量碳; CPMI: 土壤碳库管理指数。 图中不同小写字母表示同一土层不同处理间差异显著(P<0.05)。TOC: soil organic carbon content; LOC: soil active organic carbon content; SMBC: soil microbial biomass carbon content; CPMI: soil carbon pool management index. Different lowercase letters indicate significant differences among different treatments in the same soil layer at P<0.05 level.
Figure 2. Changes in contents of soil carbon compositions and carbon pool management index under different treatments of soil conditioner and nitrogen dosage
图 3 不同氮用量添加调理剂对土壤氮组分的变化
TN: 土壤全氮; NO3−-N: 土壤硝态氮; NH4+-N: 土壤铵态氮。图中不同小写字母表示同一土层不同处理间差异显著(P<0.05)。TN: soil total nitrogen; NO3−-N: soil nitrate nitrogen; NH4+-N: soil ammonium nitrogen. Different lowercase letters indicate significant differences among different treatments in the same soil layer at P<0.05 level.
Figure 3. Changes in contents of soil nitrogen compositions under different treatments of soil conditioner addition and nitrogen dosage
图 4 土壤碳氮组分及理化性状与作物养分及产量的相关关系
BD: 土壤容重; Mc: 土壤含水量; Por: 土壤孔隙度; Fc: 田间持水量; EC: 土壤电导率; TN: 土壤全氮含量; NN: 土壤硝态氮含量; AN: 土壤铵态氮含量; TOC: 土壤有机碳含量; LOC: 土壤活性有机碳含量; SMBC: 土壤微生物量碳含量; CPMI: 土壤碳库管理指数; N: 作物全氮含量; P: 作物全磷含量; K: 作物全钾含量; Yield: 作物产量。BD: soil bulk density; Mc: soil water content; Por: soil porosity; Fc: soil field capacity; EC: electrical conductivity; TN: soil total nitrogen content; NN: soil nitrate nitrogen content; AN: soil ammonium nitrogen content; TOC: soil organic carbon content; LOC: soil active organic carbon content; SMBC: soil microbial biomass carbon content; CPMI: soil carbon pool management index; N: crop nitrogen content; P: crop phosphorus content; K: crop potassium content; Yield: crop yield.
Figure 4. Correlation between soil carbon and nitrogen components and physicochemical traits and crop nutrients and yield
表 1 各处理和施肥量
Table 1. Treatments and fertilization rates
处理
Treatment施氮量
Nitrogen application rate (kg∙hm−2)调理剂
Conditioner rate (kg∙hm−2)CK 不施氮肥和调理剂
No nitrogen fertilizer and conditioner— — N80 80%氮肥
80% nitrogen fertilizer240 — N100 100%氮肥
100% nitrogen fertilizer300 — PN80 调理剂+80%氮肥
Conditioner+80% nitrogen fertilizer240 12 PN100 调理剂+100%氮肥
Conditioner+100% nitrogen fertilizer300 12 表 2 不同氮用量添加调理剂对土壤物理及化学性质的影响
Table 2. Change of physical and chemical properties of soil under different treatments of soil conditioner and nitrogen dosage
处理
Treatment容重
Bulk density
(g∙cm−3)含水量
Moisture
(%)孔隙度
Porosity
(%)田间持水量
Field capacity
(%)电导率
Electrical conductivity
(dS∙m−1)pH CK 1.333±0.019b 16.2±0.5b 50.0±0.4b 36.1±0.5c 120.5±0.3a 8.49±0.01a N80 1.257±0.012c 15.4±0.5c 52.6±0.6a 39.8±0.7b 109.5±0.7c 8.35±0.01c N100 1.360±0.016a 15.5±0.8c 48.7±0.7c 38.1±0.6bc 112.3±0.4b 8.42±0.01b PN80 1.247±0.005c 16.8±0.4a 52.7±0.5a 44.9±2.3a 113.7±1.0b 8.47±0.01a PN100 1.277±0.029c 17.0±0.6a 51.8±1.0a 43.7±2.4a 120.3±1.0a 8.43±0.01b 表中数据为平均数±标准偏差, 同列不同小写字母表示处理间差异显著(P<0.05)。The data in the table is the average ± standard deviation. Different lowercase letters in the same column indicate significant differences among different treatments at P<0.05 level. 表 3 不同氮用量添加调理剂对莜麦养分及产量的变化特征
Table 3. Changes of nutrient and yield of naked oats under different treatments of soil conditioner addition and nitrogen dosage
处理
Treatment全氮
Total nitrogen (g∙kg−1)全磷
Total phosphorus (g∙kg−1)全钾
Total potassium (g∙kg−1)产量
Yield (kg∙hm−2)CK 9.36±0.24d 2.26±0.06c 2.85±0.05d 2115.64±153.11c N80 11.05±0.70c 2.02±0.00d 2.98±0.08c 2595.40±98.52b N100 12.53±0.35b 2.44±0.01b 3.25±0.02b 2762.73±148.34b PN80 14.15±0.06a 2.81±0.14a 3.37±0.02a 3280.11±69.94a PN100 12.59±0.20b 2.29±0.15bc 3.32±0.07ab 3270.94±70.35a 表中数据为平均值±标准偏差, 同列不同小写字母表示处理间差异显著(P<0.05)。The data in the table is the average ± standard deviation. Different lowercase letters in the same column indicate significant differences among different treatments at P<0.05 level. -
[1] 蒋小董, 郑嗣蕊, 杨咪咪, 等. 毛乌素沙地固沙林发育过程中土壤有机碳库稳定性特征[J]. 应用生态学报, 2019, 30(8): 2567−2574JIANG X D, ZHENG S R, YANG M M, et al. Stability characteristics of soil organic carbon pool follwing development of sand-fixing forest in Mu Us sandy land, China[J]. Journal of Applied Ecology, 2019, 30(8): 2567−2574 [2] 李玉梅, 王根林, 孟祥海, 等. 秸秆还田方式对旱地草甸土活性有机碳组分的影响[J]. 农业资源与环境学报, 2021, 38(2): 268−276LI Y M, WANG G L, MENG X H, et al. Effect of different straw returning methods on labile organic carbon distribution in upland meadow soil[J]. Journal of Agricultural Resources and Environment, 2021, 38(2): 268−276 [3] SUSEELA V, CONANT R T, WALLENSTEIN M D, et al. Effects of soil moisture on the temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change experiment[J]. Global Change Biology, 2012, 18(1): 336−348 doi: 10.1111/j.1365-2486.2011.02516.x [4] YANG D S, HUANG G J, LI Y, et al. Progress in the efficient nitrogen cultivation technology, variety improvement and physiological mechanism of rice[J]. Journal of Huazhong Agricultural University, 2012, 18(1): 336−348 [5] 佘映军, 李平, 白芳芳, 等. 地下水埋深与施氮水平对夏玉米生长及硝态氮量的影响[J]. 灌溉排水学报, 2021, 40(4): 22−28SHE Y J, LI P, BAI F F, et al. The combined effects of groundwater depth and nitrogen fertilization on yield of summer maize and nitrate distribution in soil[J]. Journal of Irrigation and Drainage, 2021, 40(4): 22−28 [6] 毛妍婷, 刘宏斌, 陈安强, 等. 长期施用有机肥对减缓菜田耕层土壤酸化的影响[J]. 生态环境学报, 2020, 29(9): 1784−1791MAO Y T, LIU H B, CHEN A Q, et al. Effects of long-term application of organic fertilizers on reducing soil acidification of plough layer in vegetable fields[J]. Journal of Ecology and Environment, 2020, 29(9): 1784−1791 [7] 肖广敏, 茹淑华, 孙世友, 等. 基于文献分析的氮肥用量对小麦玉米轮作体系硝态氮淋溶的影响[J]. 中国生态农业学报(中英文), 2022, 30(1): 116−125XIAO G M, RU S H, SUN S Y, et al. Impact of nitrogen application on nitrate nitrogen leaching in winter wheat and summer maize rotation system based on a literature analysis[J]. Chinese Journal of Eco-Agriculture, 2022, 30(1): 116−125 [8] 胡丹丹, 李浩, 宋惠洁, 等. 长期施肥条件下红壤有机碳化学结构与团聚体稳定性的关系[J]. 土壤通报, 2022, 53(1): 152−159HU D D, LI H, SONG H J, et al. The relationship between chemical sturcture of organic carbon and stability of aggregate in red soil under long-term fertilization[J]. Chinese Journal of Soil Science, 2022, 53(1): 152−159 [9] 王朝辉, 李生秀, 王西娜, 等. 旱地土壤硝态氮残留淋溶及影响因素研究[J]. 土壤, 2006, 38(6): 676−681 doi: 10.3321/j.issn:0253-9829.2006.06.002WANG Z H, LI S X, WANG X N, et al. Nitrate nitrogen residue and leaching in dryland soil and influence factors[J]. Soil, 2006, 38(6): 676−681 doi: 10.3321/j.issn:0253-9829.2006.06.002 [10] 管秀娟, 武继承. 保水剂在农业上的应用及发展趋势[J]. 河南农业科学, 2007, 36(7): 13−17 doi: 10.3969/j.issn.1004-3268.2007.07.003GUAN X J, WU J C. Development and tendency of super absorbent polymers application on agriculture[J]. Journal of Henan Agricultural Science, 2007, 36(7): 13−17 doi: 10.3969/j.issn.1004-3268.2007.07.003 [11] 索琳娜, 马杰, 刘宝存, 等. 土壤调理剂应用现状及施用风险研究[J]. 农业环境科学学报, 2021, 40(6): 1141−1149 doi: 10.11654/jaes.2021-0364SUO L N, MA J, LIU B C, et al. Soil conditioner application status and application of risk research[J]. Journal of Ago-Environment Science, 2021, 40(6): 1141−1149 doi: 10.11654/jaes.2021-0364 [12] 刘慧军, 刘景辉, 于健, 等. 土壤改良剂对燕麦土壤理化性状及微生物量碳的影响[J]. 水土保持学报, 2012, 26(5): 68−72, 77LIU H J, LIU J H, YU J, et al. Effects of soil amendment on soil physicochemical properties of oat and soil microbial biomass carbon[J]. Journal of Soil and Water Conservation, 2012, 26(5): 68−72, 77 [13] 李晨昱, 卢树昌. 北方冬小麦-夏玉米复种区生物炭与明矾配施对土壤碳氮状况影响研究[J]. 中国农学通报, 2020, 36(18): 97−103LI C Y, LU S C. Combined application of biochar and alum in winter wheat-summer maize multiple cropping area in North China: effects on soil carbon and nitrogen status[J]. Chinese Agricultural Science Bulletin, 2020, 36(18): 97−103 [14] 白文波, 王春艳, 李茂松, 等. 不同灌溉条件下保水剂对新疆棉花生长及产量的影响[J]. 农业工程学报, 2010, 26(10): 69−76 doi: 10.3969/j.issn.1002-6819.2010.10.011BAI W B, WANG C Y, LI M S, et al. Effects of super absorbent polymer on growth and yield of cotton under different irrigation conditions in Xinjiang Uyghur Autonomous Region[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 69−76 doi: 10.3969/j.issn.1002-6819.2010.10.011 [15] 司徒艳结, 卫尤明, 杨俊颖, 等. 保水剂对作物生长的 不利影响及发生机制[J]. 植物营养与肥料学报, 2022, 28(7): 1318−1328SITU Y J, WEI Y M, YANG J Y, et al. Adverse effects of superabsorbent polymers on crop growth and the underlying mechanisms[J]. Journal of Plant Nutrition and Fertilizers, 2022, 28(7): 1318−1328 [16] 吴琳杰, 张志铭, 赵勇, 等. 土壤水分条件及保水剂用量对侧柏、栓皮栎种子萌发及幼苗生长的影响[J]. 西部林业科学, 2016, 45(1): 112−116, 130WU L J, ZHANG Z M, ZHAO Y, et al. Impact of soil moisture and water-retaining agent on germination and seedling growth of Platyclaud orientalis and Quercus variabilis[J]. Journal of West China Forestry Science, 2016, 45(1): 112−116, 130 [17] 马友华, 王广海, 程焱, 等. 多功能保水剂对作物抗旱效应的初步研究[J]. 安徽农业大学学报, 2001, 28(2): 129−132 doi: 10.3969/j.issn.1672-352X.2001.02.005MA Y H, WANG G H, CHENG Y, et al. Preliminary study of water-remaining reagent with plenty of functions on drought resistant effects of crops selected[J]. Journal of Anhui Agricultural University, 2001, 28(2): 129−132 doi: 10.3969/j.issn.1672-352X.2001.02.005 [18] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 56–57, 81–82BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000: 56–57, 81–82 [19] BHATTACHARYYA R, KUNDU S, SRIVASTVA A K, et al. Long term fertilization effects on soil organic carbon pools in a sandy loam soil of the Indian sub-Himalayas[J]. Plant and Soil, 2011, 341(1): 109−124 [20] BLAIR G J, LEFORY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459−1466 doi: 10.1071/AR9951459 [21] 林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010LIN X G. Principles and Methods for Soil Microbiology Research[M]. Beijing: Higher Education Press, 2010 [22] 肖占文, 闫治斌, 王学, 等. 有机碳土壤改良剂对风沙土改土效应的影响[J]. 水土保持通报, 2017, 37(3): 35−42 doi: 10.13961/j.cnki.stbctb.2017.03.006XIAO Z W, YAN Z B, WANG X, et al. Effect of organic carbon soil amendment on sandy soil improvementl[J]. Bulletin of Soil and Water Conservation, 2017, 37(3): 35−42 doi: 10.13961/j.cnki.stbctb.2017.03.006 [23] 顾旭东. 马铃薯间作蚕豆对土壤养分和作物生长的影响[D]. 银川: 宁夏大学, 2017GU X D. Effect of potato intercropping with broad bean on soil nutrients and crop growth[D]. Yinchuan: Ningxia University, 2017 [24] 陶林. 土壤调理剂对土壤理化性状与木薯产量效应研究[D]. 南宁: 广西大学, 2018TAO L. Effect of soil conditioners on soil physical and chemical properties and cassava yield[D]. Nanning: Guangxi University, 2018 [25] 廉晓娟, 路遥, 王艳, 等. 土壤调理剂对日光温室土壤理化性质和蔬菜产量、品质的影响[J]. 中国土壤与肥料, 2015(5): 56−60 doi: 10.11838/sfsc.20150510LIAN X J, LU Y, WANG Y, et al. Effects of soil conditioners on soil physical-chemical properties and yield and quality of vegetable in solar greenhouse[J]. Soil and Fertilizer Sciences in China, 2015(5): 56−60 doi: 10.11838/sfsc.20150510 [26] 员学锋, 汪有科, 吴普特, 等. PAM对土壤物理性状影响的试验研究及机理分析[J]. 水土保持学报, 2005, 19(2): 37−40 doi: 10.3321/j.issn:1009-2242.2005.02.010YUAN X F, WANG Y K, WU P T, et al. Effects and mechanism of PAM on soil physical characteristics[J]. Journal of Soil and Water Conservation, 2005, 19(2): 37−40 doi: 10.3321/j.issn:1009-2242.2005.02.010 [27] 黄寅玲, 雷忠顺, 郑涛, 等. 不同施氮量对冬小麦产量、效益及土壤理化性状的影响[J]. 作物杂志, 2020(1): 130−135HUANG Y L, LEI Z S, ZHENG T, et al. Effects of different nitrogen concentrations on yield and benefit of winter wheat and soil physical and chemical properties[J]. Crops, 2020(1): 130−135 [28] 孙天晴, 张文, 于家伊, 等. 长期施用有机源土壤调理剂对果园土壤的影响−以草莓和苹果种植区为例[J]. 现代农业科技, 2022(5): 142−146, 158SUN T Q, ZHANG W, YU J Y, et al. Effect of long-term application of organic source soil conditioner on orchard soil — taking strawberry and apple planting areas as examples[J]. Modern Agricultural Science and Technology, 2022(5): 142−146, 158 [29] 田露, 刘景辉, 赵宝平, 等. 保水剂和微生物菌肥配施对旱作燕麦土壤微生物生物量碳、氮含量及酶活性的影响[J]. 水土保持学报, 2020, 34(5): 361−368TIAN L, LIU J H, ZHAO B P, et al. Effects of combination of super absorbent polymer and microbial fertilizer on soil microbial biomass carbon, nitrogen and enzymes activities of oat farmland in dry area[J]. Journal of Soil and Water Conservation, 2020, 34(5): 361−368 [30] 李倩, 巴图, 李玉龙, 等. 保水剂施用方式对土壤含水量和微生物生物量及马铃薯产量的影响[J]. 西北农业学报, 2017, 26(10): 1453−1460 doi: 10.7606/j.issn.1004-1389.2017.10.006LI Q, BA T, LI Y L, et al. Effects of application methoths of super absorbent polymers on soil moisture content and microbial biomass and potato yield[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2017, 26(10): 1453−1460 doi: 10.7606/j.issn.1004-1389.2017.10.006 [31] 冯慧琳, 何欢辉, 徐茜, 等. 生物炭与氮肥配施对植烟土壤微生物及碳氮含量特征的影响[J]. 中国土壤与肥料, 2021(6): 48−56 doi: 10.11838/sfsc.1673-6257.20414FENG H L, HE H H, XU Q, et al. Effects of combined application of biochar and nitrogen fertilizer on soil microorganism and carbon and nitrogen content in tobacco growing soil[J]. Soils and Fertilizers Sciences in China, 2021(6): 48−56 doi: 10.11838/sfsc.1673-6257.20414 [32] 曲晓晶, 孙大雁, 吴南, 等. 添加剂对不同还田深度秸秆腐解及周际土壤环境的影响[J]. 水土保持学报, 2020, 34(2): 261−268 doi: 10.13870/j.cnki.stbcxb.2020.02.037QU X J, SUN D Y, WU N, et al. Effects of additives on straw decomposition and its surrounding soil environment under different returning depths[J]. Journal of Soil and Water Conservation, 2020, 34(2): 261−268 doi: 10.13870/j.cnki.stbcxb.2020.02.037 [33] 李皓, 甄怡铭, 张子旋, 等. 减氮配施有机物质对麦田土壤性质和小麦产量的影响[J]. 水土保持学报, 2022, 36(2): 166−172LI H, ZHEN Y M, ZHANG Z X, et al. Effects of nitrogen reduction combined with organic matter on soil properties and wheat yield[J]. Journal of Soil and Water Conservation, 2022, 36(2): 166−172 [34] 裴瑞杰, 王俊忠, 冀建华, 等. 腐殖酸肥料与氮肥配施对土壤理化性质的影响[J]. 江苏农业科学, 2018, 46(19): 331−334 doi: 10.15889/j.issn.1002-1302.2018.19.084PEI R J, WANG J Z, JI J H, et al. Effects of combined application of humic acid and nitrogen fertilizers on soil physical and chemical properties[J]. Jiangsu Agricultural Sciences, 2018, 46(19): 331−334 doi: 10.15889/j.issn.1002-1302.2018.19.084 [35] 褚继登, 闫慧峰, 王树声, 等. 化肥减量配施生物炭对植烟土壤氮素淋失的影响[J]. 中国烟草科学, 2022, 43(4): 40−47CHU J D, YAN H F, WANG S S, et al. Effects of reduced fertilization and biochar application on nitrogen leaching from tobacco-growing soils[J]. Chinese Tobacco Science, 2022, 43(4): 40−47 [36] 吴德丰, 王春颖, 韩宇平, 等. 不同质地土壤铵态氮吸附/解吸特征[J]. 华北水利水电大学学报(自然科学版), 2020, 41(6): 18−25 doi: 10.19760/j.ncwu.zk.2020071WU D F, WANG C Y, HAN Y P, et al. Adsorption and desorption characteristics of ammonium nitrogen in different texture soils[J]. Journal of North China University of Water Resources and Hydropower Power (Natural Science Edition), 2020, 41(6): 18−25 doi: 10.19760/j.ncwu.zk.2020071 [37] 曾招兵, 李盟军, 姚建武, 等. 习惯施肥对菜地氮磷径流流失的影响[J]. 水土保持学报, 2012, 26(5): 34−38, 43 doi: 10.13870/j.cnki.stbcxb.2012.05.003ZENG Z B, LI M J, YAO J W, et al. Impacts of custom fertilization on N and P losses by runoff in vegetable fields[J]. Journal of Soil and Water Conservation, 2012, 26(5): 34−38, 43 doi: 10.13870/j.cnki.stbcxb.2012.05.003 [38] 刘晶, 郑利芳, 王颖, 等. 控释尿素施用比例对旱地春玉米产量及土壤硝态氮残留量的影响[J]. 西北农林科技大学学报(自然科学版), 2022, 50(11): 127−134LIU J, ZHENG L F, WANG Y, et al. Effect of controlled-release urea application ratios on dryland spring corn yield and soil nitrate nitrogen residues[J]. Journal of Northwest A&F University (Natural Science Edition), 2022, 50(11): 127−134 [39] 彭正萍, 刘亚男, 李迎春, 等. 持续氮素调控对小麦/玉米轮作系统氮素利用和表观损失的影响[J]. 水土保持学报, 2015, 29(6): 74−79 doi: 10.13870/j.cnki.stbcxb.2015.06.014PENG Z P, LIU Y N, LI Y C, et al. Effects of constant nitrogen regulation on the nitrogen utilization and apparent loss in the rotation system of wheat and maize[J]. Journal of Soil and Water Conservation, 2015, 29(6): 74−79 doi: 10.13870/j.cnki.stbcxb.2015.06.014 [40] 刘世亮, 寇太记, 介晓磊, 等. 保水剂对玉米生长和土壤养分转化供应的影响研究[J]. 河南农业大学学报, 2005, 39(2): 146−150 doi: 10.3969/j.issn.1000-2340.2005.02.006LIU S L, KOU T J, JIE X L, et al. Studies on the effects of water-retaining agents on maize growth and soil nutrient transformation[J]. Journal of Henan Agricultural University, 2005, 39(2): 146−150 doi: 10.3969/j.issn.1000-2340.2005.02.006 [41] 马力. 保水剂与氮肥对青燕1号燕麦生长发育的影响[D]. 西宁: 青海大学, 2014MA L. Effect of water retaining agent and nitrogen fertilizer on the growth and development of Qingyan No. 1 oat[D]. Xining: Qinghai University, 2014 -