-
摘要: 东北地区是我国大豆主产区, 该地区深受气候变化影响。厘清气候变化背景下的农业气候资源、农业气象灾害和大豆气候种植适宜性变化对指导大豆生产和扩种具有重要意义。通过利用最新气候态(1991—2020年)与旧气候态(1981—2010年)的数据, 分析了农业气候资源、农业气象灾害和大豆种植气候适宜度的时空变化。结果发现: 1)内蒙古东部、黑龙江西南部和东北部、吉林中西部等地大豆生长季≥10 ℃活动积温增加26~65 ℃∙d, 局部地区增加66~182 ℃∙d; 1981—2020年东北大豆的种植区生长季积温大部呈上升趋势。大豆生长季降水和日照变化呈现空间差异。2)东北大部分地区大豆生长季霜冻害日数减少; 黑龙江大部和吉林西北部大豆生长季干旱天数减少, 吉林中东部和辽宁大部干旱天数增加。3)内蒙古东部、黑龙江西部、吉林西部、辽宁西部和东部大豆种植气候适宜度提高, 黑龙江中部和东部、吉林中部和东北部气候适宜度略下降。4)气象因子对大豆气候适宜度变化贡献率分析表明, 日照变化是大豆气候适宜度变化的主要因素, 其次是积温变化, 降水变化对大豆气候适宜度变化贡献率最小。最新气候态下东北大部分地区大豆种植气候条件变好, 可以充分利用温度资源, 适当调整播期和品种, 但从积温上升幅度看, 不宜采取过激的跨积温带盲目种植。Abstract: Northeast China is a major soybean production region that is profoundly influenced by climate change. It is important to identify how climate change influences agroclimatic resources, agro-meteorological disasters, and climatic suitability for soybean production and plant expansion. In this study, we evaluated the temporal and spatial changes in agroclimatic resources (accumulated temperature, precipitation, and sunshine hours at a rate of 80% climatic guarantee during soybean growing season), agro-meteorological disasters (drought and frost days), and soybean climatic suitability using two climate reference periods (1991−2020 and 1981−2010). Finally, the contribution rates of accumulated temperature, precipitation, and sunshine hours to soybean climatic suitability change were calculated using a statistical method. First, we found that a thermal time ≥ 10 ℃ during the soybean growing season increased by 26−65 ℃·d in the east of Inner Mongolia, southwest and northeast of Heilongjiang, and midwest of Jilin, and increased by 66−182 ℃·d in local regions. Additionally, a thermal time ≥ 10 ℃ during the soybean growing season exhibited an increasing trend from 1981 to 2020 in Northeast China. Moreover, the changes in precipitation and sunshine hours during the soybean growing season had the characteristics of spatial differentiation. Second, the number of frost days during the soybean growing season had decreased in the major region of Northeast China by 1–3 days and by 4–6 days in some local areas. Drought days declined in Heilongjiang and northwest of Jilin by 1–4 days and increased in mideast of Jilin and Liaoning by 1–6 days. Third, the climatic suitability of soybean planting has improved in the eastern Inner Mongolia, west of Heilongjiang and Jilin, and Liaoning, while it had dropped in the middle and east of Heilongjiang and the middle and northeast of Jilin. Finally, the change in sunshine hours was the foremost factor affecting soybean climatic suitability. The secondary factor was thermal time, whereas precipitation had the least contribution. The results indicate that the climatic conditions of soybean in 1991–2020 in Northeast China were more favorable than those in 1981–2010. Farmers in Northeast China adopted the sowing date and soybean cultivar to fully utilize the temperature resource. However, blindly growing soybeans across the accumulated temperate zone was not encouraged because of the increased extent of thermal time.
-
Key words:
- Soybean /
- Climate suitability /
- Climate change /
- Northeast China /
- Agroclimatic resources
-
表 1 大豆不同发育期适宜度模型中的参数设置
Table 1. Parameters of suitability model in different phenological stages of soybean
发育期
Phenological stage参数 Parameter $ {T}_{i1} $ $ {T}_{i2} $ $ {T}_{i0} $ ${P}_{i\mathrm{l}}$ ${P}_{i\mathrm{h}}$ $ {S}_{i0} $ $ {b}_{i} $ 播种—出苗 Sowing−emergence 7.5 26.0 18.5 16.7 22.3 9.37 5.05 出苗—分枝 Emergence−branching 10.5 30.0 23.5 20.7 24.7 9.03 4.87 分枝—开花 Branching−anthesis 17.5 32.0 27.0 154.1 195.3 8.75 4.72 开花—鼓粒 Anthesis−pod filling 13.0 30.5 25.0 102.4 132.5 8.31 4.48 鼓粒—成熟 Pod filling−maturity 14.0 30.0 24.5 34.1 56.6 7.75 4.18 $ {T}_{i1} $为发育期i的下限温度, $ {T}_{i2} $为发育期i的上限温度, $ {T}_{i0} $为发育期i的最适温度, ${P}_{i\mathrm{l}}$为发育期i的下限需水量, ${P}_{i\mathrm{h}}$为发育期i的上限需水量, $ {S}_{i0} $为发育期i的最适日照时数, $ {b}_{i} $为发育期i的日照适宜度常数。$ {T}_{i1} $, $ {T}_{i2} $ and $ {T}_{i0} $ are the lower limit, upper limit and optimal temperature of phenology i, respectively. ${P}_{i\mathrm{l}}$ and ${P}_{i\mathrm{h}}$ are the lower and upper limit requirement water of phenology i. $ {S}_{i0} $ is the optimal sunshine hour of phenology i. $ {b}_{i} $ is the sunshine suitability constant of phenology i. -
[1] 郭天宝. 中国大豆生产困境与出路研究[D]. 长春: 吉林农业大学, 2017: 1−5GUO T B. Study on dilemma and way out of China’s soybean production[D]. Changchun: Jilin Agricultural University, 2017: 1−5 [2] 张彩霞, 付桢. 国际背景下中国大豆的生产困境分析与对策[J]. 河北经贸大学学报: 综合版, 2022, 20(4): 73−77ZHANG C X, FU Z. Analysis and countermeasure of production dilemma of Chinese soybean under the international background[J]. Journal of Hebei University of Economics and Business (Comprehensive Edition), 2022, 20(4): 73−77 [3] 国家统计局. 国家数据[EB/OL]. [2022-04-26]. https://data.stats.gov.cn/easyquery.htm?cn=C01National Bureau of Statistics. National data[EB/OL]. [2022-04-26]. https://data.stats.gov.cn/easyquery.htm?cn=C01 [4] 农业农村部. 大豆振兴计划实施方案 [EB/OL]. [2022-04-26]. http://www.moa.gov.cn/nybgb/2019/0201903/201905/t20190525_6315395.htmMinistry of Agriculture and Rural Affairs of the People’s Republic of China. Implementation plan of soybean revitalization plan [EB/OL]. [2022-04-26]. http://www.moa.gov.cn/nybgb/2019/0201903/201905/t20190525_6315395.htm [5] 中共中央国务院关于做好2022年全面推进乡村振兴重点工作的意见[EB/OL]. [2022-04-15]. http://www.gov.cn/zhengce/2022-02/22/content_5675035.htmOpinions of the CPC Central Committee and the State Council on comprehensively promoting the key work of rural revitalization in 2022[EB/OL]. [2022-04-15]. http://www.gov.cn/zhengce/2022-02/22/content_5675035.htm [6] 刘爱民, 封志明, 阎丽珍, 等. 中国大豆生产能力与未来供求平衡研究[J]. 中国农业资源与区划, 2003, 24(4): 36−39 doi: 10.3969/j.issn.1005-9121.2003.04.009LIU A M, FENG Z M, YAN L Z, et al. A study on the throughput and balance of supply and demand of soybean in China[J]. Journal of China Agricultural Resources and Regional Planning, 2003, 24(4): 36−39 doi: 10.3969/j.issn.1005-9121.2003.04.009 [7] 刘爱民, 封志明, 阎丽珍, 等. 基于耕地资源约束的中国大豆生产能力研究[J]. 自然资源学报, 2003, 18(4): 430−436 doi: 10.3321/j.issn:1000-3037.2003.04.006LIU A M, FENG Z M, YAN L Z, et al. Study on soybean throughput based on cultivated land resources restriction in China[J]. Journal of Natural Resources, 2003, 18(4): 430−436 doi: 10.3321/j.issn:1000-3037.2003.04.006 [8] 中国气象局气候变化中心. 中国气候变化蓝皮书2021[M]. 北京: 科学出版社, 2021: 16−25Climate Change Center of China Meteorological Administration. Blue Book on Climate Change in China 2021[M]. Beijing: Scientific Press, 2021: 16−25 [9] 刘志娟, 杨晓光, 王文峰, 等. 气候变化背景下我国东北三省农业气候资源变化特征[J]. 应用生态学报, 2009, 20(9): 2199−2206 doi: 10.13287/j.1001-9332.2009.0362LIU Z J, YANG X G, WANG W F, et al. Characteristics of agricultural climate resources in three provinces of Northeast China under global climate change[J]. Chinese Journal of Applied Ecology, 2009, 20(9): 2199−2206 doi: 10.13287/j.1001-9332.2009.0362 [10] 杨晓光, 李勇, 代姝玮, 等. 气候变化背景下中国农业气候资源变化Ⅸ. 中国农业气候资源时空变化特征[J]. 应用生态学报, 2011, 22(12): 3177−3188YANG X G, LI Y, DAI S W, et al. Changes of China agricultural climate resources under the background of climate change: IX. Spatiotemporal change characteristics of China agricultural climate resources[J]. Chinese Journal of Applied Ecology, 2011, 22(12): 3177−3188 [11] 解文娟, 杨晓光, 杨婕, 等. 气候变化背景下东北三省大豆干旱时空特征[J]. 生态学报, 2014, 34(21): 6232−6243XIE W J, YANG X G, YANG J, et al. Spatio-temporal characteristics of drought for soybean under climate change in the three provinces of Northeast China[J]. Acta Ecologica Sinica, 2014, 34(21): 6232−6243 [12] 梁宏, 王培娟, 章建成, 等. 1960—2011年东北地区热量资源时空变化特征[J]. 自然资源学报, 2014, 29(3): 466−479 doi: 10.11849/zrzyxb.2014.03.010LIANG H, WANG P J, ZHANG J C, et al. Spatial and temporal distribution of variation in heat resource over Northeast China during the period from 1960 to 2011[J]. Journal of Natural Resources, 2014, 29(3): 466−479 doi: 10.11849/zrzyxb.2014.03.010 [13] 郝兴宇, 韩雪, 居煇, 等. 气候变化对大豆影响的研究进展[J]. 应用生态学报, 2010, 21(10): 2697−2706 doi: 10.13287/j.1001-9332.2010.0375HAO X Y, HAN X, JU H, et al. Impact of climatic change on soybean production: a review[J]. Chinese Journal of Applied Ecology, 2010, 21(10): 2697−2706 doi: 10.13287/j.1001-9332.2010.0375 [14] 魏萌, 舒启, 宋振亚, 等. CMIP6气候模式对21世纪初全球增暖减缓现象模拟能力评估与归因分析[J]. 中国科学: 地球科学, 2021, 51(6): 947−961WEI M, SHU Q, SONG Z Y, et al. Could CMIP6 climate models reproduce the early-2000s global warming slow down?[J] Science China Earth Sciences, 2021, 51(6): 947−961 [15] World Meteorological Organization (WMO). WMO Guidelines on the Calculation of Climate Normal (WMO No. 1203) [R]. Geneva: World Meteorological Organization, 2017: 9–10 [16] 胡琦, 潘学标, 徐琳. 应用气候学实习[M]. 北京: 中国农业大学出版社, 2020: 31−41HU Q, PAN X B, XU L. Practice of Applied Climatology[M]. Beijing: China Agricultural University Press, 2020: 31−41 [17] 吕厚荃, 张玉书, 李茂松, 等. 中华人民共和国国家标准 (GB/T 32136—2015). 农业干旱等级[S]. 北京: 中国标准出版社, 2015LYU H Q, ZHANG Y S, LI M S, et al. National Standards of People’s Republic of China (GB/T 32136–2015). Grade of Agricultural Drought[S]. Beijing: China Standard Press, 2015 [18] 谭方颖, 何亮, 吕厚荃, 等. 基于游程理论的农业干旱指数在辽宁省春玉米旱灾损失评估中的应用[J]. 中国生态农业学报(中英文), 2020, 28(2): 191−199 doi: 10.13930/j.cnki.cjea.190675TAN F Y, HE L, LYU H Q, et al. Application of agricultural drought index based on run theory for the assessment of yield loss in spring maize owing to drought in Liaoning Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(2): 191−199 doi: 10.13930/j.cnki.cjea.190675 [19] HE Y B, YAO Y M, TANG H, et al. Using an integrated response-function method to explore agro-climatic suitability for spring soybean growth in North China[J]. Journal of Applied Meteorology and Climatology, 2011, 50(6): 1354−1361 doi: 10.1175/2010JAMC2577.1 [20] 代立芹, 李春强, 魏瑞江, 等. 河北省冬小麦气候适宜度及其时空变化特征分析[J]. 中国农业气象, 2011, 32(3): 399−406DAI L Q, LI C Q, WEI R J, et al. Climatic suitability of winter wheat and its spatial-temporal changes in Hebei Province[J]. Chinese Journal of Agrometeorology, 2011, 32(3): 399−406 [21] 何英彬, 姚艳敏, 李建平, 等. 大豆种植适宜性精细评价及种植合理性分析——以东北三省为例[J]. 中国农业资源与区划, 2012, 33(1): 11−16HE Y B, YAO Y M, LI J P, et al. Precisely assessment on soybean growth suitability and analysis on its cultivation reasonability — taking the Northeast China as an example[J], Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(1): 11−16 [22] 杨显峰, 杨德光, 汤彦辉, 等. 东北春大豆气候适宜性指标体系的建立研究初步[J]. 种子世界, 2009(11): 36−38 doi: 10.3969/j.issn.1000-8071.2009.11.016YANG X F, YANG D G, TANG Y H, et al. Establish climatic adaptability index system for spring soybean[J]. Seed World, 2009(11): 36−38 doi: 10.3969/j.issn.1000-8071.2009.11.016 [23] SEN P K. Estimates of the regression coefficient based on Kendall’s Tau[J]. Journal of the American Statistical Association, 1968, 63(324): 1379−1389 doi: 10.1080/01621459.1968.10480934 [24] XU Z X, TAKEUCHI K, ISHIDAIRA H. Monotonic trend and step changes in Japanese precipitation[J]. Journal of Hydrology, 2003, 279(1): 144−150 [25] 汪攀, 刘毅敏. Sen’s斜率估计与Mann-Kendall法在设备运行趋势分析中的应用[J]. 武汉科技大学学报, 2014, 37(6): 454−457WANG P, LIU Y M. Application of Sen’s slope estimation and Mann-Kendall method in the trend analysis of equipment operation[J]. Journal of Wuhan University of Science and Technology, 2014, 37(6): 454−457 [26] HE L, JIN N, YU Q. Impacts of climate change and crop management practices on soybean phenology changes in China[J]. Science of The Total Environment, 2020, 707: 135638 doi: 10.1016/j.scitotenv.2019.135638 -