Determination of water price and estimation of water savings and emission reduction in groundwater irrigation areas: A case study of Nanpi County, Hebei Province
-
摘要: 研究并提出合理的水价调整方案是农业水价综合改革的需求。本文提出地下水灌区水价确定及其节水减排估算方法, 采用“以电折水”方法计算现状灌溉用水量与现状水价, 运用双对数模型建立灌溉用水价格弹性函数, 依据剩余价值方法计算理想水价, 借鉴农田营养物流失模型计算节水的营养物减排量。以河北省南皮县为例进行实证分析, 研究表明: 1)根据问卷调研数据与“以电折水”计算方法, 获得小麦和玉米现状水价分别为0.44 ¥∙m−3 和0.48 ¥∙m−3。2)根据现状水价、现状灌溉用水量与双对数模型, 获得小麦和玉米水价弹性系数分别为−0.47和−0.71。3)灌溉定额对应的理论水价小麦和玉米分别为0.52 ¥∙m−3和0.77 ¥∙m−3, 理想水价分别为0.84 ¥∙m−3和1.01 ¥∙m−3。4)以理论水价作为推荐方案, 该方案下水费占成本比例低于15%, 小麦和玉米水价提升空间分别为0.08 ¥∙m−3和0.29 ¥∙m−3, 节水潜力为235.05 m3∙hm−2和682.80 m3∙hm−2; 氨氮、总氮和总磷的减排量小麦为5.2~19.2 g∙hm−2、52.7~195.4 g∙hm−2和4.6~16.9 g∙hm−2, 玉米为18.5~27.6 g∙hm−2、189.1~281.2 g∙hm−2和16.3~24.3 g∙hm−2。农业水价综合改革是一项系统工程, 需要相关配套政策的支持, 建议在节水技术采纳、土地流转和规模化经营、灌溉定额管理制度等方面, 给予政策倾斜和相关的激励政策, 以利于农业水价综合改革的推进。Abstract: A comprehensive reform of agricultural water prices is required to study and propose a reasonable water price adjustment scheme. The method regarding the determination of water price and the estimation of water savings and pollutant emission reduction in groundwater irrigation areas were proposed, and the current irrigation water use and current water price were calculated by using the method of “converting electricity into the water”. The double logarithm model was used to establish the price elasticity function of irrigation water demand. The ideal water price was calculated using the residual value method, and the pollutant emission reduction from water savings was calculated using the farmland pollution logistics loss model. Taking Nanpi County of Hebei Province as an example, the results showed that the current water prices of wheat and corn are 0.44 ¥∙m−3 and 0.48 ¥∙m−3, respectively. The water price elasticity coefficients of wheat and corn are −0.47 and −0.71, respectively. The actual water prices of wheat and corn corresponding to the irrigation quota are 0.52 ¥∙m−3 and 0.77 ¥∙m−3, respectively, and the ideal water prices are 0.84 ¥∙m−3 and 1.01 ¥∙m−3, respectively. As per the recommended scheme, the theoretical water price accounts for less than 15% of the total cost, the increased range for water price of wheat and corn is 0.08 ¥∙m−3 and 0.29 ¥∙m−3, respectively; and the water-saving potential is 235.05 m3∙hm−2, 682.80 m3∙hm−2. The nutrient emission reduction of ammonia nitrogen, total nitrogen, and total phosphorus are 5.2−19.2 g∙hm−2, 52.7−195.4 g∙hm−2, and 4.6−16.9 g∙hm−2 for wheat; and 18.5−27.6 g∙hm−2, 189.1−281.2 g∙hm−2, and 16.3−24.3 g∙hm−2 for corn, respectively. As the comprehensive reform of agricultural water prices is a systematic project, it needs the support of relevant supporting policies. This study suggests the adoption of water-saving technology, land transfer, large-scale operation, and irrigation quota management systems to promote comprehensive reform of agricultural water prices through relevant incentive policies.
-
表 1 南皮县小麦、玉米生产投入产出参数值
Table 1. Input-output parameter values of wheat and corn production in Nanpi County
¥∙m−3 参数 Parameter 小麦 Wheat 玉米 Corn 产出 Output value 14 158.05 11 688.75 种子 Seed 1348.5 647.55 化肥 Chemical fertilizer 2361 1824.6 农药 Pesticides 260.1 222.45 除草剂 Herbicide 204.3 230.85 机械 Mechanical input 1760.7 1506.9 劳动 Labour 1771.95 1329.9 土地 Land input 2620.05 2758.5 平均用电量 Average electricity consumption 1470.45 914.55 灌溉电费 Irrigation electricity charge 1128.6 769.5 数据来源于问卷调研。The data came from a questionnaire survey. 表 2 南皮县灌溉用水量与水价计算结果
Table 2. Calculation results of irrigation water consumption and water price in Nanpi County
作物 Crop 现状 Current situation 理论 Theory 理想 Ideal 灌溉用水量
Irrigation water
volume (m3∙hm−2)以电折水计算水价
Water price calculated
through converting electricity
into water (¥∙m−3)灌溉定额
Irrigation
quota
(m3∙hm−2)理论水价
Theoretical
water
price (¥∙m−3)余值方法计算水价
Water price calculated
with residual value
method (¥∙m−3)用水量
Water
demand
(m3∙hm−2)小麦 Wheat 3235.05 0.44 3000 0.52 0.84 2392.20 玉米 Corn 2377.80 0.48 1695 0.77 1.01 1395.45 表 3 南皮县灌溉用水价格弹性函数
Table 3. Price (P) elasticity function of irrigation water demand (Q) in Nanpi County
作物
Crop用水价格函数
Water demand
price function弹性系数
Elasticity
coefficient调整的R2
Adjusted
R2显著性(P)
Test of
significance小麦 Wheat lnQ=−0.47lnP+4.99 −0.47 62.04 0.0039 玉米 Corn lnQ=−0.71lnP+4.54 −0.71 62.04 0.0053 表 4 不同水价改革情景方案下南皮县农业水价提升空间及其节水减排估算结果
Table 4. Increasing range of agricultural water price, estimated results of water conservation and pollutant emission reduction under different water price reform schemes in Nanpi County
情景方案
Reform
scheme作物
Crop现状水价
Current water
price
(¥∙m−3)改革后水价
Water price
after reform
(¥∙m−3)现状用水量
Current water
use
(m3∙hm−2)改革后用水量
Water use
after reform
(m3∙hm−2)节水潜力
Water saving
potential
(m3∙hm−2)节水减排量
Amount of pollutant
emission reduction
(g∙hm−2)灌溉水费
占成本比例
Proportion of
irrigation water charge
in total cost (%)氨氮
Ammonia
nitrogen总氮
Total
nitrogen总磷
Total
phosphorus现状
Current
situation改革后
After
reform理论水价
Theoretical
water price小麦
Wheat0.44 0.52 3235.05 3000.00 235.05 5.2 52.7 4.6 12.43 13.62 玉米
Corn0.48 0.77 2377.80 1695.00 682.80 18.5 189.1 16.3 12.29 14.05 理想水价
Ideal water
price小麦
Wheat0.44 0.84 3235.05 2392.20 842.85 19.2 195.4 16.9 12.43 17.54 玉米
Corn0.48 1.01 2377.80 1395.45 982.35 27.6 281.2 24.3 12.29 17.01 -
[1] 康绍忠. 水安全与粮食安全[J]. 中国生态农业学报, 2014, 22(8): 880−885KANG S Z. Towards water and food security in China[J]. Chinese Journal of Eco-Agriculture, 2014, 22(8): 880−885 [2] 赵令, 雷波, 苏涛, 等. 我国粮食主产区农业灌溉节水潜力估算研究[J]. 节水灌溉, 2019(8): 130−133 doi: 10.3969/j.issn.1007-4929.2019.08.026ZHAO L, LEI B, SU T, et al. Estimation of water-saving potential of agricultural irrigation in main grain producing areas of China[J]. Water Saving Irrigation, 2019(8): 130−133 doi: 10.3969/j.issn.1007-4929.2019.08.026 [3] 刘维哲, 王西琴. 农户稀缺感知、超采认知对地下水灌溉用水效率的影响−基于河北地下水超采区457个农户调研数据[J]. 中国生态农业学报(中英文), 2021, 29(5): 929−936LIU W Z, WANG X Q. Impact of farmers’ scarcity perception and overdrawn cognition on efficiency of groundwater irrigation: based on the survey data of 457 farmer households in groundwater overdraft area of Hebei Province[J]. Chinese Journal of Eco-Agriculture, 2021, 29(5): 929−936 [4] 粟晓玲, 宋悦, 刘俊民, 等. 耦合地下水模拟的渠井灌区水资源时空优化配置[J]. 农业工程学报, 2016, 32(13): 43−51 doi: 10.11975/j.issn.1002-6819.2016.13.007SU X L, SONG Y, LIU J M, et al. Spatiotemporal optimize allocation of water resources coupling groundwater simulation model in canal-well irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 43−51 doi: 10.11975/j.issn.1002-6819.2016.13.007 [5] 王西琴, 尹华玉, 罗予若. 河北地下水超采区基于农户水费承受能力的水价提升空间[J]. 西北大学学报(自然科学版), 2020, 50(2): 234−240WANG X Q, YIN H Y, LUO Y R. Lifting space of agricultural water price on farmers’ affordability in the groundwater overmining area of Hebei[J]. Journal of Northwest University (Natural Science Edition), 2020, 50(2): 234−240 [6] 毛春梅. 农业水价改革与节水效果的关系分析[J]. 中国农村水利水电, 2005(4): 2−4 doi: 10.3969/j.issn.1007-2284.2005.04.002MAO C M. Analysis of the relationship between agricultural water price reform and water-saving effect[J]. China Rural Water and Hydropower, 2005(4): 2−4 doi: 10.3969/j.issn.1007-2284.2005.04.002 [7] JIA S F, LONG Q B, WANG R Y, et al. On the inapplicability of the Cobb-Douglas production function for estimating the benefit of water use and the value of water resources[J]. Water Resources Management, 2016, 30(10): 3645−3650 doi: 10.1007/s11269-016-1349-z [8] 刘莹, 黄季焜, 王金霞. 水价政策对灌溉用水及种植收入的影响[J]. 经济学(季刊), 2015, 14(4): 1375−1392 doi: 10.13821/j.cnki.ceq.2014.04.08LIU Y, HUANG J K, WANG J X. The impact of water pricing policy on water use in irrigation and crop income[J]. China Economic Quarterly, 2015, 14(4): 1375−1392 doi: 10.13821/j.cnki.ceq.2014.04.08 [9] KIPROP J, LAGAT J, MSHENGA P, et al. Determining the economic value of irrigation water in Kerio Valley basin (Kenya) by residual value method[J]. Journal of Economics and Sustainable Development, 2015, 6: 102−107 [10] DEYTIEUX V, MUNIER-JOLAIN N, CANEILL J. Assessing the sustainability of cropping systems in single- and multi-site studies. A review of methods[J]. European Journal of Agronomy, 2016, 72: 107−126 doi: 10.1016/j.eja.2015.10.005 [11] MITROPOULOS P, TALIAS Μ A, MITROPOULOS I. Combining stochastic DEA with Bayesian analysis to obtain statistical properties of the efficiency scores: an application to Greek public hospitals[J]. European Journal of Operational Research, 2015, 243(1): 302−311 doi: 10.1016/j.ejor.2014.11.012 [12] 王西琴, 张馨月, 周嫚, 等. 基于门限效应的灌溉水价与用水量关系−以河北省地下水灌区为例[J]. 资源科学, 2021, 43(12): 2538−2545 doi: 10.18402/resci.2021.12.15WANG X Q, ZHANG X Y, ZHOU M, et al. Relationship between agricultural water price and water use based on threshold effect: a case study of groundwater irrigation area in Hebei[J]. Resources Science, 2021, 43(12): 2538−2545 doi: 10.18402/resci.2021.12.15 [13] 王文浩, 曹红霞, 蔡焕杰. 灌溉水价与灌区灌溉用水量关系研究[J]. 灌溉排水学报, 2013, 32(1): 82−85WANG W H, CAO H X, CAI H J. Relationship between irrigation water price and consumption[J]. Journal of Irrigation and Drainage, 2013, 32(1): 82−85 [14] 左燕霞. 农业节水潜力分析与灌溉用水优化配置研究——以南水北调中线工程河北受水区为例[D]. 兰州: 甘肃农业大学, 2007ZUO Y X. The analysis of angriculture water saving potential and study on irrigation water resources optimal allocation — Take Hebei water reception areas of the south-to-north water transfer middle route project as an example[D]. Lanzhou: Gansu Agricultural University, 2007 [15] 王剑永. “以电折水”方法研究与应用[J]. 中国水利, 2017(11): 34−35, 28 doi: 10.3969/j.issn.1000-1123.2017.11.012WANG J Y. Research and application of the method of “converting electricity into water”[J]. China Water Resources, 2017(11): 34−35, 28 doi: 10.3969/j.issn.1000-1123.2017.11.012 [16] BERBEL J, MESA-JURADO M A, PISTÓN J M. Value of irrigation water in Guadalquivir Basin (Spain) by residual value method[J]. Water Resources Management, 2011, 25(6): 1565−1579 doi: 10.1007/s11269-010-9761-2 [17] AIDAM W P. The impact of water-pricing policy on the demand for water resources by farmers in Ghana[J]. Agricultural Water Management, 2015, 158: 10−16 doi: 10.1016/j.agwat.2015.04.007 [18] 杨旭洋, 刘彬, 闫丹丹, 等. 河北省南部平原区冬小麦灌溉用水量分析[J]. 节水灌溉, 2018(2): 83−87, 92 doi: 10.3969/j.issn.1007-4929.2018.02.017YANG X Y, LIU B, YAN D D, et al. Analysis of irrigation water use of winter wheat in southern plain area of Hebei Province[J]. Water Saving Irrigation, 2018(2): 83−87, 92 doi: 10.3969/j.issn.1007-4929.2018.02.017 [19] 王学, 李秀彬, 辛良杰. 河北平原冬小麦播种面积收缩及由此节省的水资源量估算[J]. 地理学报, 2013, 68(5): 694−707 doi: 10.11821/xb201305010WANG X, LI X B, XIN L J. Impact of the shrinking winter wheat sowing area on agricultural water consumption in the Hebei Plain[J]. Acta Geographica Sinica, 2013, 68(5): 694−707 doi: 10.11821/xb201305010 [20] 贾绍凤, 康德勇. 提高水价对水资源需求的影响分析−以华北地区为例[J]. 水科学进展, 2000, 11(1): 49−53 doi: 10.3321/j.issn:1001-6791.2000.01.009JIA S F, KANG D Y. Influence of water price rising on water demand in North China[J]. Advances in Water Science, 2000, 11(1): 49−53 doi: 10.3321/j.issn:1001-6791.2000.01.009 [21] 裴源生, 方玲, 罗琳. 黄河流域农业需水价格弹性研究[J]. 资源科学, 2003, 25(6): 25−30 doi: 10.3321/j.issn:1007-7588.2003.06.005PEI Y S, FANG L, LUO L. Price elasticity of agricultural water demand in China[J]. Resources Science, 2003, 25(6): 25−30 doi: 10.3321/j.issn:1007-7588.2003.06.005 [22] 王钇霏, 许朗. 粮食安全视域下农业水价改革空间研究[J]. 节水灌溉, 2021(11): 65−70 doi: 10.3969/j.issn.1007-4929.2021.11.012WANG Y F, XU L. Research on agricultural water price reform space from the perspective of food security[J]. Water Saving Irrigation, 2021(11): 65−70 doi: 10.3969/j.issn.1007-4929.2021.11.012 -