Screening of accumulating plants in farmland surrounding typical lead and zinc smelting enterprises
-
摘要: 为探究有色金属企业周边农田重金属污染状况, 筛选修复与安全利用优势植物。本研究在河南省济源市某铅锌冶炼企业周边农田开展调查, 探明研究区土壤重金属污染特征, 并选用17种重金属富集植物, 开展田间试验, 比较其生物量及重金属含量、富集系数、提取量及去除率等, 建立适合研究区的土壤重金属污染植物修复技术模式。结果表明, 试验区土壤镉(Cd)、铅(Pb)存在超标情况, 超标率Cd>Pb, 污染物主要分布在0~20 cm耕作层, 属典型的轻中度Cd、Pb污染农田土壤。试验区主要农产品小麦籽粒Cd、Pb超标率为100%, 部分样品As超标, 玉米籽粒符合标准。17种富集植物生物量和对重金属的富集能力差异较大, 籽粒苋生物量最高, 达29 598 kg∙hm−2, 是遏蓝菜的46.6倍, 体内重金属Cd、Pb、As含量分别为2.90~30.90 mg∙kg−1、7.81~93.1 mg∙kg−1、3.76~22.9 mg∙kg−1。不同植物对土壤中重金属的去除率存在明显差异, 籽粒苋、冬油菜‘中油千斤旱’、向日葵‘S606’表现出良好的Cd、Pb提取修复潜力, 对土壤中Cd的去除率均高于1.90%。此外, 油菜和向日葵可进一步加工生产食用油、饲料或有机肥料, 实现边修复边生产, 应用前景较好。在研究区采用籽粒苋-冬油菜轮作和向日葵单作两种修复模式均能达到较高的修复效果, 具备一定的推广应用潜力。Abstract: As one of the most important lead (Pb) and zinc (Zn) smelting production bases in China, the heavy metal content in the farmland surrounding the enterprises in Jiyuan City of Henan Province seriously exceeded the national standard due to the backward technology and large pollutant discharge. In order to explore the characteristics of heavy metal contamination in farmland around Pb and Zn smelting enterprises in Jiyuan City, select the dominant plants for remediation and safe utilization of heavy metal-contaminated farmland, and establish a preliminary remediation model, field experiments were conducted on farmland surrounding Pb and Zn smelting enterprises in Jiyuan City. The study included investigating the characteristics of cadmium (Cd), Pb, and arsenic (As) pollution in soil, analyzing the heavy metal content in main agricultural products, selecting 17 kinds of heavy metal-accumulating plants for field cultivation, and studying their biomass, heavy metal contents, bioconcentration factor, extraction amount, and remediation efficiency. The results showed that the average content of Cd, Pb, and As in soil was 2.22 mg·kg−1, 173.1 mg·kg−1 and 18.38 mg∙kg−1, respectively, which were mainly distributed in the cultivated layer. Among them, the content of Cd and Pb exceeded the risk screening values in the Environmental Quality Standard for Soils (GB 15618—2018), and the single factor pollution index reached 3.71 and 1.02, respectively. In terms of the wheat and maize cultivated on the contaminated farmland, the content of Cd, Pb, and As in maize seeds did not exceed the values in the National Food Safety Standards (GB 2762—2022), but the Cd and Pb content in wheat seeds exceeded the standards, while the exceeding rates both reached 100%. In plant cultivation experiments, the biomass and heavy metal enrichment capacities of the 17 kinds of accumulating plants differed significantly. The biomass of Amaranthus hypochondriacus was the highest, reaching 29 598 kg·hm−2, which was 46.61 times that of Noccaea caerulescens (635 kg·hm−2). The contents of Cd, Pb, and As in the 17 plant species were 2.90−30.90 mg·kg−1, 7.81−93.1 mg·kg−1, and 3.76−22.9 mg·kg−1, respectively. The bioconcentration factors of Cd, Pb, and As were 1.31 to 13.92, 0.05 to 0.54, and 0.20 to 1.24, respectively. Helianthus annuus ‘S606’ had the largest Cd, Pb, and As comprehensive bio-concentration index of 2.3. Combining plant biomass and enrichment capacity, 17 plant species showed clear differences in the removal efficiency of contaminated soil. Cluster analysis showed that Amaranthus hypochondriacus, Brassica napus ‘Zhongyou 1000’, and Helianthus annuus ‘S606’ had higher Cd and Pb accumulation and remediation capacities in soil. The removal efficiency of these three species was higher than 1.90% for Cd and 0.07% for Pb, showing a promising potential for remediation of Cd and Pb-contaminated soils. In addition, Brassica napus and Helianthus annuus can be further processed to produce edible oil, feed, or fertilizer, which can bring economic benefits while remediating soil. In conclusion, the farmland surrounding the Pb and Zn smelting enterprise in Jiyuan City was typically light to moderately contaminated with Cd and Pb. In response to this situation, two technical modes of heavy metals-contaminated farmland remediation were proposed: Amaranthus hypochondriacus-Brassica napus rotation remediation mode and Helianthus annuus monoculture remediation mode. Both modes can achieve high remediation efficiency and were viable and extendable.
-
Key words:
- Heavy metals /
- Soil pollution /
- Accumulating plants /
- Remediation capacity /
- Remediation mode
-
图 1 试验区不同深度土壤重金属含量分布特征
图中虚线代表各重金属的风险筛选值, 根据GB 15618—2018中农用地重金属含量(pH>7.5), Cd的风险筛选值为0.6 mg∙kg−1, Pb的风险筛选值为170 mg∙kg−1, As的风险筛选值为25 mg∙kg−1。The dotted lines in the figure represent the risk screening value of each heavy metal. According to the heavy metal content of farmland in GB 15618—2018 (pH>7.5), the risk screening values of Cd, Pb, and As are 0.6 mg∙kg−1, 170 mg∙kg−1, and 25 mg∙kg−1, respectively.
Figure 1. Distribution characteristics of heavy metals contents at different depths in the study area
图 5 不同植物Cd、Pb和As提取量及去除率
序号P1~P17详见表1中富集植物; 不同小写字母表示差异显著(P<0.05)。P1−P17 refer to the numbers of accumulating plants in Table 1. Different lowercase letters mean significant differences at P<0.05 level.
Figure 5. Cd, Pb, and As extraction amounts and removal efficiencies of different accumulating plants
图 6 不同植物Cd、Pb富集能力聚类热图
序号P1~P17详见表1中富集植物。9项聚类指标(Index 1~Index9)分别为: 生物量、Cd含量、Pb含量、Cd富集系数、Pb富集系数、Cd提取量、Pb提取量、Cd去除率和Pb去除率。P1−P17 refer to the numbers of accumulating plants in Table 1. Index 1−Index 9 respectively represent: biomass, Cd content, Pb content, bioconcentration factor of Cd, bioconcentration factor of Pb, Cd extraction amount, Pb extraction amount, Cd removal efficiency, and Pb removal efficiency.
Figure 6. Clustering heat map of Cd、Pb accumulation capacity of different plants
表 1 供试富集植物基本信息及种植条件
Table 1. Basic information of accumulating plants and planting conditions tested in the study
序号
Number种
Species科
Family生活型
Life form播种量
Seeding rate (kg∙hm−2)定苗数量
Singling density
(×104∙hm−2)种植方式
Planting wayP1 德国景天
Phedimus hybridus ‘Immergrunchett’景天科
Crassulaceae多年生草本植物
Perennial herb/ 25 扦插
CuttageP2 三七景天
Sedum aizoon景天科
Crassulaceae多年生草本植物
Perennial herb/ 12 扦插
CuttageP3 伴矿景天
Sedum plumbizincicola景天科
Crassulaceae多年生草本植物
Perennial herb/ 12 扦插
CuttageP4 印度芥菜
Brassica juncea十字花科
Brassicaceae一年生草本植物
Annual herb30 12 直播
SowingP5 鬼针草
Bidens pilosa菊科
Asteraceae一年生草本植物
Annual herb15 7.5 直播
SowingP6 龙葵
Solanum nigrum茄科
Solanaceae一年生草本植物
Annual herb30 12 直播
SowingP7 紫茉莉
Mirabilis jalapa紫茉莉科
Nyctaginaceae一年生草本植物
Annual herb15 3 直播
SowingP8 遏蓝菜
Thlaspi arvense十字花科
Brassicaceae一年生草本植物
Annual herb2.25 12 直播
SowingP9 红叶甜菜
Beta vulgaris藜科
Chenopodiaceae二年生草本植物
Biennial herb7.5 6 直播
SowingP10 红苋菜
Amaranthus caudatus苋科
Amaranthaceae一年生草本植物
Annual herb75 12 直播
SowingP11 籽粒苋
Amaranthus hypochondriacus苋科
Amaranthaceae一年生草本植物
Annual herb15 12 直播
SowingP12 油菜‘早熟100天’
Brassica napus ‘Zaoshu 100’十字花科
Brassicaceae二年生草本植物
Biennial herb9 12 直播
SowingP13 油菜‘极旱98’
Brassica napus ‘Jihan 98’十字花科
Brassicaceae二年生草本植物
Biennial herb9 12 直播
SowingP14 油菜‘中油千斤旱’
Brassica napus ‘Zhongyou 1000’十字花科
Brassicaceae二年生草本植物
Biennial herb9 12 直播
SowingP15 向日葵‘S606’
Helianthus annuus ‘S606’菊科
Asteraceae一年生草本植物
Annual herb30 6 直播
SowingP16 向日葵‘桃之春’
Helianthus annuus ‘Taozhichun’菊科
Asteraceae一年生草本植物
Annual herb30 6 直播
SowingP17 向日葵‘三阳开泰’
Helianthus annuus ‘Sanyangkaitai’菊科
Asteraceae一年生草本植物
Annual herb30 6 直播
Sowing表 2 塘石试验区表层土壤重金属含量
Table 2. Heavy metal content of topsoil in Tangshi experiment area
Cd Pb As 平均值 Mean value (mg∙kg−1) 2.22±0.28 173.1±14.33 18.38±1.85 GB 15618—2018风险筛选值(pH>7.5) GB 15618—2018 risk screening value (mg∙kg−1) (pH>7.5) 0.6 170 25 超标率 Standard-exceeding ratio (%) 100.0 54.2 0 单因子污染指数 Single factor pollution 3.71 1.02 0.74 表 3 塘石试验区小麦、玉米籽粒中重金属含量
Table 3. Heavy metals contents in wheat and corn grains in Tangshi experiment area
作物
Seed品种
CultivarCd Pb As 含量
Content
(mg∙kg−1)超标率
Exceeding rate (%)含量
Content
(mg∙kg−1)超标率
Exceeding rate (%)含量
Content
(mg∙kg−1)超标率
Exceeding rate (%)小麦 Wheat 矮抗58 Aikang 58 0.26±0.05 100 0.53±0.13 100 0.61±0.08 75 洛麦23 Luomai 23 0.29±0.06 100 0.77±0.23 100 0.62±0.17 100 玉米 Maize 郑单 958 Zhengdan 958 0.01±0 0 0.11±0.02 0 0.1±0.01 0 GB 2762—2022 限量
National Food Safety Standards (GB 2762—2022)0.1 — 0.2 — 0.5 — 表 4 不同植物重金属富集系数
Table 4. Bioconcentration factors of different accumulationg plants
植物 Plant 富集系数 Bioconcentration factor Cd Pb As 德国景天 Phedimus hybridus ‘Immergrunchett’ 8.88±0.22b 0.11±0.01hi 0.46±0.03cde 三七景天 Sedum aizoon 2.56±0.26fg 0.11±0.02hi 0.60±0.11cd 伴矿景天 Sedum plumbizincicola 13.92±1.54a 0.30±0.01d 0.52±0.09cd 印度芥菜 Brassica juncea 2.32±0.19fg 0.14±0.02gh 0.26±0.02efg 鬼针草 Bidens pilosa 3.15±0.31efg 0.24±0.02def 0.43±0.05def 龙葵 Solanum nigrum 5.72±1.22cd 0.22±0.06ef 0.65±0.16c 紫茉莉 Mirabilis jalapa 1.31±0.12g 0.07±0.02hi 0.25±0.02fg 遏蓝菜 Thlaspi arvense 6.97±1.64bc 0.05±0.01i 0.20±0.05g 红叶甜菜 Beta vulgaris 2.75±0.42fg 0.19±0.01fg 0.26±0.03fg 红苋菜 Amaranthus caudatus 1.55±0.05g 0.07±0.01hi 0.25±0.05fg 籽粒苋 Amaranthus hypochondriacus 3.98±0.35def 0.19±0.01fg 1.24±0.10a 油菜‘早熟100天’
Brassica napus ‘Zaoshu 100’2.18±0.17fg 0.29±0.03de 0.26±0.02efg 油菜‘极旱98’
Brassica napus ‘Jihan 98’2.88±1.08fg 0.45±0.04bc 0.44±0.01def 油菜‘中油千斤旱)
Brassica napus ‘Zhongyou 1000’2.28±0.57fg 0.48±0.02ab 0.41±0.06defg 向日葵‘S606’
Helianthus annuus ‘S606’5.31±0.27cde 0.54±0.02a 1.24±0.06a 向日葵‘桃之春)
Helianthus annuus ‘Taozhichun’4.21±0.08def 0.45±0.002bc 1.16±0.04ab 向日葵‘三阳开泰’
Helianthus annuus ‘Sanyangkaitai)6.81±0.28bc 0.40±0.02c 0.97±0.01b 同列不同字母表示差异显著( P<0.05)。Different lowercase letters in the same column mean significant differences at P<0.05 level. 表 5 富集植物对Cd污染土壤的修复效果比较
Table 5. Comparison of phytoremediation efficiency of Cd hyperaccumulators
植物
Plant种植模式
Planting mode种植时间
Planting time
(d)土壤pH
Soil pH土壤Cd含量
Total Cd content
(mg·kg−1)地上部Cd含量
Shoot Cd content
(mg·kg−1)地上部生物量
Shoot biomass
(g·plant−1)修复后土壤
Cd含量
Cd content after remediation (mg·kg−1)修复效率
Efficiency
(%)参考文献
Reference德国景天
Phedimus hybridus 'Immergrunchett'盆栽
Pot30 6.83 25 4.46 2.30 — — [34] 三七景天
Sedum spetabilis盆栽
Pot100 7.82 20 17.05 5.50 — — [35] 伴矿景天
Sedum plumbizincicola田间
Field60 6.90 0.65 47.00 16.18 0.55 13.7 [36] 印度芥菜
Brassica juncea盆栽
Pot90 8.1 2.2 3.18 4.31 — 0.20 [37] 印度芥菜
Brassica juncea盆栽
Pot90 8.08 7.49 14.89 5.95 — 0.40 [37] 鬼针草
Bidens pilosa盆栽
Pot60 6.78 2.57 11.90 10.50 — — [38] 三叶鬼针草
Bidens pilosa盆栽
Pot180 7.5~8.2 1.250 — 10.114 0.862 — [39] 三叶鬼针草
Bidens pilosa盆栽
Pot180 7.5~8.2 12.033 — 7.782 10.021 — [39] 三叶鬼针草
Bidens pilosa盆栽
Pot90 8.10 2.20 10.44 12.81 — 2.40 [37] 三叶鬼针草
Bidens pilosa盆栽
Pot90 8.08 7.49 28.03 12.76 — 1.59 [37] 龙葵
Solanum nigrum盆栽
Pot60 8.57 1.83 18.60 1.48 — — [40] 龙葵
Solanum nigrum田间
Field60 8.34 1.57 3.34 1.50 — 0.67 [41] 龙葵
Solanum nigrum田间
Field60 6.48 3.89 41.39 3.07 — 1.59 [41] 紫茉莉
Mirabilis jalapa盆栽
Pot90 6.50 5.0 10.36 3.71 — — [42] 紫茉莉
Mirabilis jalapa盆栽
Pot180 7.5~8.2 1.1467 — 2.934 1.0425 — [39] 紫茉莉
Mirabilis jalapa盆栽
Pot180 7.5~8.2 12.561 — 3.968 11.155 — [39] 遏蓝菜
Noccaea caerulescens田间
Field180 7.6 1.9 17.74 4.45 — — [43] 红叶甜菜
Beta vulgaris盆栽
Pot60 6.21 1.55 16.44 24.94 — — [44] 红苋菜
Amaranthus mangostanus盆栽
Pot60 5.09 2.81 1.83 1.28 — — [45] 苋菜
Amaranthus mangostanus盆栽
Pot60 8.57 1.83 1.21 1.99 — — [40] 籽粒苋
Amaranthus hypochondriacus田间
Field60 8.34 1.57 2.07 2.02 — 0.27 [41] 籽粒苋
Amaranthus hypochondriacus田间
Field60 6.48 3.89 22.59 2.50 / 1.45 [41] 注:“/”表示该文献中没有此项数据。 Note: The “/” indicates that this data is not available in the reference. -
[1] CAI L M, WANG Q S, LUO J, et al. Heavy metal contamination and health risk assessment for children near a large Cu-smelter in central China[J]. Science of the Total Environment, 2019(650): 725−733 [2] 陈劲松, 张颖, 蒲生彦. 某炼铁厂遗留场地重金属污染空间分布特征及风险评价[J]. 安全与环境工程, 2021, 28(3): 162−169CHEN J S, ZHANG Y, PU S Y. Spatial distribution characteristics and risk assessment of heavy metal pollution in a legacy site of an iron-making plant[J]. Safety and Environmental Engineering, 2021, 28(3): 162−169 [3] 田美玲, 钟雪梅, 张云霞, 等. 矿业活动影响区稻田土壤和稻米中重金属含量及健康风险[J]. 环境科学, 2018, 39(6): 2919−2926TIAN M L, ZHONG X M, ZHANG Y X, et al. Concentrations and health risk assessments of heavy metal contents in soil and rice of mine contaminated areas[J]. Environmental Science, 2018, 39(6): 2919−2926 [4] SARWAR N, IMRAN M, SHAHEEN M R, et al. Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives[J]. Chemosphere, 2017, 171: 710−721 doi: 10.1016/j.chemosphere.2016.12.116 [5] RAI P K, LEE S S, ZHANG M, et al. Heavy metals in food crops: health risks, fate, mechanisms, and management[J]. Environment International, 2019, 125: 365−385 doi: 10.1016/j.envint.2019.01.067 [6] ALI H, KHAN E, SAJAD M A. Phytoremediation of heavy metals — Concepts and applications[J]. Chemosphere, 2013, 91(7): 869−881 doi: 10.1016/j.chemosphere.2013.01.075 [7] 郭松明, 余海波, 袁龙义. 近20年我国重金属超积累植物种质资源筛选研究进展[J]. 生态毒理学报, 2022, 17(2): 96−108GUO S M, YU H B, YUAN L Y. Research progress of screening of germplasm resources of heavy metal hyperaccumulator in recent 20 years in China[J]. Asian Journal of Ecotoxicology, 2022, 17(2): 96−108 [8] 谢运河, 纪雄辉, 吴家梅, 等. 镉砷污染土壤“三高”富集植物筛选与修复成本分析[J]. 环境科学与技术, 2020, 43(S1): 116−121XIE Y H, JI X H, WU J M, et al. The “Three Highs” hyperaccumulators screening and repair cost analysis of cadmium and arsenic contaminate soil[J]. Environmental Science & Technology, 2020, 43(S1): 116−121 [9] 郭嘉航, 李亚兰, 杨云, 等. 不同活化剂强化超富集植物鬼针草吸收Cd的比较分析[J]. 安徽农业大学学报, 2022, 49(3): 483−490GUO J H, LI Y L, YANG Y, et al. Comparative analysis of different activators for enhancing Cd absorption from the contaminated soil by hyperaccumulator Bidens pilosa[J]. Journal of Anhui Agricultural University, 2022, 49(3): 483−490 [10] REEVES R D, BAKER A J M, JAFFRÉ T, et al. A global database for plants that hyperaccumulate metal and metalloid trace elements[J]. New Phytologist, 2018, 218(2): 407−411 doi: 10.1111/nph.14907 [11] WEI S H, ZHOU Q X, KOVAL P V. Flowering stage characteristics of cadmium hyperaccumulator Solanum nigrum L. and their significance to phytoremediation[J]. Science of the Total Environment, 2006, 369(1/2/3): 441−446 [12] GONG Y Y, ZHAO D Y, WANG Q L. An overview of field-scale studies on remediation of soil contaminated with heavy metals and metalloids: technical progress over the last decade[J]. Water Research, 2018, 147: 440−460 doi: 10.1016/j.watres.2018.10.024 [13] ADESODUN J K, ATAYESE M O, AGBAJE T A, et al. Phytoremediation potentials of sunflowers (Tithonia diversifolia and Helianthus annuus) for metals in soils contaminated with zinc and lead nitrates[J]. Water, Air, and Soil Pollution, 2010, 207(1/2/3/4): 195−201 [14] ALABOUDI K A, AHMED B, BRODIE G. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant[J]. Annals of Agricultural Sciences, 2018, 63(1): 123−127 doi: 10.1016/j.aoas.2018.05.007 [15] NAKAMURA S I, WONGKAEW A, NAKAI Y J, et al. Foliar-applied glutathione activates zinc transport from roots to shoots in oilseed rape[J]. Plant Science, 2019, 283: 424−434 doi: 10.1016/j.plantsci.2018.10.018 [16] REN X M, GUO S J, TIAN W, et al. Effects of plant growth-promoting bacteria (PGPB) inoculation on the growth, antioxidant activity, Cu uptake, and bacterial community structure of rape (Brassica napus L.) grown in Cu-contaminated agricultural soil[J]. Frontiers in Microbiology, 2019, 10: 1455 doi: 10.3389/fmicb.2019.01455 [17] 济源产城融合示范区发展改革和统计局. 2021年济源国民经济和社会发展统计公报[EB/OL]. (2022-03-29) [2022-09-10]. http://fgw.jiyuan.gov.cn/14186/17304/20647/t829953.htmlDevelopment, Reform and Statistics Bureau of Jiyuan Production-City Integration Demonstration Zone. Statistical bulletin of Jiyuan national economic and social development in 2021[EB/OL]. (2022-03-29) [2022-09-10]. http://fgw.jiyuan.gov.cn/14186/17304/20647/t829953.html [18] XING W Q, ZHENG Y L, SCHECKEL K G, et al. Spatial distribution of smelter emission heavy metals on farmland soil[J]. Environmental Monitoring and Assessment, 2019, 191(2): 115 doi: 10.1007/s10661-019-7254-1 [19] XING W Q, ZHANG H Y, SCHECKEL K G, et al. Heavy metal and metalloid concentrations in components of 25 wheat (Triticum aestivum) varieties in the vicinity of lead smelters in Henan Province, China[J]. Environmental Monitoring and Assessment, 2015, 188(1): 1−10 [20] QIU K Y, XING W Q, SCHECKEL K G, et al. Temporal and seasonal variations of As, Cd and Pb atmospheric deposition flux in the vicinity of lead smelters in Jiyuan, China[J]. Atmospheric Pollution Research, 2016, 7(1): 170−179 doi: 10.1016/j.apr.2015.09.003 [21] 河南省人民政府. 关于印发河南省清洁土壤行动计划的通知[EB/OL]. (2017-04-28) [2022-09-10]. http://www.henan.gov.cn/2017/05-15/239729.htmlHenan Provincial People’s Government. Notice on printing and distributing the action plan of clean soil in Henan Province[EB/OL]. (2017-04-28) [2022-09-10]. http://www.henan.gov.cn/2017/05-15/239729.html [22] 全国土壤普查办公室. 中国土壤普查技术[M]. 北京: 农业出版社, 1992: 111–112Nationwide Soil Survey Office. Chinese Soil Census Technology[M]. Beijing: China Agriculture Press, 1992: 111–112 [23] 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: China Agriculture Press, 2000 [24] 殷永超, 吉普辉, 宋雪英, 等. 龙葵(Solanum nigrum L.)野外场地规模Cd污染土壤修复试验[J]. 生态学杂志, 2014, 33(11): 3060−3067YIN Y C, JI P H, SONG X Y, et al. Field experiment on phytoremediation of cadmium contaminated soils using Solanum nigrum L.[J]. Chinese Journal of Ecology, 2014, 33(11): 3060−3067 [25] 杨艳, 吴攀, 李学先, 等. 贵州织金县贯城河上游煤矿区富硒高镉土壤重金属的分布特征及生态风险评价[J]. 生态学杂志, 2018, 37(6): 1797−1806YANG Y, WU P, LI X X, et al. Distribution and ecological risk assessment of heavy metals in selenium-rich soil with high cadmium content of coal mining area in upper reaches of Guancheng River in Zhijin County, Guizhou[J]. Chinese Journal of Ecology, 2018, 37(6): 1797−1806 [26] ZHAO X L, LIU J F, XIA X L, et al. The evaluation of heavy metal accumulation and application of a comprehensive bio-concentration index for woody species on contaminated sites in Hunan, China[J]. Environmental Science and Pollution Research, 2014, 21(7): 5076−5085 doi: 10.1007/s11356-013-2393-3 [27] 屈吉鸿, 梁奇, 胡亚男, 等. 济源某铅锌产业区土壤重金属空间变异特征及污染评价[J]. 华北水利水电大学学报(自然科学版), 2016, 37(2): 47−51QU J H, LIANG Q, HU Y N, et al. Spatial variability and pollution evaluation of heavy metals in the soil in a lead and zinc industry district in Jiyuan[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2016, 37(2): 47−51 [28] 宋高峰. 济源市有色金属产业发展研究[J]. 中国金属通报, 2018(5): 23−24SONG G F. Research on the development of nonferrous metals industry in Jiyuan City[J]. China Metal Bulletin, 2018(5): 23−24 [29] 李姣姣, 赵学强, 王嘉林, 等. 废旧电器拆解场地周边污染区土壤-植物系统重金属积累特征和生态风险[J]. 生态学杂志, 2022, 41(12): 2432–2439LI J J, ZHAO X Q, WANG J L, et al. Accumulation and ecological risk of heavy metals in soil-plant system of the contaminated area around the E-waste dismantling site[J]. Chinese Journal of Ecology, 2022, 41(12): 2432–2439 [30] 成永霞, 赵宗生, 王亚洲, 等. 河南省某铅冶炼厂附近农田土壤重金属污染特征[J]. 土壤通报, 2014, 45(6): 1505−1510CHENG Y X, ZHAO Z S, WANG Y Z, et al. Soil heavy metals pollution in the farmland near a lead smelter in Henan Province[J]. Chinese Journal of Soil Science, 2014, 45(6): 1505−1510 [31] MAESTRI E, MARMIROLI M, VISIOLI G, et al. Metal tolerance and hyperaccumulation: costs and trade-offs between traits and environment[J]. Environmental and Experimental Botany, 2010, 68(1): 1−13 doi: 10.1016/j.envexpbot.2009.10.011 [32] DENG T H B, VAN DER ENT A, TANG Y T, et al. Nickel hyperaccumulation mechanisms: a review on the current state of knowledge[J]. Plant and Soil, 2018, 423(1/2): 1−11 [33] BOTHE H, SŁOMKA A. Divergent biology of facultative heavy metal plants[J]. Journal of Plant Physiology, 2017, 219: 45−61 doi: 10.1016/j.jplph.2017.08.014 [34] 关海燕. 三种景天属植物对Cd、Pb胁迫的响应及富集特征研究[D]. 北京: 北京林业大学, 2019GUAN H Y. Response and accumulation of 3 sedums to cadmium and lead stress[D]. Beijing: Beijing Forestry University, 2019 [35] 王珊, 白瑞琴. 重金属镉对两种景天的生长和积累研究[J]. 北方园艺, 2016(7): 60−65WANG S, BAI R Q. Study on growth and accumulation of two Sedum under cadmium stress[J]. Northern Horticulture, 2016(7): 60−65 [36] 吴佳玲, 陈喆, 游少鸿, 等. 硫肥对伴矿景天修复镉污染土壤的影响[J]. 农业环境科学学报, 2022, 41(6): 1241−1250WU J L, CHEN Z, YOU S H, et al. Phytoremediation efficiency of cadmium-contaminated arable land by planted Sedum plumbizincicola with sulfur fertilization[J]. Journal of Agro-Environment Science, 2022, 41(6): 1241−1250 [37] 刘沙沙, 李兵, 冯翔, 等. 3种植物对镉污染土壤修复的试验研究[J]. 中国农学通报, 2018, 34(22): 103−108LIU S S, LI B, FENG X, et al. Three kinds of plants: remediation on soil contaminated by cadmium[J]. Chinese Agricultural Science Bulletin, 2018, 34(22): 103−108 [38] 张云霞, 周浪, 肖乃川, 等. 鬼针草(Bidens pilosa L.)对镉污染农田的修复潜力[J]. 生态学报, 2020, 40(16): 5805−5813ZHANG Y X, ZHOU L, XIAO N C, et al. Remediation potential of Bidens pilosa L. in cadmium-contaminated farmland[J]. Acta Ecologica Sinica, 2020, 40(16): 5805−5813 [39] 韩少华, 黄沈发, 唐浩, 等. 3种植物对Cd污染农田土壤的修复效果比较试验研究[J]. 环境污染与防治, 2012, 34(12): 22−25,30HAN S H, HUANG S F, TANG H, et al. comparative study on the performance of 3 plants for remediation of cadmium contaminated farmland soil[J]. Environmental Pollution & Control, 2012, 34(12): 22−25,30 [40] 游梦, 邹茸, 王丽, 等. 不同富集植物与小麦间作对镉吸收转运的影响[J]. 中国土壤与肥料, 2022(4): 201−208YOU M, ZOU R, WANG L, et al. Effects of intercropping different accumulators with wheat on Cd absorption and transport under Cd stress[J]. Soil and Fertilizer Sciences in China, 2022(4): 201−208 [41] 龙玉梅, 刘杰, 傅校锋, 等. 4种Cd超富集/富集植物修复性能的比较[J]. 江苏农业科学, 2019, 47(8): 296−300LONG Y M, LIU J, FU X F, et al. Comparative study on remediation performance of 4 kinds of Cd hyperaccumulators[J]. Jiangsu Agricultural Sciences, 2019, 47(8): 296−300 [42] 陈苏, 陈宁, 晁雷, 等. 土霉素、镉复合污染土壤的植物-微生物联合修复实验研究[J]. 生态环境学报, 2015, 24(9): 1554−1559CHEN S, CHEN N, CHAO L, et al. The experimental study of polluted soils with oxytetracycline and cadmium by plant microbial remediation[J]. Ecology and Environmental Sciences, 2015, 24(9): 1554−1559 [43] 郑瑞伦, 石东, 刘文菊, 等. 两种能源草田间条件下对镉和锌的吸收累积[J]. 环境科学, 2021, 42(3): 1158−1165ZHENG R L, SHI D, LIU W J, et al. Uptake and accumulation of cadmium and zinc by two energy grasses: a field experiment[J]. Environmental Science, 2021, 42(3): 1158−1165 [44] 陈璘涵, 曾红远, 葛一陈, 等. 2种轮作模式对镉污染土壤修复潜力的比较[J]. 环境工程学报, 2017, 11(6): 3873−3878CHEN L H, ZENG H Y, GE Y C, et al. Comparison of remediation potential for two crop rotation patterns on Cd contaminated soils[J]. Chinese Journal of Environmental Engineering, 2017, 11(6): 3873−3878 [45] 刘桂华, 胡岗, 秦松, 等. 贵州典型酸性黄壤中3种叶菜类蔬菜对Cd累积特性及低累积品种筛选[J]. 安全与环境学报, 2018, 18(1): 396−401LIU G H, HU G, QIN S, et al. On the Cd accumulation risk features in the 3 leaf-vegetables in the typical acid brown soil of Guizhou and the corresponding choice for better lower accumulated cultivars instead[J]. Journal of Safety and Environment, 2018, 18(1): 396−401 [46] 王泓博, 苟文贤, 吴玉清, 等. 重金属污染土壤修复研究进展: 原理与技术[J]. 生态学杂志, 2021, 40(8): 2277−2288WANG H B, GOU W X, WU Y Q, et al. Progress in remediation technologies of heavy metals contaminated soil: principles and technologies[J]. Chinese Journal of Ecology, 2021, 40(8): 2277−2288 [47] CAO X R, LUO J P, WANG X Z, et al. Responses of soil bacterial community and Cd phytoextraction to a Sedum alfredii-oilseed rape (Brassica napus L. and Brassica juncea L.) intercropping system[J]. Science of the Total Environment, 2020, 723: 138152 doi: 10.1016/j.scitotenv.2020.138152 [48] CAO X R, WANG X Z, TONG W B, et al. Distribution, availability and translocation of heavy metals in soil-oilseed rape (Brassica napus L.) system related to soil properties[J]. Environmental Pollution (Barking, Essex: 1987), 2019, 252(Pt A): 733–741 [49] GONG X M, HUANG D L, LIU Y G, et al. Pyrolysis and reutilization of plant residues after phytoremediation of heavy metals contaminated sediments: for heavy metals stabilization and dye adsorption[J]. Bioresource Technology, 2018, 253: 64−71 doi: 10.1016/j.biortech.2018.01.018 [50] ZHOU J W, ZHOU T, LI Z, et al. Differences in phytoextraction by the cadmium and zinc hyperaccumulator Sedum plumbizincicola in greenhouse, polytunnel and field conditions[J]. International Journal of Phytoremediation, 2018, 20(14): 1400−1407 doi: 10.1080/15226514.2018.1488808 [51] 赵冰, 沈丽波, 程苗苗, 等. 麦季间作伴矿景天对不同土壤小麦—水稻生长及锌镉吸收性的影响[J]. 应用生态学报, 2011, 22(10): 2725−2731ZHAO B, SHEN L B, CHENG M M, et al. Effects of intercropping Sedum plumbizincicola in wheat growth season under wheat-rice rotation on the crops growth and their heavy metals uptake from different soil types[J]. Chinese Journal of Applied Ecology, 2011, 22(10): 2725−2731 [52] ZEHRA A, SAHITO Z A, TONG W B, et al. Assessment of sunflower germplasm for phytoremediation of lead-polluted soil and production of seed oil and seed meal for human and animal consumption[J]. Journal of Environmental Sciences (China), 2020, 87: 24−38 doi: 10.1016/j.jes.2019.05.031 [53] 张慧敏, 鲍广灵, 周晓天, 等. 严格管控类耕地特定农作物重金属安全性评估[J]. 中国农学通报, 2022, 38(3): 52−58 doi: 10.11924/j.issn.1000-6850.casb2021-0209ZHANG H M, BAO G L, ZHOU X T, et al. Safety assessment of heavy metals in specific crops of strictly controlled farmland[J]. Chinese Agricultural Science Bulletin, 2022, 38(3): 52−58 doi: 10.11924/j.issn.1000-6850.casb2021-0209 [54] 王敏捷, 盛光遥, 王锐. 土壤重金属污染修复植物处置技术进展[J]. 农业资源与环境学报, 2021, 38(2): 151−159WANG M J, SHENG G Y, WANG R. Progress in disposal technologies for plants polluted with heavy metals after phytoextraction[J]. Journal of Agricultural Resources and Environment, 2021, 38(2): 151−159 -