Growth characteristics and soil respiration rates with different coverages of Suaeda salsa at coastal beaches
-
摘要: 为探究不同覆盖度下盐地碱蓬的生长特征及土壤呼吸速率变化规律, 以黄河三角洲滨海滩涂典型的盐地碱蓬群落为研究对象, 选取滩涂裸地区、低覆盖区、中覆盖区和高覆盖区4种样地, 研究了不同覆盖度下盐地碱蓬的植株生长、根系分布及土壤呼吸速率变化间的差异。结果表明: 盐地碱蓬不同覆盖区土壤的理化性质和植被生长状况差异明显, 与滩涂裸地相比, 盐地碱蓬不同覆盖区土壤含盐量和容重降低, 土壤孔隙度和养分增加。盐地碱蓬的生长指标与覆盖度呈正相关, 生物量、株高及分支数均随覆盖度的提高显著增加(P<0.05)。其中, 盐地碱蓬地下部分生物量主要集中在0~20 cm表层土壤中, 呈现浅层化分布; 且均以2~5 mm粗度根系为主, 分别占低、中和高覆盖区地下生物量的72.53%、59.72%和39.30%。细根的根长、表面积、根尖数、分支数和交叉数均随覆盖度的提高而逐步增大, 且不同覆盖区之间差异显著(P<0.05)。不同覆盖区内土壤呼吸速率表现为高覆盖区>中覆盖区>低覆盖区>裸地区, 并具有明显的日变化, 呈现出低-高-低的单峰曲线, 最大值出现在12:00—14:00。相关性分析表明, 土壤含盐量与盐地碱蓬各生长指标呈显著或极显著负相关, 是主要限制因子, 而土壤呼吸速率与植株各生长指标均呈极显著正相关。本研究结果可为黄河三角洲滨海滩涂植被恢复与生态修复提供理论依据。Abstract: Coastal beaches are one of the most important components of coastal wetlands. Studies on vegetation growth characteristics and soil respiration in coastal beaches are essential for evaluation of the ecological and environmental functions of coastal wetlands. In the present study, differences in vegetation growth, root distribution, and soil respiration rate of Suaeda salsa with four coverage types (bare flat and low-coverage, medium-coverage, and high-coverage) were determined to explore the impact of vegetation coverage on the growth characteristics of S. salsa and soil respiration rates at the coastal beach of the Yellow River Delta. Significant differences were observed in the soil physicochemical properties and vegetation growth of S. salsa on coastal beaches with different coverages. Soil salt content and bulk density were lower in various coverage areas than those in bare flats, whereas soil porosity and nutrients contents were greater than those in bare flats. The growth indices of S. salsa, such as biomass, plant height, and branch number, were positively correlated with vegetation coverage (P<0.05), indicating better growth in soils with higher vegetation coverage. The underground S. salsa biomass in saline land was mainly distributed in the 0–20 cm soil layer, showing a shallow distribution pattern. Roots with a 2–5 cm diameter were dominant components, accounting for 72.53%, 59.72%, and 39.30% of the underground biomass in the low-, medium-, and high-coverage areas, respectively. The root length, surface area, tip number, branch number, and cross number of fine roots increased with coverage, and the differences in these indices between the different coverage areas were significant (P<0.05). Soil respiration rates were low, at 0.26–1.01 μmol∙m−2∙s−1, owing to the low soil organic carbon content and microbial activity in the study area. Soil respiration rates were significantly affected by vegetation coverage and showed an increasing order of value with coverage (high-coverage area > medium-coverage area > low-coverage area > bare area). Soil respiration rate was measured as an evident daily change as a low-high-low single peak curve, with the maximum value appearing at 12:00 in the low-coverage and bare areas and at 14:00 in the high- and medium-coverage areas. S. salsa growth indicators were significantly negatively correlated with soil salt content, demonstrating that soil salt was the main limiting factor for vegetation growth in coastal wetlands. However, the soil salt content was affected by vegetation coverage. Soil respiration rate was highly and positively correlated with plant growth indicators. We concluded that soil physicochemical properties, vegetation growth of S. salsa, and soil respiration rate were significantly affected by vegetation coverage on the coastal beach of the Yellow River Delta. High vegetation coverage improves soil properties and vegetation growth, further promoting ecological restoration in coastal wetland areas. The results of this study provide a theoretical basis for the vegetation and ecological restoration of coastal beaches in the Yellow River Delta. However, long-term field observations are recommended to determine the permanent effects of vegetation coverage on vegetation growth characteristics and soil respiration on coastal beaches.
-
Key words:
- Vegetation coverage /
- Suaeda salsa /
- Plant growth /
- Root distribution /
- Soil respiration rate
-
表 1 不同盐地碱蓬覆盖度下样地土壤理化性质
Table 1. Soil physiochemical properties of sample plots with different coverage rates of Suaeda salsa
指标 Index 样地 Sampling plot NCA LCA MCA HCA 含盐量 Salt content (g∙kg−1) 16.29±1.49a 12.72±2.28b 10.04±1.64c 10.26±2.11bc 容重 Bulk density (g∙cm−3) 1.67±0.14a 1.62±0.13ab 1.53±0.18c 1.42±0.15d 含水量 Soil water content (%) 21.40±3.51b 19.50±2.47c 19.14±3.09c 23.27±2.92a 总孔隙度 Total porosity (%) 32.31±3.06c 34.44±1.47c 41.52±1.75b 47.03±2.08a 有机质 Organic matter (g∙kg−1) 1.27±0.12d 2.64±0.23c 3.17±0.27b 3.92±0.18a 总氮 Total nitrogen (g∙kg−1) 0.12±0.02c 0.17±0.04b 0.19±0.04b 0.26±0.05a 总磷 Total phosphorus (g∙kg−1) 0.34±0.04b 0.36±0.06b 0.48±0.06a 0.52±0.07a NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同行不同小写字母表示不同样地之间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different lowercase letters in the same line indicate significant differences among different sample plots (P<0.05). 表 2 不同覆盖度下盐地碱蓬的生长状况
Table 2. Growth status of Suaeda salsa in areas with different coverage rates
样地
Sampling plot株高
Height (cm)生物量 Biomass (g∙m−2) 分支数
Branches密度
Plant density (plants∙m−2)根深
Root depth (cm)地上部分 Aboveground 地下部分 Belowground NCA — — — — — — LCA 26.84±2.03c 131.43±14.02c 24.17±3.11c 1.81±0.13c 77.33±14.57b 8.78±0.32c MCA 35.95±2.28b 248.77±16.45b 42.18±2.74b 2.27±0.19b 106.67±13.20a 11.03±0.53b HCA 47.92±2.54a 575.37±20.44a 79.47±3.48a 3.58±0.23a 97.33±11.14a 15.56±0.58a NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同列不同小写字母表示不同样地之间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different lowercase letters in the same column indicate significant differences among different sample plots (P<0.05). 表 3 不同覆盖度下盐地碱蓬各径级根系生物量分布特征
Table 3. Root biomass and distribution characteristics of each diameter class of Suaeda salsa in areas with different coverage rates
样地 Sampling plot 根系生物量 Root biomass (g) >5 mm 2~5 mm ˂2 mm 总量 Total NCA — — — — LCA 0.20±0.08Cc 17.53±2.32Ac 6.44±1.10Bc 24.17±3.11c MCA 5.33±1.15Cb 25.19±1.63Ab 11.66±1.08Bb 42.18±2.74b HCA 29.22±1.56Aa 31.23±0.53Aa 19.02±1.04Ba 79.47±3.48a NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同行不同大写字母表示不同径级根系间差异显著, 同列不同小写字母表示不同样地间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different capital letters in the same line indicate significant differences among roots of different diameter classes. Different lowercase letters in the same column indicate significant differences among sample plots (P<0.05). 表 4 不同覆盖度下盐地碱蓬细根的生长特征
Table 4. Growth characteristics of fine roots of Suaeda salsa in areas with different coverage rates
样地
Sampling plot根长
Root length (cm)表面积
Surface area (cm2)根体积
Root volume (cm3)平均直径
Average diameter (mm)根尖数
Tips number分支数
Branch number交叉数
Cross numberNCA — — — — — — — LCA 462.26±32.90c 26.42±3.75c 0.12±0.03b 0.18±0.02ab 1859±112.53c 4299±123.71c 435±26.89c MCA 786.97±67.41b 40.04±3.97b 0.17±0.02b 0.16±0.01b 3126±156.74b 5793±166.06b 616±28.79b HCA 1122.73±159.85a 71.23±5.48a 0.37±0.01a 0.20±0.02a 4427±160.10a 9653±190.29a 1025±73.30a NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同列不同小写字母表示不同样地间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different lowercase letters in the same column indicate significant differences among different sample plots (P<0.05). 表 5 不同覆盖度下盐地碱蓬样地的土壤呼吸速率变化
Table 5. Soil respiration rates in Suaeda salsa areas with different coverages
样地
Sampling plot时间 Time 8:00 10:00 12:00 14:00 16:00 18:00 NCA 0.14±0.02Dc 0.23±0.03BCd 0.37±0.06Ac 0.34±0.04Ad 0.28±0.04Bd 0.22±0.03Cc LCA 0.25±0.06Db 0.49±0.07Cc 0.85±0.09Ab 0.81±0.10Ac 0.60±0.08Bc 0.47±0.07Cb MCA 0.42±0.09Ea 0.83±0.09Cb 1.13±010Aa 1.18±0.12Ab 0.97±0.10Bb 0.64±0.07Da HCA 0.47±0.06Ea 1.04±0.09Ca 1.27±0.10Aa 1.36±0.14Aa 1.14±0.11Ba 0.79±0.08Da NCA: 裸地区; LCA: 低覆盖区; MCA: 中覆盖区; HCA: 高覆盖区。同行不同大写字母表示同一样地不同时间间差异显著(P<0.05), 同列不同小写字母表示不同样地间差异显著(P<0.05)。NCA: no coverage area; LCA: low-coverage area; MCA: medium-coverage area; HCA: high-coverage area. Different capital letters in the same line mean significant differences among different times (P<0.05). Different lowercase letters in the same column indicate significant differences among different sample plots (P<0.05). 表 6 各指标间的相关性分析
Table 6. Correlation analysis between indicators
项目 Item X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X1 1.000 X2 0.602* 1.000 X3 0.061 −0.303 1.000 X4 −0.696* −0.884** 0.321 1.000 X5 −0.798** −0.816** 0.115 0.889** 1.000 X6 −0.593 −0.806** 0.326 0.830** 0.853** 1.000 X7 −0.703* −0.829** 0.243 0.846** 0.710** 0.696* 1.000 X8 −0.666* −0.921** 0.460 0.923** 0.908** 0.850** 0.788** 1.000 X9 −0.715** −0.916** 0.359 0.927** 0.945** 0.853** 0.795** 0.993** 1.000 X10 −0.747** −0.851** 0.176 0.872** 0.978** 0.815** 0.716** 0.938** 0.969** 1.000 X11 −0.778** −0.693* −0.231 0.724** 0.888** 0.744** 0.699* 0.697* 0.773** 0.858** 1.000 X12 −0.813** −0.821** 0.146 0.904** 0.959** 0.801** 0.825** 0.906** 0.943** 0.955** 0.890** 1.000 X13 −0.535 −0.769** 0.659* 0.773** 0.657* 0.666* 0.678* 0.861** 0.824** 0.732** 0.415 0.718** 1.000 X14 −0.020 0.111 −0.494 −0.179 −0.033 −0.151 0.077 −0.206 −0.131 −0.022 0.350 0.074 −0.315 1.000 *表示在P<0.05水平显著相关; **表示在P<0.01水平极显著相关。X1: 土壤含盐量; X2: 土壤容重; X3: 土壤含水量; X4: 土壤总孔隙度; X5: 土壤有机质; X6: 土壤总氮; X7: 土壤总磷; X8: 地上部分生物量; X9: 地下部分生物量; X10: 分支数; X11: 密度; X12: 土壤呼吸速率; X13: 土壤温度; X14: 土壤湿度。*: significantly correlated at P<0.05 level; **: significantly correlated at P<0.01 level. X1: soil salt content; X2: soil bulk density; X3: soil quality moisture content; X4: soil total porosity; X5: soil organic matter; X6: soil total nitrogen; X7: soil total phosphorus; X8: aboveground biomass; X9: underground biomass; X10: branch number; X11: plant density; X12: soil respiration rate; X13: soil temperature; X14: soil moisture. -
[1] MITSCH W J, GOSSELINK J G. Wetlands[M]. 4th Edition. New York: John Wiley & Sons, 2007: 582 [2] BRULAND G L, RICHARDSON C J. Hydrologic, edaphic, and vegetative responses to microtopographic reestablishment in a restored wetland[J]. Restoration Ecology, 2005, 13(3): 515−523 doi: 10.1111/j.1526-100X.2005.00064.x [3] WANG Z Y, XIN Y Z, GAO D M, et al. Microbial community characteristics in a degraded wetland of the Yellow River Delta[J]. Pedosphere, 2010, 20(4): 466−478 doi: 10.1016/S1002-0160(10)60036-7 [4] 巩腾飞. 盐碱地植被覆盖度与土壤盐分含量时空耦合关系研究——以山东省无棣县为例[D]. 泰安: 山东农业大学, 2016GONG T F. Study on the spatio-temporal coupling relationship between vegetation coverage and soil salt content in saline-alkali land— A case study of Wudi County, Shandong Province[D]. Tai’an: Shandong Agricultural University, 2016 [5] MULUMBA L N, LAL R. Mulching effects on selected soil physical properties[J]. Soil and Tillage Research, 2008, 98(1): 106−111 doi: 10.1016/j.still.2007.10.011 [6] 单娜娜, 赖波, 杨志莹, 等. 准噶尔盆地西北缘不同盐生植物种植后土壤盐分变化研究[J]. 新疆农业科学, 2016, 53(12): 2314−2320 doi: 10.6048/j.issn.1001-4330.2016.12.020SHAN N N, LAI B, YANG Z Y, et al. Study on changes of soil salinity after planting halophyte in northwest of Junggar Basin[J]. Xinjiang Agricultural Sciences, 2016, 53(12): 2314−2320 doi: 10.6048/j.issn.1001-4330.2016.12.020 [7] 于嵘, 亢庆, 张增祥, 等. 中国西北盐碱区植被盖度遥感方法分析[J]. 干旱区资源与环境, 2006, 20(2): 154−158 doi: 10.3969/j.issn.1003-7578.2006.02.030YU R, KANG Q, ZHANG Z X, et al. Analysis on the methods for assessing vegetation cover based on RS in Alkali Region, Northwest China[J]. Journal of Arid Land Resources and Environment, 2006, 20(2): 154−158 doi: 10.3969/j.issn.1003-7578.2006.02.030 [8] 贾林, 张金龙, 刘璐瑶, 等. 天津滨海地区不同年限吹填土植被恢复与土壤理化性质变异特征[J]. 环境工程, 2021, 39(6): 179−186, 159 doi: 10.13205/j.hjgc.202106027JIA L, ZHANG J L, LIU L Y, et al. Variation characteristics of vegetation restoration and soil physical and chemical properties of different reclamation years in Tianjin coastal area[J]. Environmental Engineering, 2021, 39(6): 179−186, 159 doi: 10.13205/j.hjgc.202106027 [9] 张芳, 熊黑钢, 安放舟, 等. 基于盐(碱)生植被盖度的土壤碱化分级[J]. 土壤学报, 2012, 49(4): 665−672ZHANG F, XIONG H G, AN F Z, et al. Classification of soil alkalization based on halophyte coverage[J]. Acta Pedologica Sinica, 2012, 49(4): 665−672 [10] 彭晓莉, 吴旺泽, 沈娟, 等. 城市绿化带植被覆盖度对盐碱地土壤盐分的调节[J]. 植物研究, 2022, 42(1): 62−70 doi: 10.7525/j.issn.1673-5102.2022.01.007PENG X L, WU W Z, SHEN J, et al. Regulation of soil salinity by vegetation coverage in urban greenbelt saline-alkali land[J]. Bulletin of Botanical Research, 2022, 42(1): 62−70 doi: 10.7525/j.issn.1673-5102.2022.01.007 [11] 杨志辉, 赵军, 温媛媛. 青土湖区植被与土壤盐渍化响应研究[J]. 干旱地区农业研究, 2020, 38(3): 231−237 doi: 10.7606/j.issn81000-7601.2020.03.29YANG Z H, ZHAO J, WEN Y Y. Study of response of vegetation coverage to salinization in Qingtu Lake[J]. Agricultural Research in the Arid Area, 2020, 38(3): 231−237 doi: 10.7606/j.issn81000-7601.2020.03.29 [12] 马千虎, 周玉蓉, 徐金鹏, 等. 宁夏东部荒漠草原不同植被恢复模式的土壤响应特征[J]. 中国草地学报, 2018, 40(5): 50−56MA Q H, ZHOU Y R, XU J P, et al. Response of soil to different vegetation restorations in desert steppe in eastern Ningxia[J]. Chinese Journal of Grassland, 2018, 40(5): 50−56 [13] 吴健利. 黄土台塬土地利用方式对土壤呼吸及有机碳矿化的影响[D]. 杨凌: 西北农林科技大学, 2016WU J L. Effects of land use patterns on soil respiration and organic carbon mineralization in Loess Plateau[D]. Yangling: Northwest A & F University, 2016 [14] SCHLESINGER W H, ANDREWS J A. Soil respiration and the global carbon cycle[J]. Biogeochemistry, 2000, 48(1): 7−20 doi: 10.1023/A:1006247623877 [15] 孙赫奕, 王庆贵. 土壤呼吸的主要影响因素研究进展[J]. 土壤科学, 2021, 9(2): 81−87SUN H Y, WANG Q G. The main influencing factors of soil respiration: a review[J]. Hans Journal of Soil Science, 2021, 9(2): 81−87 [16] LI Q, ZHOU D W. Soil respiration versus vegetation degradation under the influence of three grazing regimes in the Songnen Plain[J]. Land Degradation & Development, 2018, 29(8): 2403−2416 [17] 任志国, 马明国, 宋怡. 黑河下游五种不同植被类型土壤呼吸的差异性解析[J]. 干旱区地理, 2017, 40(3): 598−605REN Z G, MA M G, SONG Y. Analytic differences on soil respiration of various vegetation types in the lower reaches of Heihe River Basin[J]. Arid Land Geography, 2017, 40(3): 598−605 [18] 马笑丹, 刘加珍, 陈永金, 等. 黄河三角洲柽柳灌丛对周边土壤呼吸的影响研究[J]. 地球环境学报, 2022, 13(4): 405−417MA X D, LIU J Z, CHEN Y J, et al. Effects of Tamarix chinensis shrub on soil respiration in the Yellow River Delta[J]. Journal of Earth Environment, 2022, 13(4): 405−417 [19] 赵可夫, 李法曾. 中国盐生植物[M]. 北京: 科学出版社, 1999ZHAO K F, LI F Z. Halophytes in China[M]. Beijing: Science Press, 1999 [20] ZHAO G X, LIN G, FLETCHER J J, et al. Cultivated land changes and their driving forces — A satellite remote sensing analysis in the Yellow River Delta, China[J]. Pedosphere, 2004, 14(1): 93−102 [21] 赵心怡. 黄河三角洲滨海湿地典型植物群落特征及其与环境因子的响应[D]. 烟台: 鲁东大学, 2020ZHAO X Y. Characteristics of typical plant communities and its responses to environmental factors of costal wetlands in the Yellow River Delta[D]. Yantai: Ludong University, 2020 [22] 王宇, 武亚楠, 鄢郭馨, 等. 黄河三角洲滨海湿地芦苇、碱蓬混生群落空间点格局分析[J]. 生态科学, 2020, 39(1): 51−59 doi: 10.14108/j.cnki.1008-8873.2020.01.007WANG Y, WU Y N, YAN G X, et al. Spatial point pattern analysis of mixed communities of Phragmites australis and Suaeda salsa in coastal wetland of the Yellow River Delta[J]. Ecological Science, 2020, 39(1): 51−59 doi: 10.14108/j.cnki.1008-8873.2020.01.007 [23] 武亚楠, 张英虎, 张振明, 等. 黄河三角洲湿地植物根区优先流区和基质流区土壤特性分布差异[J]. 北京师范大学学报(自然科学版), 2021, 57(1): 69−75WU Y N, ZHANG Y H, ZHANG Z M, et al. Differences in soil characteristics between preferential and matrix flow areas in wetland plants root zone in the Yellow River Delta[J]. Journal of Beijing Normal University (Natural Science), 2021, 57(1): 69−75 [24] 杨策, 陈环宇, 李劲松, 等. 盐地碱蓬生长对滨海重盐碱地的改土效应[J]. 中国生态农业学报(中英文), 2019, 27(10): 1578−1586YANG C, CHEN H Y, LI J S, et al. Soil improving effect of Suaeda salsa on heavy coastal saline-alkaline land[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1578−1586 [25] 胡星云, 孙志高, 孙文广, 等. 黄河口新生湿地碱蓬生物量及氮累积与分配对外源氮输入的响应[J]. 生态学报, 2017, 37(1): 226−237HU X Y, SUN Z G, SUN W G, et al. Biomass and nitrogen accumulation and allocation in Suaeda salsa in response to exogenous nitrogen enrichment in the newly created marshes of the Yellow River Estuary, China[J]. Acta Ecologica Sinica, 2017, 37(1): 226−237 [26] 谭清梅, 刘红玉, 张华兵, 等. 基于遥感的江苏省滨海湿地景观植被覆盖度分级研究[J]. 遥感技术与应用, 2013, 28(5): 934−940TAN Q M, LIU H Y, ZHANG H B, et al. Classification of vegetation coverage of wetland landscape based on remote sensing in the coastal area of Jiangsu Province[J]. Remote Sensing Technology and Application, 2013, 28(5): 934−940 [27] 国家林业局. 森林生态系统长期定位观测方法: LY/T 1952—2011[S]. 北京: 中国标准出版社, 2011State Forestry Administration. Observation Methodology for Long-term Forest Ecosystem Research: LY/T 1952—2011[S]. Beijing: Standards Press of China, 2011 [28] ZHANG L, PAN Y, LV W, et al. Physiological responses of biomass allocation, root architecture, and invertase activity to copper stress in young seedlings from two populations of Kummerowia stipulacea (Maxim.) Makino[J]. Ecotoxicological and Environmental Safety, 2014, 104: 278−284 doi: 10.1016/j.ecoenv.2014.03.013 [29] 康满萍, 赵成章, 白雪. 苏干湖湿地土壤全盐含量空间异质性及影响因素[J]. 生态学报, 2021, 41(6): 2282−2291KANG M P, ZHAO C Z, BAI X. Spatial heterogeneity and influencing factors of total soil salinity in Sugan Lake wetland[J]. Acta Ecologica Sinica, 2021, 41(6): 2282−2291 [30] 中国科学院南京土壤研究所. 土壤理化分析[M]. 上海: 上海科学技术出版社, 1978Institute of Soil Sciences, Chinese Academy of Sciences. Soil Physical and Chemical Analysis[M]. Shanghai: Shanghai Scientific & Technical Publishers, 1978 [31] 李宝富, 熊黑钢, 张建兵, 等. 两种植被覆盖度下土壤水分和盐分的空间变异性研究[J]. 新疆农业科学, 2010, 47(1): 168−173 doi: 10.6048/j.issn.1001-4330.2010.01.031LI B F, XIONG H G, ZHANG J B, et al. Study on spatial variability of soil water and salt under the two vegetation coverages[J]. Xinjiang Agricultural Sciences, 2010, 47(1): 168−173 doi: 10.6048/j.issn.1001-4330.2010.01.031 [32] 吴统贵, 陈步峰, 肖以华, 等. 珠江三角洲3种典型森林类型乔木叶片生态化学计量学[J]. 植物生态学报, 2010, 34(1): 58−63 doi: 10.3773/j.issn.1005-264x.2010.01.009WU T G, CHEN B F, XIAO Y H, et al. Leaf stoichiometry of trees in three forest types in Pearl River Delta, South China[J]. Chinese Journal of Plant Ecology, 2010, 34(1): 58−63 doi: 10.3773/j.issn.1005-264x.2010.01.009 [33] 张珂, 苏永中, 王婷, 等. 荒漠绿洲区不同种植年限人工梭梭林土壤化学计量特征[J]. 生态学报, 2016, 36(11): 3235−3243ZHANG K, SU Y Z, WANG T, et al. Soil stoichiometry characteristics of Haloxylon ammodendron with different plantation age in the desert-oasis ecotone, North China[J]. Acta Ecologica Sinica, 2016, 36(11): 3235−3243 [34] CASPER B B, JACKSON R B. Plant competition underground[J]. Annual Review of Ecology and Systematics, 1997, 28(0): 545−570 [35] 李永涛, 杨庆山, 王莉莉, 等. 滨海盐碱地不同林龄白蜡人工林根系分布及土壤特性变化[J]. 东北林业大学学报, 2020, 48(8): 50−54, 98 doi: 10.3969/j.issn.1000-5382.2020.08.010LI Y T, YANG Q S, WANG L L, et al. Root distribution and soil properties of Fraxinus plantations with different forest stand ages in the coastal saline-alkali land[J]. Journal of Northeast Forestry University, 2020, 48(8): 50−54, 98 doi: 10.3969/j.issn.1000-5382.2020.08.010 [36] 陈立华, 张欢, 姚宇阗, 等. 盐地碱蓬覆被对滨海滩涂土壤理化性质的影响[J]. 植物资源与环境学报, 2021, 30(2): 19−27 doi: 10.3969/j.issn.1674-7895.2021.02.03CHEN L H, ZHANG H, YAO Y T, et al. Effects of Suaeda salsa covering on soil physicochemical properties in coastal beach[J]. Journal of Plant Resources and Environment, 2021, 30(2): 19−27 doi: 10.3969/j.issn.1674-7895.2021.02.03 [37] JENKINSON D S, ADAMS D E, WILD A. Model estimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351: 304 doi: 10.1038/351304a0 [38] RAICH J W, TUFEKCIOGLU A. Vegetation and soil respiration: correlations and controls[J]. Biogeochemistry, 2000, 48(1): 71−90 doi: 10.1023/A:1006112000616 [39] 王丰川, 刘加珍, 陈永金. 黄河三角洲湿地土壤呼吸及其环境因子分析[J]. 人民黄河, 2013, 35(1): 81−84 doi: 10.3969/j.issn.1000-1379.2013.01.026WANG F C, LIU J Z, CHEN Y J. Yellow River delta wetland soil respiration and the environmental factor analysis[J]. Yellow River, 2013, 35(1): 81−84 doi: 10.3969/j.issn.1000-1379.2013.01.026 [40] 武传胜, 沙丽清, 张一平. 哀牢山中山湿性常绿阔叶林凋落物对土壤呼吸及其温度敏感性的影响[J]. 东北林业大学学报, 2012, 40(6): 37−40 doi: 10.3969/j.issn.1000-5382.2012.06.010WU C S, SHA L Q, ZHANG Y P. Effect of litter on soil respiration and its temperature sensitivity in a montane evergreen broad-leaved forest in Ailao Mountains, Yunnan[J]. Journal of Northeast Forestry University, 2012, 40(6): 37−40 doi: 10.3969/j.issn.1000-5382.2012.06.010 -