Effect of planting and returning Vicia villosa on soil active organic carbon and yield of subsequent maize in coastal saline soils
-
摘要: 黄河三角洲地区土壤盐渍化严重, 加之冬春季节降雨量少, 淡水资源匮乏, 耕地冬春休耕现象普遍。于2020年9月—2021年10月, 以冬春休耕为对照, 研究种植翻压毛叶苕子对土壤理化性质、活性有机碳组分动态变化和后茬作物玉米产量的影响, 以期为覆盖植物在黄河三角洲地区盐碱地产能提升方面的应用提供参考。结果表明, 在1年试验期内, 与冬春休耕相比, 种植毛叶苕子可以降低土壤EC, 提高易氧化有机碳(ROC)含量, 翻压后则显著降低pH, 并提高土壤养分和活性有机碳含量。与休耕相比, 试验期内毛叶苕子处理平均pH降低0.12, 平均土壤总氮(TN)、总磷(TP)、有机碳(SOC)、ROC、可溶性有机碳(DOC)含量和ROC/SOC分别提高15.1%、5.5%、6.3%、99.1%、8.2%和89.9%, 平均EC则基本持平。毛叶苕子处理的后茬玉米籽粒产量提高15.9%, 增产效果显著。主成分分析结果表明, 玉米产量与土壤TN、SOC、DOC、ROC呈正相关, 与pH、EC呈负相关。毛叶苕子翻压后, 土壤有机碳各组分含量与TN和pH的相关关系增强, 与TN呈显著正相关, 与pH呈显著负相关。种植翻压毛叶苕子后土壤TN升高和土壤pH降低, 提升了土壤有机碳和活性有机碳含量, 综合作用使后茬玉米产量提高。在黄河三角洲地区, 相对于冬春休耕, 冬春季种植毛叶苕子对土壤改良和后茬作物产量提升优势明显, 可考虑作为盐碱地综合利用的优选模式。Abstract: Fallow in the winter-spring season is becoming a common practice in the Yellow River Delta region, influenced by heavy soil salinization, scarce available water in spring, and reduced precipitation induced by climate change. However, fallow in winter can cause ecological problems such as soil erosion and secondary salinization, which will inevitably lead to environmental degradation once large areas of crop land being fallow. This study investigated the influence of planting and returning Vicia villosa (V. villosa treatment) in the winter-spring season on soil physicochemical properties, especially on active organic carbon and yield of subsequent maize crops compared to fallow, to provide a reference for the application of cover crops in improving saline-alkali land productivity in the Yellow River Delta. The field experiments were conducted from September 2020 to October 2021. For the V. villosa treatment, V. villosa was sown in September 2020 and returned to the soil as green manure during its blooming period in May 2021, and maize was sown in July 2021. For the fallow treatment, the experimental area remained fallow before maize sowing, and maize was sown on the same day under the same cultivation management as for the V. villosa treatment. The results showed that during the growing period of V. villosa, the soil electrical conductivity (EC) decreased, and the readily oxidizable organic carbon content (ROC) increased. When V. villosa was returned to the soil, soil pH decreased, and soil nutrients and active organic carbon contents improved significantly compared with fallow. During the entire experimental period, the average pH of the V. villosa treatment decreased by 0.12, and the average contents of total nitrogen (TN), total phosphorus (TP), organic carbon (SOC), ROC, dissolved organic carbon (DOC), and ROC/SOC of the V. villosa treatment increased by 15.1%, 5.5%, 6.3%, 99.1%, 8.2%, and 89.9%, respectively, compared with those of fallow treatment. However, the average EC values for the two treatments were approximately equal. Compared to the fallow treatment, the V. villosa treatment significantly increased the subsequent maize straw biomass, grain yield, and total aboveground biomass by 25.3%, 15.9%, and 21.4%, respectively, indicating a better yield improvement effect. Principal component analysis showed that maize yield was positively correlated with soil TN, SOC, DOC, and ROC, but negatively correlated with pH and EC. EC and soil organic carbon components were strongly correlated before the return of V. villosa. However, TN had the greatest influence on soil organic carbon components in each maize growing period after V. villosa return, followed by pH. The content of each organic carbon component increased with increasing TN content and decreasing pH. This study indicates that planting and returning V. villosa in the winter and spring seasons could increase soil active organic carbon content by increasing soil TN and decreasing pH, which comprehensively enhanced maize yield. Overall, in the Yellow River Delta, the introduction of V. villosa as a cover crop has prominent advantages in soil amelioration and yield improvement of subsequent crops when compared to fallow in the winter-spring season, which could be considered as the optimal planting pattern for the comprehensive utilization of saline-alkali land.
-
图 2 种植翻压毛叶苕子对盐碱地土壤理化性质的影响
T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。不同大写字母表示相同时期不同处理间差异显著(P<0.05), 不同小写字母表示相同处理下不同时期间差异显著(P<0.05)。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. Different capital letters indicate significant differences between two treatments in the same period (P<0.05). Different lowercase letters indicate significant differences among different periods under the same treatment (P<0.05).
Figure 2. Effects of planting and returning Vicia villosa on physicochemical properties of saline soil
图 3 种植翻压毛叶苕子对盐碱地土壤有机碳和活性有机碳的影响
T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。SOC: 总有机碳; ROC: 易氧化有机碳; MBC: 微生物生物量碳; DOC: 可溶性有机碳。不同大写字母表示相同时期不同处理间差异显著(P<0.05), 不同小写字母表示相同处理下不同时期间差异显著(P<0.05)。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. SOC: organic carbon; ROC: readily oxidizable organic carbon; MBC: microbial biomass carbon; DOC: dissolved organic carbon. Different capital letters indicate significant differences between two treatments in the same period (P<0.05). Different lowercase letters indicate significant differences among different periods under the same treatment (P<0.05).
Figure 3. Effect of planting and returning Vicia villosa on organic carbon and active organic carbon contents of saline soil
图 4 种植翻压毛叶苕子对盐碱地土壤活性有机碳相对含量的影响
T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。SOC: 总有机碳; ROC: 易氧化有机碳; MBC: 微生物生物量碳; DOC: 可溶性有机碳。不同大写字母表示相同时期不同处理间差异显著(P<0.05), 不同小写字母表示相同处理下不同时期间差异显著(P<0.05)。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. SOC: organic carbon; ROC: readily oxidizable organic carbon; MBC: microbial biomass carbon; DOC: dissolved organic carbon. Different capital letters indicate significant differences between two treatments in the same period (P<0.05). Different lowercase letters indicate significant differences among different periods under the same treatment (P<0.05).
Figure 4. Effect of planting and returning Vicia villosa on relative contents of active organic carbon of saline soils
图 5 玉米收获期土壤活性有机碳、土壤理化性质和玉米产量的主成分分析
FT: 休耕处理; VT: 毛叶苕子处理; EC: 电导率; TN: 全氮; TP: 全磷; SOC: 有机碳; ROC: 易氧化有机碳; DOC: 可溶性有机碳; MBC: 微生物生物量碳; EY: 玉米籽粒产量。FT: fallow treatment; VT: Vicia villosa treatment; EC: electrical conductance; TN: total nitrogen; TP: total phosphorus; SOC: soil organic carbon; ROC: readily oxidizable carbon; DOC: dissolved organic carbon; MBC: microbial biomass carbon; EY: maize grain yield.
Figure 5. Principal component analysis of soil reactive organic carbon, soil physicochemical properties at harvest and maize yield
表 1 毛叶苕子产量及养分特征
Table 1. Yield and nutrient characteristics of Vicia villosa
干重
Dry weight
(kg·hm−2)C含量
C content
(g·kg−1)N含量
N content
(g·kg−1)C/N P含量
P content
(g·kg−1)K含量
K content
(g·kg−1)地上部 Shoot 4503.68±212.48a 412.05±1.82a 32.41±1.66a 12.74±0.69b 2.03±0.25a 41.31±5.22a 根 Root 497.91±36.63b 329.77±0.94b 14.37±0.44b 21.78±2.09a 1.13±0.19b 33.23±0.52a 全株 Whole plant 5001.59±214.59 403.03±1.38 30.67±1.56 13.16±0.66 1.93±0.20 40.53±4.82 不同字母表示不同部位在P<0.05水平差异显著。Different letters indicate significant differences between two parts at P<0.05 level. 表 2 试验期间种植翻压毛叶苕子下盐碱地土壤理化性质和有机碳组分之间的关系
Table 2. Relationship between physicochemical properties and organic carbon fractions contents of saline soil under planting and returning Vicia villosa in the experiment duration
取样时期
Sampling time指标
IndicatorpH 电导率
Electrical conductance全氮
Total N全磷
Total PT1 总有机碳 Organic carbon −0.27 −0.70* 0.49 0.90** 易氧化有机碳 Readily oxidizable organic carbon −0.08 −0.65 0.25 0.66 可溶性有机碳 Dissolved organic carbon 0.01 0.39 −0.18 −0.52 微生物生物量碳 Microbial biomass carbon −0.09 0.71* −0.24 −0.79* T2 总有机碳 Organic carbon 0.49 −0.25 0.24 −0.29 易氧化有机碳 Readily oxidizable organic carbon 0.49 −0.68 0.52 0.46 可溶性有机碳 Dissolved organic carbon 0.35 −0.77* 0.35 0.41 微生物生物量碳 Microbial biomass carbon −0.48 0.89** −0.53 −0.54 T3 总有机碳 Organic carbon −0.70 −0.34 0.52 0.34 易氧化有机碳 Readily oxidizable organic carbon −0.89** −0.35 0.85** 0.64 可溶性有机碳 Dissolved organic carbon −0.63 −0.13 0.74* 0.50 微生物生物量碳 Microbial biomass carbon −0.83* −0.23 0.83* 0.63 T4 总有机碳 Organic carbon −0.23 0.34 0.05 −0.33 易氧化有机碳 Readily oxidizable organic carbon −0.92** 0.90** 0.86** −0.25 可溶性有机碳 Dissolved organic carbon −0.32 0.41 0.32 −0.34 微生物生物量碳 Microbial biomass carbon −0.95** 0.95** 0.81* −0.45 T5 总有机碳 Organic carbon −0.72 0.23 0.82* 0.50 易氧化有机碳 Readily oxidizable organic carbon −0.42 0.03 0.82* 0.66 可溶性有机碳 Dissolved organic carbon −0.68 0.00 0.10 0.51 微生物生物量碳 Microbial biomass carbon 0.28 −0.35 −0.01 0.40 T6 总有机碳 Organic carbon −0.87** −0.38 0.99** −0.36 易氧化有机碳 Readily oxidizable organic carbon −0.63 −0.29 0.89** −0.57 可溶性有机碳 Dissolved organic carbon −0.52 −0.54 0.77* −0.75* 微生物生物量碳 Microbial biomass carbon 0.61 −0.45 −0.58 −0.12 *: P<0.05; **: P<0.01; T1: 苕子种植前; T2: 毛叶苕子翻压前; T3: 毛叶苕子翻压后玉米种植前; T4: 玉米苗期; T5: 玉米大喇叭口期; T6: 玉米收获期。T1: before planting V. villosa; T2: before returning V. villosa; T3: after returning V. villosa and before maize planting; T4: maize seedling stage; T5: maize bell mouth stage; T6: maize harvest period. 表 3 种植翻压毛叶苕子对盐碱地玉米地上部生物量和产量的影响
Table 3. Effects of planting and returning Vicia villosa on biomass and yields of maize in saline soil
kg·hm−2 处理
Treatment秸秆生物量
Straw biomass籽粒产量
Grain yield地上部生物量
Aboveground biomass休耕
Fallow7545.44±399.85b 5231.78±208.44b 12 777.22±562.91b 毛叶苕子
Vicia villosa9452.12±453.05a 6061.22±252.04a 15 513.34±628.03a 不同字母表示不同处理在P<0.05水平差异显著。Different letters indicate significant differences between two treatments at P<0.05 level. -
[1] WANG S F, WANG X K, OUYANG Z Y. Effects of land use, climate, topography and soil properties on regional soil organic carbon and total nitrogen in the Upstream Watershed of Miyun Reservoir, North China[J]. Journal of Environmental Sciences, 2012, 24(3): 387−395 doi: 10.1016/S1001-0742(11)60789-4 [2] BLAIR G, LEFROY R, LISLE L. Soil carbon fractions based on their degree of oxidation, and the development of a carbon management index for agricultural systems[J]. Australian Journal of Agricultural Research, 1995, 46(7): 1459−1466 doi: 10.1071/AR9951459 [3] 朱小梅, 王建红, 赵宝泉, 等. 不同盐分土壤环境下绿肥腐解及养分释放动态研究[J]. 水土保持学报, 2018, 32(6): 309−314ZHU X M, WANG J H, ZHAO B Q, et al. Dynamics of decomposition and nutrient release of green manure under different saline soils[J]. Journal of Soil and Water Conservation, 2018, 32(6): 309−314 [4] KALBITZ K, SOLINGER S, PARK J H, et al. Controls on the dynamics of dissolved organic matter in soils: A review[J]. Soil Science, 2000, 165(4): 277−304 doi: 10.1097/00010694-200004000-00001 [5] CHUCK Ingels. Pros and cons of cover crops: PART 1 This is the first of three articles about cover cropping in orchards[J]. Good fruit grower, 2004, 55(8): 13 [6] KAYE J P, QUEMADA M. Using cover crops to mitigate and adapt to climate change. A review[J]. Agronomy for Sustainable Development, 2017, 37(4): 2−17 [7] 黄璐, 李廷亮, 李顺, 等. 旱地冬小麦夏闲期种植不同豆科绿肥对还田养分和土壤有机碳、氮组分的影响[J]. 生态学杂志, 2022, 41(12): 2335−2343HUANG L, LI Y L, LI S, et al. Effects of planting legume green manure crops in summer fallow period of dryland winter wheat on returning nutrients, soil organic carbon and nitrogen components[J]. Chinese Journal of Ecology, 2022, 41(12): 2335−2343 [8] ZHANG Z, AN J, XIONG S, et al. Orychophragmus violaceus-maize rotation increases maize productivity by improving soil chemical properties and plant nutrient uptake[J]. Field Crops Research, 2022, 279: 108470−108481 doi: 10.1016/j.fcr.2022.108470 [9] 郭耀东, 程曼, 赵秀峰, 等. 轮作绿肥对盐碱地土壤性质、后作青贮玉米产量及品质的影响[J]. 中国生态农业学报, 2018, 26(6): 856−864 doi: 10.13930/j.cnki.cjea.170952GUO Y D, CHENG M, ZHAO X F, et al. Effects of green manure rotation on soil properties and yield and quality of silage maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2018, 26(6): 856−864 doi: 10.13930/j.cnki.cjea.170952 [10] 高菊生, 徐明岗, 董春华, 等. 长期稻-稻-绿肥轮作对水稻产量及土壤肥力的影响[J]. 作物学报, 2013, 39(2): 343−349 doi: 10.3724/SP.J.1006.2013.00343GAO J S, XU M G, DONG C H, et al. Effects of long-term rice-rice-green manure cropping rotation on rice yield and soil fertility[J]. Acta Agronomica Sinica, 2013, 39(2): 343−349 doi: 10.3724/SP.J.1006.2013.00343 [11] 李峰. 紫云英和秸秆还田对水稻土养分、活性有机碳及氧化铁的影响[D]. 武汉: 华中农业大学, 2019LI F. Effects of Chinese Milk Vetch and straw returning on nutrients, active organic carbon and iron oxide in paddy soil[D]. Wuhan: Huazhong Agricultural University, 2019 [12] 周国朋, 曹卫东, 白金顺, 等. 多年紫云英-双季稻下不同施肥水平对两类水稻土有机质及可溶性有机质的影响[J]. 中国农业科学, 2016, 49(21): 4096−4106 doi: 10.3864/j.issn.0578-1752.2016.21.004ZHOU G P, CAO W D, BAI J S, et al. Effects of different fertilization levels on soil organic matter and dissolved organic matter in two paddy soils after multi-years’ rotation of Chinese milk vetch and double-cropping rice[J]. Scientia Agricultura Sinica, 2016, 49(21): 4096−4106 doi: 10.3864/j.issn.0578-1752.2016.21.004 [13] 高嵩涓, 曹卫东, 白金顺, 等. 长期冬种绿肥改变红壤稻田土壤微生物生物量特性[J]. 土壤学报, 2015, 52(4): 902−910 doi: 10.11766/trxb201408190410GAO S J, CAO W D, BAI J S, et al. Long-term application of winter green manures changed the soil microbial biomass properties in red paddy soil[J]. Acta Pedologica Sinica, 2015, 52(4): 902−910 doi: 10.11766/trxb201408190410 [14] 李峰, 周方亮, 黄雅楠, 等. 减施化肥下紫云英和秸秆还田对土壤养分及活性有机碳的影响[J]. 华中农业大学学报, 2020, 39(1): 67−75LI F, ZHOU F L, HUANG Y N, et al. Effects of Chinese milk vetch and straw returning on soil nutrient and active organic carbon under reduced application of chemical fertilizer[J]. Journal of Huazhong Agricultural University, 2020, 39(1): 67−75 [15] 唐海明, 程凯凯, 肖小平, 等. 不同冬季覆盖作物对双季稻田土壤有机碳的影响[J]. 应用生态学报, 2017, 28(2): 465−473 doi: 10.13287/j.1001-9332.201702.009TANG H M, CHENG K K, XIAO X P, et al. Effects of different winter cover crops on soil organic carbon in a double cropping rice paddy field[J]. Chinese Journal of Applied Ecology, 2017, 28(2): 465−473 doi: 10.13287/j.1001-9332.201702.009 [16] 肖小平, 唐海明, 聂泽民, 等. 冬季覆盖作物残茬还田对双季稻田土壤有机碳和碳库管理指数的影响[J]. 中国生态农业学报, 2013, 21(10): 1202−1208 doi: 10.3724/SP.J.1011.2013.01202XIAO X P, TANG H M, NIE Z M, et al. Effects of winter cover crop straw recycling on soil organic carbon and soil carbon pool management index in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2013, 21(10): 1202−1208 doi: 10.3724/SP.J.1011.2013.01202 [17] 吕真真, 杨劲松, 刘广明, 等. 黄河三角洲土壤盐渍化与地下水特征关系研究[J]. 土壤学报, 2017, 54(6): 1377−1385 doi: 10.11766/trxb201701160401LÜ Z Z, YANG J S, LIU G M, et al. Relationship between soil salinization and groundwater characteristics in the Yellow River Delta[J]. Acta Pedologica Sinica, 2017, 54(6): 1377−1385 doi: 10.11766/trxb201701160401 [18] 白春礼. 科技创新引领黄河三角洲农业高质量发展[J]. 中国科学院院刊, 2020, 35(2): 138−144 doi: 10.16418/j.issn.1000-3045.20200201001BAI C L. Scientific and technological innovation leads high-quality development of agriculture in the Yellow River Delta[J]. Bulletin of Chinese Academy of Sciences, 2020, 35(2): 138−144 doi: 10.16418/j.issn.1000-3045.20200201001 [19] WANG Y J, JI L J, LI Q S, et al. Effects of long-term bare fallow during the winter-wheat growth season on the soil chemical properties, fungal community composition, and the occurrence of maize fungal diseases in North China[J]. Plant Disease, 2021, 105(9): 2575−2584 doi: 10.1094/PDIS-11-20-2492-RE [20] 熊静, 王改兰, 曹卫东, 等. 华北二月兰-春玉米轮作体系中土壤硝态氮的时空变化特征[J]. 应用生态学报, 2014, 25(2): 467−473 doi: 10.13287/j.1001-9332.2013.0005XIONG J, WANG G L, CAO W D, et al. Temporal and spatial variations of soil NO3−-N in Orychophragmus violaceus / spring maize rotation system in North China[J]. Chinese Journal of Applied Ecology, 2014, 25(2): 467−473 doi: 10.13287/j.1001-9332.2013.0005 [21] 赵秋, 张新建, 宁晓光. 北方冬季绿肥适宜种植作物的筛选[J]. 中国农学通报, 2021, 37(33): 50−54 doi: 10.11924/j.issn.1000-6850.casb2021-0114ZHAO Q, ZHANG X J, NING X G. Selection of suitable varieties of winter green manure crops in North China[J]. Chinese Agricultural Science Bulletin, 2021, 37(33): 50−54 doi: 10.11924/j.issn.1000-6850.casb2021-0114 [22] 梁静. 黄河三角洲野大豆根瘤菌多样性及耐盐促生菌株筛选[D]. 北京: 中国农业科学院, 2021LIANG J. Diversity of rhizobia from glycine soja in the Yellow River Delta and screening of salt-tolerant and growth-promoting strains[D]. Beijing: Chinese Academy of Agricultural Sciences, 2021 [23] 鲍士旦. 土壤农化分析(第三版)[M]. 北京: 中国农业出版社, 2000BAO S D. Soil Agrochemical Analysis (Third Edition) [M]. Beijing: China Agricultural Press, 2000 [24] 樊志龙, 柴强, 曹卫东, 等. 绿肥在我国旱地农业生态系统中的服务功能及其应用[J]. 应用生态学报, 2020, 31(4): 1389−1402 doi: 10.13287/j.1001-9332.202004.023FAN Z L, CHAI Q, CAO W D, et al. Ecosystem service function of green manure and its application in dryland agriculture of China[J]. Chinese Journal of Applied Ecology, 2020, 31(4): 1389−1402 doi: 10.13287/j.1001-9332.202004.023 [25] 孙文彦, 孙敬海, 尹红娟, 等. 绿肥与苗木间种改良苗圃盐碱地的研究[J]. 土壤通报, 2015, 46(5): 1221−1225 doi: 10.19336/j.cnki.trtb.2015.05.029SUN W Y, SUN J H, YIN H J, et al. Effect of winter green manure on improving saline-alkali nursery garden land[J]. Chinese Journal of Soil Science, 2015, 46(5): 1221−1225 doi: 10.19336/j.cnki.trtb.2015.05.029 [26] 蔺海明, 贾恢先, 张有福, 等. 毛苕子对次生盐碱地抑盐效应的研究[J]. 草业学报, 2003, 12(4): 58−62 doi: 10.3321/j.issn:1004-5759.2003.04.011LIN H M, JIA H X, ZHANG Y F, et al. Effect of salt restraint on Vicia Villosa in secondary salinization land[J]. Acta Prataculturae Sinica, 2003, 12(4): 58−62 doi: 10.3321/j.issn:1004-5759.2003.04.011 [27] 王强盛, 薄雨心, 余坤龙, 等. 绿肥还田在稻作生态系统的效应分析及研究展望[J]. 土壤, 2021, 53(2): 243−249 doi: 10.13758/j.cnki.tr.2021.02.004WANG Q S, BO Y X, YU K L, et al. Analysis and research prospect of effect of green manure returning on rice cropping ecosystem[J]. Soils, 2021, 53(2): 243−249 doi: 10.13758/j.cnki.tr.2021.02.004 [28] 米迎宾, 杨劲松, 姚荣江, 等. 不同措施对滨海盐渍土壤呼吸、电导率和有机碳的影响[J]. 土壤学报, 2016, 53(3): 612−620 doi: 10.11766/trxb201509250458MI Y B, YANG J S, YAO R J, et al. Effects of farming practice on soil respiration, ECe and organic carbon in coastal saline soil[J]. Acta Pedologica Sinica, 2016, 53(3): 612−620 doi: 10.11766/trxb201509250458 [29] 王遵亲. 中国盐渍土[M]. 北京: 科学出版社, 1993WANG Z Q. Salt Affected Soils of China[M]. Beijing: Science Press, 1993 [30] 张建兵, 杨劲松, 姚荣江, 等. 有机肥与覆盖方式对滩涂围垦农田水盐与作物产量的影响[J]. 农业工程学报, 2013, 29(15): 116−125 doi: 10.3969/j.issn.1002-6819.2013.15.015ZHANG J B, YANG J S, YAO R J, et al. Dynamics of soil water, salt and crop growth under farmyard manure and mulching in coastal tidal flat soil of northern Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(15): 116−125 doi: 10.3969/j.issn.1002-6819.2013.15.015 [31] 宋莉, 韩上, 鲁剑巍, 等. 油菜秸秆、紫云英绿肥及其不同比例配施还田的腐解及养分释放规律研究[J]. 中国土壤与肥料, 2015(3): 100−104 doi: 10.11838/sfsc.20150318SONG L, HAN S, LU J W, et al. Study on characteristics of decomposing and nutrients releasing of different proportional mixture of rape straw and Chinese milk vetch in rice field[J]. Soil and Fertilizer Sciences in China, 2015(3): 100−104 doi: 10.11838/sfsc.20150318 [32] 谭英爱. 不同冬绿肥翻压对玉米生长及土壤肥力影响的研究[D]. 天津: 天津农学院, 2020TAN Y A. Effects of different winter green manures on corn growth and soil fertility[D]. Tianjin: Tianjin Agricultural University, 2020 [33] ALLAR J, MALTAIS-LANDRY G. Limited benefits of summer cover crops on nitrogen cycling in organic vegetable production[J]. Nutrient Cycling in Agroecosystems, 2022, 122: 119−138 doi: 10.1007/s10705-021-10189-8 [34] POTT L P, AMADO T J C, SCHWALBERT R A, et al. Effect of hairy vetch cover crop on maize nitrogen supply and productivity at varying yield environments in Southern Brazil[J]. Science of the Total Environment, 2021, 759: 9 [35] 杨翠萍, 脱云飞, 张岛, 等. 降雨对不同土地利用类型土壤水氮变化特征的影响[J]. 水土保持学报, 2019, 33(6): 220−226 doi: 10.13870/j.cnki.stbcxb.2019.06.031YANG C P, TUO Y F, ZHANG D, et al. Effects of rain fall on soil water and nitrogen change characteristics under different land uses[J]. Journal of Soil and Water Conservation, 2019, 33(6): 220−226 doi: 10.13870/j.cnki.stbcxb.2019.06.031 [36] 白璐, 蒋福祯, 曹卫东, 等. 麦后复种绿肥对土壤有机碳及其固持特征的影响[J]. 干旱地区农业研究, 2021, 39(4): 148−154 doi: 10.7606/j.issn.1000-7601.2021.04.19BAI L, JIANG F Z, CAO W D, et al. Effects of multiple cropping of green manure after wheat on soil organic carbon and its sequestration characteristics[J]. Agricultural Research in the Arid Areas, 2021, 39(4): 148−154 doi: 10.7606/j.issn.1000-7601.2021.04.19 [37] 刘慧. 油菜绿肥还田对盐碱土壤有机碳及酶活性的影响[D]. 石河子: 石河子大学, 2020LIU H. Effect of rape green manure on soil organic carbon and enzyme activity in saline soil[D]. Shihezi: Shihezi University, 2020 [38] CHEN L Y, LIU L, MAO C, et al. Nitrogen availability regulates topsoil carbon dynamics after permafrost thaw by altering microbial metabolic efficiency[J]. Nature Communications, 2018, 9(1): 1−11 doi: 10.1038/s41467-017-02088-w [39] GAO S J, GAO J S, CAO W D, et al. Effects of long-term green manure application on the content and structure of dissolved organic matter in red paddy soil[J]. Journal of Integrative Agriculture, 2018, 17(8): 1852−1860 doi: 10.1016/S2095-3119(17)61901-4 [40] 程会丹, 鲁艳红, 聂军, 等. 土壤活性有机碳周年变化对紫云英翻压量的响应[J]. 土壤, 2021, 53(4): 723−731 doi: 10.13758/j.cnki.tr.2021.04.008CHENG H D, LU Y H, NIE J, et al. Responses of annual variation of soil active organic carbon to Chinese Milk Vetch application rates[J]. Soils, 2021, 53(4): 723−731 doi: 10.13758/j.cnki.tr.2021.04.008 [41] 张春, 杨万忠, 韩清芳, 等. 夏闲期种植不同绿肥作物对土壤养分及冬小麦产量的影响[J]. 干旱地区农业研究, 2014, 32(2): 66−72 doi: 10.7606/j.issn.1000-7601.2014.02.011ZHANG C, YANG W Z, HAN Q F, et al. Effects on soil nutrient and yield of winter wheat of planting different green manures during summer fallow[J]. Agricultural Research in the Arid Areas, 2014, 32(2): 66−72 doi: 10.7606/j.issn.1000-7601.2014.02.011 [42] ABDALLA M, HASTINGS A, CHENG K, et al. A critical review of the impacts of cover crops on nitrogen leaching, net greenhouse gas balance and crop productivity[J]. Global Change Biology, 2019, 25: 2530−2543 doi: 10.1111/gcb.14644 -