-
摘要: 碳排放精准测算是“双碳”目标实现的重要保障。在进行农业碳排放测算时, 作物类型、生产方式、地理区位等因素均会对碳排放产生影响, 因此, 虽然诸多学者尝试从不同角度对中国农业碳排放展开测度, 但在估计方式、样本选取和测算结果等方面仍未形成一致的有效结论。本研究首先介绍了中国农业碳排放的主要核算方法, 包括排放系数法、模型模拟法和实地测量法; 其次, 从投入产出、生产过程、碳汇以及碳足迹4个方面对现有农业碳排放核算方式进行梳理; 再次, 对农业碳排放的核算结果进行归纳总结; 最后, 分析现有研究的局限性, 并对未来农业碳排放核算研究进行了展望。研究发现: 现有研究在农业碳排放测算时, 存在遗漏排放源、排放系数使用不科学以及研究视角过多集中于宏观层面等不足。建议未来从构建科学全面的农业碳排放核算体系、完善排放系数以及加强农户等微观层次研究等方面展开。Abstract: Accurate measurement of carbon emissions is crucial for achieving dual-carbon goals. Agricultural carbon emissions are affected by various crop types, production methods, geographical locations, and other factors. Therefore, although scholars have attempted to measure China’s agricultural carbon emissions from different perspectives, a consistent and effective conclusion regarding the estimation method, sample selection, and calculation results does not exist. First, this study introduces the main accounting methods for agricultural carbon emissions, including the emission factor method, model simulation method, and field measurement method. Second, it segregates agricultural carbon emission accounting methods from the existing four aspects: input and output, production process, carbon sequestration, and carbon footprint. Third, the accounting results for agricultural carbon emissions are summarized. Finally, the limitations of the existing research are analyzed, and a prospect for agricultural carbon emission accounting is specified. This study discovered shortcomings in the existing research, including the omission of emission sources, inappropriate use of emission factors, and excessive concentration perspectives at the macro level. Future research can be continued from the following aspects: constructing a scientific and comprehensive agricultural carbon emission accounting system, improving emission factors, and strengthening micro-level research on farmers.
-
表 1 农业物资投入碳排放系数
Table 1. Carbon emission factors of agricultural inputs
碳排放来源 Carbon emissions source 排放系数 Emission factor 数据来源 Data source 化肥生产、运输和使用 Fertilizer production, transportation and use 0.8956 kg(C)∙kg−1 [11, 16-17] 氮肥生产、运输和使用 Nitrogen fertilizer production, transportation and use 13.5 kg(CO2)∙kg−1(N) [21] 氮肥生产 Nitrogen fertilizer production 2.116 kg(CO2)∙kg−1(N) [22] 磷肥生产 Phosphate fertilizer production 0.636 kg(CO2)∙kg−1(P2O5) [22] 钾肥生产 Potash fertilizer production 0.180 kg(CO2)∙kg−1(K2O) [22] 氮肥生产、运输和使用 Nitrogen fertilizer production, transportation and use 1.53 kg(CO2)∙kg−1 [23] 磷肥生产、运输和使用 Phosphate fertilizer production, transportation and use 1.63 kg(CO2)∙kg−1 [23] 钾肥生产、运输和使用 Potassium fertilizer production, transportation and use 0.65 kg(CO2)∙kg−1 [23] 复合肥生产、运输和使用 Compound fertilizer production, transportation and use 1.77 kg(CO2)∙kg−1 [23] 农药生产、运输和使用 Pesticide production, transportation and use 4.9341 kg(C)∙kg−1 [11] 农膜生产、运输和使用 Agricultural plastic film production, transportation and use 5.18 kg(C)∙kg−1 [18] 灌溉用电 Irrigation electricity 20.476 kg(C)∙hm−2 [19-20] 农用机械柴油 Agricultural machinery diesel oil 0.5927 kg(C)∙kg−1 IPCC 表 2 农药生产运输的碳排放系数[24]
Table 2. Carbon emission factors of pesticide production and transportation[24]
kg(Ce)∙kg−1 (active ingredient) 农药类型
Pesticides type农药名称
Pesticides name碳排放
系数
Carbon
emission factor农药类型
Pesticides type农药名称
Pesticides name碳排放
系数
Carbon
emission factor农药类型
Pesticides type农药名称
Pesticides name碳排放
系数
Carbon
emission factor杀虫剂
Pesti-cideS-氰戊菊酯 Esfellvalerate 16.9 三唑磷 Triazophos 14.4 丙草胺 Pretilachlor 21.8 胺菊酯 Tetramethrin 11.9 杀虫单 Monomehypo 16.5 丙炔噁草酮 Oxadiargyl 25.1 巴丹 Cartap 13.2 杀虫双 Bisultap 13.2 草甘膦 Glyphosate 19.3 吡虫啉 Imidacloprid 20.6 水胺硫磷 Socarbophos 17.3 草枯醚 Chlornitrofen 12.7 吡蚜酮 Pymetrozine 23.5 烯啶虫胺 Nitenpyram 23.9 除草醚 Nitrofen 11.5 丙硫苯咪唑 Albendazole 16.5 辛硫磷 Phoxim 12.3 敌草隆 Diuron 11.2 丙溴磷 Profenozide 16.5 溴氰菊酯 Deltamerhrin 16.0 丁草胺 Butachlor 14.4 虫酰肼 Tebufenozide 23.5 氧乐果 Omethoate 12.3 噁草酮 Oxadiazon 14.0 哒螨灵 Pyridaben 21.8 乙基对硫磷 Parathion 4.5 噁唑酰草胺 Metamifop 28.0 稻丰散 Phenthoate 14.8 乙酰甲胺磷 Acephate 11.9 二甲戊(乐)灵 Pendimethalin 6.1 敌百虫 Trichlorfon 9.0 异丙威 Isoprocarb (Mipc) 14.0 二氯喹啉酸 Quinclorac 20.6 敌敌畏 Dichlorvos 7.8 仲丁威 Fenobucarb 11.1 氟吡甲禾灵 Haloxyfop 20.6 啶虫脒 Acetamiprid 24.7 杀菌剂
Germi-cide百菌清 Chlorthalonil 12.0 氟乐灵 Trifluralin 6.9 毒死蜱 Chlorpyrifos 12.4 苯醚甲环唑 Difenoconazole 21.8 氟唑磺隆
Flucarbazone-Na26.4 呋喃丹 Carbofuran 18.1 丙环唑 Propiconazol 18.1 禾草丹 Thiobencarb 14.4 氟虫双酰胺 Flubendiamide 28.8 代森锰锌 Mancozeb 10.7 禾草敌 Molinate 12.7 氟铃脲 Hexaflumuron 19.8 稻瘟灵 Isoprothiolane 16.5 禾草灵 Diclofop-Methyl 16.5 氟氯氰菊酯 Cyhalothrin 14.4 敌瘟磷 Edifenphos 13.6 磺草酮 Sulcotrione 23.1 高效氟氯氰菊酯
Beta-Cyfluthrin23.9 多菌灵 Carbendazim 15.7 甲草胺 Alachlor 11.4 高效氯氰菊酯
Alpha-Cypermethrin19.8 噁霉灵 Hymexazol 12.7 甲磺隆
Metsulfuron-Methyl20.5 甲胺磷 Methamidophos 14.4 氟硅唑 Flusilazole 20.2 精噁唑禾草灵 Fenoxaprop-P-Ethyl 22.2 甲拌磷 Phorate 9.3 氟环唑 Epoxiconazole 23.9 精喹禾灵
Quizalofop-P-Ethyl19.8 甲萘威 Carbaryl 6.6 福美双 Thiram 2.8 绿麦隆 Chlortoluron 14.0 甲氰菊酯 Fenpropathrin 14.8 己唑醇 Hexaconazole 6.7 氯氟吡氧乙酸 Fluroxypyr 19.8 久效磷 Monocrotophos 12.3 甲基硫菌灵
Thiophanate-Methyl14.4 氯磺隆 Chlorsulfuron 14.7 乐果 Dimethoate 6.6 甲霜灵 Metalaxyl 25.2 麦草畏 Dicamba 12.0 联苯肼酯 Bifenazate 25.1 腈菌唑 Myclobutanil 21.0 灭草松 Bentazone 17.3 联苯菊酯 Bifenthrin 20.2 咪鲜胺 Prochloraz 17.3 扑草净 Prometryn 11.1 林丹 Gamma-Bhc 2.8 噻呋酰胺 Thifluzamid 23.5 氰氟草酯
Cyhalofop-Butyl20.6 硫丹 Endosulfan 8.6 三环唑 Tricyclazole 16.9 炔草酯
Clodinafop-Propargyl22.2 氯虫苯甲酰胺 Chlorantraniliprole 29.2 三唑醇 Triadimenol 17.7 噻吩磺隆
Thifensulfuron-Methyl21.4 氯菊酯 Permethrin 15.6 三唑酮 Triadimefon 15.6 莎稗磷 Anilofos 18.9 氯氰菊酯 Permethrin 24.6 戊唑醇 Tebuconazole 21.0 五氟磺草胺 Penoxsulam 28.0 马拉硫磷 Malathion 9.5 烯唑醇 Diniconazole 19.8 西草净 Simetryn 13.6 灭多威 Methomyl 13.6 异稻瘟净 Iprobenfos 13.6 硝磺草酮 Mesotrione 26.4 灭幼脲 hlorbenzuron 15.2 除草剂
Herbi-cide2,4-滴丁酯 2,4-D butylate 4.3 烟嘧磺隆 Nicosulfuron 22.7 氰戊菊酯 Fenvalerate 16.0 二甲四氯钠 MCPA 6.1 乙草胺 Acetochlor 14.4 噻虫嗪 Thiamethoxam 23.1 百草枯 Paraquat 19.5 异丙草胺
Propisochlor26.8 噻嗪酮 Buprofezin 17.3 苯磺隆
Tribenuron-Methyl20.6 异丙甲草胺 Metolachlor 11.3 三苯基乙酸锡
Fentin Acetate7.8 次嘧磺隆
Pyrazosulfuron-Ethyl22.2 莠去津 Atriazine 8.5 三氯杀螨醇 Dicofol 8.6 苯噻酰草胺 Mefenacet 20.2 仲丁灵 Butralin 14.8 三氯杀螨砜 Tetradifon 8.2 苄嘧磺隆
Bensulfuron-Methyl19.8 唑草酮
Carfentrazone-Ethyl23.9 表 3 农业能源消费转换系数与碳排放系数
Table 3. Conversion coefficient and carbon emission factors of agricultural energy consumption
碳排放来源 Carbon emission source 转换系数 Conversion coefficient 排放系数 Emission factor [t(C)∙t−1(standard coal)] 煤炭 Coal 0.7143 kg(standard coal)∙kg−1 0.7476 汽油 Gasoline 1.4714 kg(standard coal)∙kg−1 0.5532 柴油 Diesel oil 1.4571 kg(standard coal)∙kg−1 0.5913 天然气 Natural gas 13.300 t(standard coal)∙(104m3)−1 0.4479 煤油 Kerosene 1.4714 kg(standard coal)∙kg−1 0.3416 燃料油 Fuel oil 1.4286 kg(standard coal)∙kg−1 0.6176 原油 Crude oil 1.4286 kg(standard coal)∙kg−1 0.5854 电力 Electricity 1.229 t(standard coal)∙(104kWh)−1 2.2132 焦炭 Coke 0.9714 kg(standard coal)∙kg−1 0.1128 转换系数来源于《中国能源统计年鉴》, 碳排放系数来源于IPCC。The conversion coefficient is from China Energy Statistical Yearbook and the carbon emission factor is from IPCC. 表 4 作物秸秆燃烧碳排放系数
Table 4. Carbon emission factor of crop straw burning
秸秆类型
Straw type二氧化碳
Carbon dioxide甲烷
Methane氧化亚氮
Nitrous oxide数据来源
Data sourcesg∙kg−1 未区分类型
Unclassified types1247 — — [33] 1515 2.7 — [35] — 1.68 — [34] 水稻 Rice 656.27±26.15 2.19±0.73 0.11±0.01 [36] 小麦 Wheat 586.39±20.25 2.22±0.12 0.05±0.002 玉米 Maize 620.72±47.56 2.95±0.17 0.12±0.01 油菜 Rape 795.71±26.38 3.40±1.27 0.06±0.02 大豆 Soybean 546.14±57.86 2.89±0.65 0.09±0.01 棉花 Cotton 464.14±2.96 1.82±0.58 0.05±0.01 表 5 农业土地管理碳排放系数
Table 5. Carbon emission factor of agricultural land management
碳排放来源
Carbon emissions source区域
Area排放系数
Emission factor数据来源
Data sources翻耕
Ploughing312.6 kg(C)∙km−2 [38] 0.04 t∙km−2 [39] 氧化亚氮直接排放
Direct emission of nitrous oxide
[kg(N2O)∙kg−1(N)]Ⅰ 0.0056 (0.0015~0.0085) 《省级温室气体清单编制指南(试行)》
Provincial Greenhouse Gas Inventories Compilation Guide (Trial)Ⅱ 0.0114 (0.0021~0.0258) Ⅲ 0.0057 (0.0014~0.0081) Ⅳ 0.0109 (0.0026~0.022) Ⅴ 0.0178 (0.0046~0.0228) Ⅵ 0.0106 (0.0025~0.0218) 氧化亚氮间接排放(大气氮沉降)
Indirect emission of nitrous oxide (atmospheric nitrogen deposition) [kg(N2O)∙kg−1]0.01 《省级温室气体清单编制指南(试行)》
Provincial Greenhouse Gas Inventories Compilation Guide (Trial)氧化亚氮间接排放(氮淋溶径流)
Indirect emission of nitrous oxide (nitrogen leaching runoff) [kg(N2O)∙kg−1]0.0075 氧化亚氮排放(氮肥)
Nitrous oxide emissions (nitrogen fertilizer) [kg(N2O)∙kg−1]0.0125 IPCC Ⅰ区包括内蒙古、新疆、甘肃、青海、西藏、陕西、山西、宁夏; Ⅱ区包括黑龙江、吉林、辽宁; Ⅲ区包括北京、天津、河北、河南、山东; Ⅳ区包括浙江、上海、江苏、安徽、江西、湖南、湖北、四川、重庆; Ⅴ区包括广东、广西、海南、福建; Ⅵ区包括云南、贵州; 括号中内容为排放系数的推荐范围。Area Ⅰ includes Inner Mongolia, Xinjiang, Gansu, Qinghai, Tibet, Shaanxi, Shanxi, Ningxia; Area Ⅱ includes Heilongjiang, Jilin, Liaoning; Area Ⅲ includes Beijing, Tianjin, Hebei, Henan, Shandong; Area Ⅳ includes Zhejiang, Shanghai, Jiangsu, Anhui, Jiangxi, Hunan, Hubei, Sichuan, Chongqing; Area Ⅴ includes Guangdong, Guangxi, Hainan, Fujian; Area Ⅵ includes Yunnan, Guizhou. Data in the brackets are the recommended ranges of emission factor. 系数
Factor水稻
Rice春小麦
Spring wheat冬小麦
Winter wheat大豆
Soybean玉米
Maize蔬菜
Vegetable其他旱地作物
Other dryland crops本底排放通量
Background emission flux [kg(N2O]∙hm−2]0.24 0.40 1.75 2.29 2.53 4.94 0.95 氮肥 Nitrogen fertilizer [kg(N2O)∙kg−1] 0.30 0.15 1.10 6.61 0.83 0.83 0.30 复合肥 Compound fertilizer [kg(N2O)∙kg−1] 0.11 0.11 0.11 0.11 0.11 0.11 0.11 表 7 中国各省(市、自治区)水稻生长周期内的甲烷排放系数
Table 7. Methane emission factor of rice grow cycle in provinces (cities, autonomous regions) of China
省(市、自治区)
Province (city,
autonomous region)早稻
Early rice晚稻
Late rice中季稻
Middle rice省(市、自治区)
Province (city,
autonomous region)早稻
Early rice晚稻
Late rice中季稻
Middle riceg(CH4)∙m−2 北京 Beijing 0 0 13.23 湖北 Hubei 17.51 39.0 58.17 天津 Tianjin 0 0 11.34 湖南 Hunan 14.71 34.1 56.28 河北 Hebei 0 0 15.33 广东 Guangdong 15.05 51.6 57.02 山西 Shanxi 0 0 6.22 广西 Guangxi 12.41 49.1 47.78 内蒙古 Inner Mongolia 0 0 8.93 海南 Hainan 13.43 49.4 52.29 辽宁 Liaoning 0 0 9.24 四川 Sichuan 6.55 18.5 25.73 吉林 Jilin 0 0 5.57 重庆 Chongqing 6.55 18.5 25.73 黑龙江 Heilongjiang 0 0 8.31 贵州 Guizhou 5.10 21.0 22.05 上海 Shanghai 12.41 27.5 53.87 云南 Yunnan 2.38 7.6 7.25 江苏 Jiangsu 16.07 27.6 53.55 西藏 Tibet 0 0 6.83 浙江 Zhejiang 14.37 34.5 57.96 陕西 Shaanxi 0 0 12.51 安徽 Anhui 16.75 27.6 51.24 甘肃 Gansu 0 0 6.83 福建 Fujian 7.74 52.6 43.47 青海 Qinghai 0 0 0 江西 Jiangxi 15.47 45.8 65.42 宁夏 Ningxia 0 0 7.35 山东 Shandong 0 0 21.00 新疆 Xinjiang 0 0 10.50 河南 Henan 0 0 17.85 单季稻系数同早稻系数, 单季晚稻、冬水田和麦茬稻系数同中季稻。数据来源于文献[42-43]。因数据可获得性, 不包括香港、澳门和台湾地区。The factor of single cropping rice is the same as that of early rice. The factors of single cropping late rice, winter paddy field and wheat stubble rice are the same as those of middle cropping rice. The data are from references [42-43]. Hongkong, Macao and Taiwan areas are not included. 表 8 中国分农业区稻田甲烷排放系数
Table 8. Methane emission factors of paddy fields by agricultural region in China
区域
Area单季稻
Single-cropping rice双季早稻
Double-season early rice双季晚稻
Double-season late rice推荐值
Recommended value范围
Range推荐值
Recommended value范围
Range推荐值
Recommended value范围
Rangekg(CH4)∙hm−2 华北 North China 234.0 134.4~341.9 — — — — 华东 East China 215.5 158.2~255.9 211.4 153.1~259.0 224.0 143.4~261.3 中南华南 South Central China 236.7 170.2~320.1 141.0 169.5~387.2 273.2 185.2~357.9 西南 Southwest China 156.2 156.2 73.7~276.6 171.7 75.1~265.1 东北 Northeast China 168.0 112.6~230.3 — — — — 西北 Northwest China 231.2 175.9~319.5 — — — — 数据来源于《省级温室气体清单编制指南(试行)》。华北地区包括北京、天津、河北、山西、内蒙古; 华东地区包括上海、江苏、浙江、安徽、福建、江西、山东; 中南华南地区包括河南、湖北、湖南、广东、广西、海南; 西南地区包括重庆、四川、贵州、云南、西藏; 东北地区包括辽宁、吉林、黑龙江; 西北地区包括陕西、宁夏、甘肃、青海、新疆。因数据可获得性, 不包括香港、澳门和台湾地区。The data come from the Provincial Greenhouse Gas Inventories Compilation Guide (Trial). North China includes Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia; East China includes Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong; South Central China includes Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan; Southwest China includes Chongqing, Sichuan, Guizhou, Yunnan, Tibet; Northeast China includes Liaoning, Jilin, Heilongjiang; Northwest China includes Shaanxi, Ningxia, Gansu, Qinghai and Xinjiang. Hongkong, Macao and Taiwan areas are not included. 畜禽品种
Animal breed甲烷排放系数
Methane emission factor粪便管理氧化亚氮排放系数
Nitrous oxide emission factor of manure management肠道发酵
Enteric fermentation粪便管理
Manure managementkg∙unit−1∙a−1 奶牛 Milk cow 68 16 1.00 水牛 Buffalo 55 2 1.34 黄牛 Cow 47.8 1 1.39 骡 Mule 10 0.9 1.39 骆驼 Camel 46 1.92 1.39 驴 Donkey 10 0.9 1.39 马 Horse 18 1.64 1.39 生猪 Live hog 1 3.5 0.53 母猪 Sow 1 3.5 0.53 羊 Goat 5 0.16 0.53 兔 Rabbit 0.254 0.08 0.02 禽类 Poultry — 0.02 0.02 表 10 中国各区域动物粪便管理碳排放系数
Table 10. Carbon emission coefficients from animal manure management by region in China
地区
Area种类
Type奶牛
Milk cow非奶牛
Non-milk cow水牛
Buffalo绵羊
Sheep山羊
Goat猪
Hog家禽
Poultry马
Horse驴/骡
Donkey/
mule骆驼
Camelkg∙unit−1∙a−1 华东
East ChinaCH4 8.33 3.31 5.55 0.26 0.28 5.08 0.02 1.64 0.90 1.92 N2O 2.065 0.846 0.875 0.113 0.113 0.175 0.007 0.330 0.188 0.330 华北
North ChinaCH4 7.46 2.92 — 0.15 0.17 3.12 0.01 1.09 0.60 1.28 N2O 1.846 0.974 — 0.093 0.093 0.227 0.007 0.330 0.188 0.330 东北
Northeast ChinaCH4 2.23 1.02 — 0.15 0.16 1.12 0.01 1.09 0.60 1.28 N2O 1.096 0.913 — 0.057 0.057 0.266 0.007 0.330 0.188 0.330 中南华南
South Central ChinaCH4 8.45 4.72 8.24 0.34 0.31 5.85 0.02 1.64 0.90 1.92 N2O 1.710 0.805 0.860 0.106 0.106 0.157 0.007 0.330 0.188 0.330 西南
Southwest ChinaCH4 6.51 3.21 1.53 0.48 0.53 4.18 0.02 1.64 0.90 1.92 N2O 1.884 0.691 1.197 0.064 0.064 0.159 0.007 0.330 0.188 0.330 西北
Northwest ChinaCH4 5.93 1.86 — 0.28 0.32 1.38 0.01 1.09 0.60 1.28 N2O 1.447 0.545 — 0.074 0.074 0.195 0.007 0.330 0.188 0.330 数据来源于《省级温室气体清单编制指南(试行)》。华北地区包括北京、天津、河北、山西、内蒙古; 华东地区包括上海、江苏、浙江、安徽、福建、江西、山东; 中南华南地区包括河南、湖北、湖南、广东、广西、海南; 西南地区包括重庆、四川、贵州、云南、西藏; 东北地区包括辽宁、吉林、黑龙江; 西北地区包括陕西、宁夏、甘肃、青海、新疆。因数据可获得性, 不包括香港、澳门和台湾地区。Data are from the Provincial Greenhouse Gas Inventories Compilation Guidelines (Trial). North China includes Beijing, Tianjin, Hebei, Shanxi, Inner Mongolia; East China includes Shanghai, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi, Shandong; South Central China includes Henan, Hubei, Hunan, Guangdong, Guangxi, Hainan; Southwest China includes Chongqing, Sichuan, Guizhou, Yunnan, Tibet; Northeast China includes Liaoning, Jilin, Heilongjiang; Northwest China includes Shaanxi, Ningxia, Gansu, Qinghai and Xinjiang. Hongkong, Macao and Taiwan areas are not included. 表 11 主要农作物经济系数、含水量和碳吸收率[50-51]
Table 11. Economic factors, water contents and carbon absorption rates of main crops[50-51]
作物
Crop经济系数
Economic factor含水量
Water content (%)碳吸收率
Carbon absorption
rate [g(C)∙g−1]小麦 Wheat 0.40 12 0.485 稻谷 Paddy 0.45 12 0.414 玉米 Maize 0.40 13 0.471 豆类 Beans 0.34 13 0.450 油菜籽 Rape seed 0.25 10 0.450 花生 Peanut 0.43 10 0.450 棉花 Cotton 0.10 8 0.450 薯类 Manioc 0.70 70 0.423 甘蔗 Cane 0.50 50 0.450 蔬菜 Vegetables 0.60 90 0.450 瓜类 Cucurbits 0.70 90 0.450 其他作物
Other crops0.40 12 0.450 -
[1] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104−127TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104−127 [2] 张扬, 李涵, 赵正豪. 中国粮食作物种植变化对省际农业碳排放量的影响研究[J/OL]. 中国农业资源与区划, [2022-11-20]. http://kns.cnki.net/kcms/detail/11.3513.S.20220831.1438.012.htmlZHANG Y, LI H, ZHAO Z H. Effects of grain crop planting changes on agricultural carbon emissions between provinces in China[J/OL]. Chinese Journal of Agricultural Resources and Regional Planning, [2022-11-20]. http://kns.cnki.net/kcms/detail/11.3513.S.20220831.1438.012.html [3] 蒋旭东, 王丹, 杨庆. 碳排放核算方法学[M]. 北京: 中国社会科学出版社, 2021JIANG X D, WANG D, YANG Q. Carbon Emission Accounting Methodology[M]. Beijing: China Social Sciences Press, 2021 [4] 张广胜, 王珊珊. 中国农业碳排放的结构、效率及其决定机制[J]. 农业经济问题, 2014, 35(7): 18−26, 110 doi: 10.13246/j.cnki.iae.2014.07.003ZHANG G S, WANG S S. China’s agricultural carbon emission: structure, efficiency and its determinants[J]. Issues in Agricultural Economy, 2014, 35(7): 18−26, 110 doi: 10.13246/j.cnki.iae.2014.07.003 [5] 张鲜鲜, 周胜, 孙会峰, 等. DNDC模型在稻田生态系统中的研究进展及应用[J]. 上海农业学报, 2019, 35(1): 109−117ZHANG X X, ZHOU S, SUN H F, et al. Advance and application of DNDC model in paddy ecosystem[J]. Acta Agriculturae Shanghai, 2019, 35(1): 109−117 [6] 赵苗苗, 邵蕊, 杨吉林, 等. 基于DNDC模型的稻田温室气体排放通量模拟[J]. 生态学杂志, 2019, 38(4): 1057−1066ZHAO M M, SHAO R, YANG J L, et al. Simulation of greenhouse gas fluxes in rice fields based on DNDC model[J]. Chinese Journal of Ecology, 2019, 38(4): 1057−1066 [7] 赵雅雯, 王金洲, 王士超, 等. 潮土区小麦、玉米残体对土壤有机碳的贡献−基于改进的RothC模型[J]. 中国农业科学, 2016, 49(21): 4160−4168ZHAO Y W, WANG J Z, WANG S C, et al. Contributions of wheat and corn residues to soil organic carbon under Fluvo-Aquic soil area — based on the modified Roth C model[J]. Scientia Agricultura Sinica, 2016, 49(21): 4160−4168 [8] 郭淼, 遆超普, 蔡祖聪, 等. 温室气体排放量空间尺度扩展方法的误差来源分析−以CH4MOD模型为例[J]. 土壤学报, 2012, 49(5): 916−923GUO M, TI C P, CAI Z C, et al. Sources of errors in spatial upscaling of greenhouse gas emission from soil — a case study of CH4MOD model[J]. Acta Pedologica Sinica, 2012, 49(5): 916−923 [9] 毛国华, 马文林, 康静文. 北京市农用地N2O排放估算−基于区域氮循环IAP-N模型[J]. 江苏农业科学, 2018, 46(5): 280−284MAO G H, MA W L, KANG J W. Estimation of N2O emission from farmlands in Beijing City — Based on regional nitrogen cycling IAP-N model[J]. Jiangsu Agricultural Sciences, 2018, 46(5): 280−284 [10] LIU M D, MENG J J, LIU B H. Progress in the studies of carbon emission estimation[J]. Tropical Geography, 2014, 34(2): 248−258 [11] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 [12] 曾大林, 纪凡荣, 李山峰. 中国省际低碳农业发展的实证分析[J]. 中国人口·资源与环境, 2013, 23(11): 30−35 doi: 10.3969/j.issn.1002-2104.2013.11.005ZENG D L, JI F R, LI S F. An empirical analysis of Chinese provincial low carbon agriculture development[J]. China Population, Resources and Environment, 2013, 23(11): 30−35 doi: 10.3969/j.issn.1002-2104.2013.11.005 [13] 陈银娥, 陈薇. 农业机械化、产业升级与农业碳排放关系研究−基于动态面板数据模型的经验分析[J]. 农业技术经济, 2018(5): 122−133 doi: 10.13246/j.cnki.jae.2018.05.010CHEN Y E, CHEN W. A study on the relationship among agricultural mechanization, industrial upgrading and agricultural carbon emission — The empirical research based on dynamic panel data model[J]. Journal of Agrotechnical Economics, 2018(5): 122−133 doi: 10.13246/j.cnki.jae.2018.05.010 [14] 田云, 张俊飚, 尹朝静, 等. 中国农业碳排放分布动态与趋势演进−基于31个省(市、区) 2002—2011年的面板数据分析[J]. 中国人口·资源与环境, 2014, 24(7): 91−98TIAN Y, ZHANG J B, YIN C J, et al. Distributional dynamics and trend evolution of China’s agricultural carbon emissions — An analysis on panel data of 31 provinces from 2002 to 2011[J]. China Population, Resources and Environment, 2014, 24(7): 91−98 [15] 程琳琳, 张俊飚, 田云, 等. 中国省域农业碳生产率的空间分异特征及依赖效应[J]. 资源科学, 2016, 38(2): 276−289CHENG L L, ZHANG J B, TIAN Y, et al. The spatial variation characteristics and dependency of agricultural carbon productivity in China[J]. Resources Science, 2016, 38(2): 276−289 [16] WEST T O, MARLAND G. A synthesis of carbon sequestration, carbon emissions, and net carbon flux in agriculture: comparing tillage practices in the United States[J]. Agriculture, Ecosystems & Environment, 2002, 91(1/2/3): 217−232 [17] 智静, 高吉喜. 中国城乡居民食品消费碳排放对比分析[J]. 地理科学进展, 2009, 28(3): 429−434ZHI J, GAO J X. Analysis of carbon emission caused by food consumption in urban and rural inhabitants in China[J]. Progress in Geography, 2009, 28(3): 429−434 [18] CHENG K, PAN G X, SMITH P, et al. Carbon footprint of China’s crop production—An estimation using agro-statistics data over 1993−2007[J]. Agriculture, Ecosystems and Environment, 2011, 142(3): 231−237 [19] DUBEY A, LAL R. Carbon footprint and sustainability of agricultural production systems in Punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350 doi: 10.1080/15427520902969906 [20] SINGH S, SINGH S, PANNU C J S, et al. Energy input and yield relations for wheat in different agro-climatic zones of the Punjab[J]. Applied Energy, 1999, 63(4): 287−298 doi: 10.1016/S0306-2619(99)00034-3 [21] ZHANG W F, DOU Z X, HE P, et al. New technologies reduce greenhouse gas emissions from nitrogenous fertilizer in China[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(21): 8375−8380 doi: 10.1073/pnas.1210447110 [22] 陈舜, 逯非, 王效科. 中国氮磷钾肥制造温室气体排放系数的估算[J]. 生态学报, 2015, 35(19): 6371−6383CHEN S, LU F, WANG X K. Estimation of greenhouse gases emission factors for China’s nitrogen, phosphate, and potash fertilizers[J]. Acta Ecologica Sinica, 2015, 35(19): 6371−6383 [23] 范紫月, 宋春玉, 齐晓波, 等. 中国农业系统近40年温室气体排放核算[J]. 生态学报, 2022, 42(23): 9470−9482FAN Z Y, SONG C Y, QI X B, et al. Accounting of greenhouse gas emissions from China’s agricultural system in recent 40 years[J]. Acta Ecologica Sinica, 2022, 42(23): 9470−9482 [24] 张国, 逯非, 黄志刚, 等. 我国主粮作物的化学农药用量及其温室气体排放估算[J]. 应用生态学报, 2016, 27(9): 2875−2883 doi: 10.13287/j.1001-9332.201609.031ZHANG G, LU F, HUANG Z G, et al. Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2875−2883 doi: 10.13287/j.1001-9332.201609.031 [25] LAL R. Carbon emission from farm operations[J]. Environment International, 2004, 30(7): 981−990 doi: 10.1016/j.envint.2004.03.005 [26] 李国志, 李宗植. 中国农业能源消费碳排放因素分解实证分析−基于LMDI模型[J]. 农业技术经济, 2010(10): 66−72LI G Z, LI Z Z. Empirical analysis of carbon emission factors decomposition of agricultural energy consumption in China — Based on LMDI model[J]. Journal of Agrotechnical Economics, 2010(10): 66−72 [27] 史常亮, 郭焱, 占鹏, 等. 中国农业能源消费碳排放驱动因素及脱钩效应[J]. 中国科技论坛, 2017(1): 136−143SHI C L, GUO Y, ZHAN P, et al. Driving factors and decoupling effect of carbon emissions from energy consumption: evidence from China’s agricultural sector[J]. Forum on Science and Technology in China, 2017(1): 136−143 [28] 冉启英, 王倍倍, 周辉. 碳排放约束下农业全要素能源效率增长及收敛分析−基于Malmquist-Luenberger指数分解[J]. 生态经济, 2018, 34(2): 47−53RAN Q Y, WANG B B, ZHOU H. Agricultural total factor energy efficiency growth and convergence under carbon emission constraints— Based on Malmquist-Luenberger index[J]. Ecological Economy, 2018, 34(2): 47−53 [29] 于伟咏, 漆雁斌, 李阳明. 碳排放约束下中国农业能源效率及其全要素生产率研究[J]. 农村经济, 2015(8): 28−34YU W Y, QI Y B, LI Y M. Agricultural energy efficiency and its total factor productivity under carbon emission constraints in China[J]. Rural Economy, 2015(8): 28−34 [30] 庞丽. 我国农业碳排放的区域差异与影响因素分析[J]. 干旱区资源与环境, 2014, 28(12): 1−7 doi: 10.13448/j.cnki.jalre.2014.12.001PANG L. Empirical study of regional carbon emissions of agriculture in China[J]. Journal of Arid Land Resources and Environment, 2014, 28(12): 1−7 doi: 10.13448/j.cnki.jalre.2014.12.001 [31] 吴昊玥, 何宇, 黄瀚蛟, 等. 中国种植业碳补偿率测算及空间收敛性[J]. 中国人口·资源与环境, 2021, 31(6): 113−123WU H Y, HE Y, HUANG H J, et al. Estimation and spatial convergence of carbon compensating rate of planting industry in China[J]. China Population, Resources and Environment, 2021, 31(6): 113−123 [32] 万小楠, 赵珂悦, 吴雄伟, 等. 秸秆还田对冬小麦-夏玉米农田土壤固碳、氧化亚氮排放和全球增温潜势的影响[J]. 环境科学, 2022, 43(1): 569−576WAN X N, ZHAO K Y, WU X W, et al. Effects of stalk incorporation on soil carbon sequestration, nitrous oxide emissions, and global warming potential of a winter wheat-summer maize field in Guanzhong Plain[J]. Environmental Science, 2022, 43(1): 569−576 [33] 王革华. 农村能源建设对减排SO2和CO2贡献分析方法[J]. 农业工程学报, 1999, 15(1): 169−172 doi: 10.3321/j.issn:1002-6819.1999.01.035WANG G H. Analysis method on reducing emission of SO2 and CO2 by rural energy construction[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999, 15(1): 169−172 doi: 10.3321/j.issn:1002-6819.1999.01.035 [34] 曹国良, 张小曳, 王丹, 等. 秸秆露天焚烧排放的TSP等污染物清单[J]. 农业环境科学学报, 2005, 24(4): 800−804CAO G L, ZHANG X Y, WANG D, et al. Inventory of emissions of pollutants from open burning crop residue[J]. Journal of Agro-Environmental Science, 2005, 24(4): 800−804 [35] ANDREAE M O, MERLET P. Emission of trace gases and aerosols from biomass burning[J]. Global Biogeochemical Cycles, 2001, 15(4): 955−966 doi: 10.1029/2000GB001382 [36] 刘丽华, 蒋静艳, 宗良纲. 农业残留物燃烧温室气体排放清单研究: 以江苏省为例[J]. 环境科学, 2011, 32(5): 1242−1248LIU L H, JIANG J Y, ZONG L G. Emission inventory of greenhouse gases from agricultural residues combustion: a case study of Jiangsu Province[J]. Environmental Science, 2011, 32(5): 1242−1248 [37] 李艳春, 王义祥, 王成己, 等. 福建省农业生态系统氧化亚氮排放量估算及特征分析[J]. 中国生态农业学报, 2014, 22(2): 225−233 doi: 10.3724/SP.J.1011.2014.30392LI Y C, WANG Y X, WANG C J, et al. Analysis of N2O emissions from the agro-ecosystem in Fujian Province[J]. Chinese Journal of Eco-Agriculture, 2014, 22(2): 225−233 doi: 10.3724/SP.J.1011.2014.30392 [38] 伍芬琳, 李琳, 张海林, 等. 保护性耕作对农田生态系统净碳释放量的影响[J]. 生态学杂志, 2007, 26(12): 2035−2039WU F L, LI L, ZHANG H L, et al. Effects of conservation tillage on net carbon flux from farmland ecosystems[J]. Chinese Journal of Ecology, 2007, 26(12): 2035−2039 [39] 杨思存, 王成宝, 霍琳, 等. 不同耕作措施对甘肃引黄灌区耕地土壤有机碳的影响[J]. 农业工程学报, 2019, 35(2): 114−121YANG S C, WANG C B, HUO L, et al. Effects of different tillage practices on soil organic carbon of cultivated land in Gansu Yellow River irrigation district[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(2): 114−121 [40] 李迎春, 林而达, 甄晓林. 农业温室气体清单方法研究最新进展[J]. 地球科学进展, 2007, 22(10): 1076−1080 doi: 10.3321/j.issn:1001-8166.2007.10.012LI Y C, LIN E D, ZHEN X L. Advances in methods of agricultural greenhouse gas inventories[J]. Advances in Earth Science, 2007, 22(10): 1076−1080 doi: 10.3321/j.issn:1001-8166.2007.10.012 [41] 张学智, 王继岩, 张藤丽, 等. 中国农业系统N2O排放量评估及低碳措施[J]. 江苏农业学报, 2021, 37(5): 1215−1223ZHANG X Z, WANG J Y, ZHANG T L, et al. Assessment of nitrous oxide emissions from Chinese agricultural system and low-carbon measures[J]. Jiangsu Journal of Agricultural Sciences, 2021, 37(5): 1215−1223 [42] 闵继胜, 胡浩. 中国农业生产温室气体排放量的测算[J]. 中国人口·资源与环境, 2012, 22(7): 21−27MIN J S, HU H. Calculation of greenhouse gases emission from agricultural production in China[J]. China Population, Resources and Environment, 2012, 22(7): 21−27 [43] 王明星, 李晶, 郑循华. 稻田甲烷排放及产生、转化、输送机理[J]. 大气科学, 1998, 22(4): 600−612 doi: 10.3878/j.issn.1006-9895.1998.04.20WANG M X, LI J, ZHENG X H. Methane emission and mechanisms of methane production, oxidation, transportation in the rice fields[J]. Scientia Atmospherica Sinica, 1998, 22(4): 600−612 doi: 10.3878/j.issn.1006-9895.1998.04.20 [44] 唐志伟, 张俊, 邓艾兴, 等. 我国稻田甲烷排放的时空特征与减排途径[J]. 中国生态农业学报(中英文), 2022, 30(4): 582−591TANG Z W, ZHANG J, DENG A X, et al. Spatiotemporal characteristics and reduction approaches of methane emissions from rice fields in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 582−591 [45] 周艳, 邓凯东, 董利锋, 等. 反刍家畜肠道甲烷的产生与减排技术措施[J]. 家畜生态学报, 2018, 39(4): 6−10, 54ZHOU Y, DENG K D, DONG L F, et al. Intestinal tract methane production and emission reduction measures in ruminants[J]. Journal of Domestic Animal Ecology, 2018, 39(4): 6−10, 54 [46] 胡向东, 王济民. 中国畜禽温室气体排放量估算[J]. 农业工程学报, 2010, 26(10): 247−252HU X D, WANG J M. Estimation of livestock greenhouse gases discharge in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2010, 26(10): 247−252 [47] 吴嘉莘, 杨红娟. 农业净碳汇测算方法研究综述[J]. 农业经济, 2020(10): 29−31WU J X, YANG H J. Review on the calculation methods of agricultural net carbon sink[J]. Agricultural Economy, 2020(10): 29−31 [48] 田云, 张俊飚. 中国农业生产净碳效应分异研究[J]. 自然资源学报, 2013, 28(8): 1298−1309 doi: 10.11849/zrzyxb.2013.08.003TIAN Y, ZHANG J B. Regional differentiation research on net carbon effect of agricultural production in China[J]. Journal of Natural Resources, 2013, 28(8): 1298−1309 doi: 10.11849/zrzyxb.2013.08.003 [49] 翁翎燕, 李伟霄, 张梅, 等. 江苏省农田生态系统净碳汇时空演变特征[J]. 长江流域资源与环境, 2022, 31(7): 1584−1594WENG L Y, LI W X, ZHANG M, et al. Spatial-temporal evolution of net carbon sink of farmland ecosystem in Jiangsu Province[J]. Resources and Environment in the Yangtze Basin, 2022, 31(7): 1584−1594 [50] 王修兰. 二氧化碳、气候变化与农业[M]. 北京: 气象出版社, 1996WANG X L. Carbon Dioxide, Climate Change and Agriculture[M]. Beijing: China Meteorological Press, 1996 [51] 韩召迎, 孟亚利, 徐娇, 等. 区域农田生态系统碳足迹时空差异分析−以江苏省为案例[J]. 农业环境科学学报, 2012, 31(5): 1034−1041HAN Z Y, MENG Y L, XU J, et al. Temporal and spatial difference in carbon footprint of regional farmland ecosystem — Taking Jiangsu Province as a case[J]. Journal of Agro-Environment Science, 2012, 31(5): 1034−1041 [52] 方精云, 郭兆迪, 朴世龙, 等. 1981—2000年中国陆地植被碳汇的估算[J]. 中国科学(D辑: 地球科学), 2007, 37(6): 804−812FANG J Y, GUO Z D, PIAO S L, et al. Estimation of terrestrial vegetation carbon sinks in China from 1981 to 2000[J]. Science in China (Series D: Earth Sciences), 2007, 37(6): 804−812 [53] 张大东, 张社梅, 黄伟. 浙江省农业系统碳源、碳汇现状评估分析[J]. 中国农业资源与区划, 2012, 33(5): 12−19ZHANG D D, ZHANG S M, HUANG W. Estimation of carbon source and sink of the agricultural system in Zhejiang Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2012, 33(5): 12−19 [54] 韩冰, 王效科, 逯非, 等. 中国农田土壤生态系统固碳现状和潜力[J]. 生态学报, 2008, 28(2): 612−619HAN B, WANG X K, LU F, et al. Soil carbon sequestration and its potential by cropland ecosystems in China[J]. Acta Ecologica Sinica, 2008, 28(2): 612−619 [55] 王微, 林剑艺, 崔胜辉, 等. 碳足迹分析方法研究综述[J]. 环境科学与技术, 2010, 33(7): 71−78WANG W, LIN J Y, CUI S H, et al. An overview of carbon footprint analysis[J]. Environmental Science & Technology, 2010, 33(7): 71−78 [56] 黄祖辉, 米松华. 农业碳足迹研究−以浙江省为例[J]. 农业经济问题, 2011, 32(11): 40−47, 111 doi: 10.13246/j.cnki.iae.2011.11.007HUANG Z H, MI S H. Agricultural sector carbon footprint accounting: a case of Zhejiang, China[J]. Issues in Agricultural Economy, 2011, 32(11): 40−47, 111 doi: 10.13246/j.cnki.iae.2011.11.007 [57] 姚成胜, 钱双双, 李政通, 等. 中国省际畜牧业碳排放测度及时空演化机制[J]. 资源科学, 2017, 39(4): 698−712YAO C S, QIAN S S, LI Z T, et al. Provincial animal husbandry carbon emissions in China and temporal-spatial evolution mechanism[J]. Resources Science, 2017, 39(4): 698−712 [58] 赵敏娟, 石锐, 姚柳杨. 中国农业碳中和目标分析与实现路径[J]. 农业经济问题, 2022, 43(9): 24−34 doi: 10.13246/j.cnki.iae.20220913.002ZHAO M J, SHI R, YAO L Y. Analysis on the goals and paths of carbon neutral agriculture in China[J]. Issues in Agricultural Economy, 2022, 43(9): 24−34 doi: 10.13246/j.cnki.iae.20220913.002 [59] 马诗萍, 刘倩倩, 张文忠. 空间视角下的能源—经济—环境关系研究进展与展望[J]. 地理科学进展, 2022, 41(8): 1530−1541 doi: 10.18306/j.issn.1007-6301.2022.8.dlkxjz202208015MA S P, LIU Q Q, ZHANG W Z. Progress and prospect of energy−economy−environment nexus research from a spatial perspective[J]. Progress in Geography, 2022, 41(8): 1530−1541 doi: 10.18306/j.issn.1007-6301.2022.8.dlkxjz202208015 [60] 张俊飚, 何可. “双碳”目标下的农业低碳发展研究: 现状、误区与前瞻[J]. 农业经济问题, 2022(9): 35−46ZHANG J B, HE K. Research on agricultural low-carbon development under the target of Double Carbon: current situation, misunderstanding and prospect[J]. Issues in Agricultural Economy, 2022(9): 35−46 [61] 牛志伟, 邹昭晞. 农业生态补偿的理论与方法−基于生态系统与生态价值一致性补偿标准模型[J]. 管理世界, 2019, 35(11): 133−143 doi: 10.19744/j.cnki.11-1235/f.2019.0153NIU Z W, ZOU Z X. Theory and method of agricultural ecological compensation— Based on the consistency compensation standard model on the ecosystem and ecological value[J]. Management World, 2019, 35(11): 133−143 doi: 10.19744/j.cnki.11-1235/f.2019.0153 [62] 陈儒. 低碳农业研究的知识图谱及比较[J]. 华南农业大学学报(社会科学版), 2019, 18(3): 22−34CHEN R. Knowledge graph and comparison of researches on low carbon agriculture[J]. Journal of South China Agricultural University (Social Science Edition), 2019, 18(3): 22−34 -

计量
- 文章访问数: 1564
- HTML全文浏览量: 329
- PDF下载量: 347
- 被引次数: 0