Nitrogen acquirement strategy of different nitrogen forms in two pineapple cultivars
-
摘要: 氮是与菠萝产量关系密切的大量营养元素之一。本试验分别在4月和9月两个生长季节, 选择了广东省徐闻县田间生长的‘巴厘’和‘台农17’两个菠萝品种不同年龄的植株为研究对象, 测定了不同年龄植株的形态、生理和生长特征, 并利用稳定性同位素15N示踪技术分析了菠萝对3种形态氮素[铵态氮、硝态氮和氨基酸态氮(甘氨酸)]的获取策略, 以探讨菠萝吸收氮素的偏好, 为。结果表明, 在4月份果实收获期, 与‘巴厘’相比, ‘台农17’菠萝的产量(单个鲜果重)和根生物量较低, 但其植株高度、单株生物量、叶片N、K含量和比叶面积无显著差异, 叶片碳稳定性同位素(δ13C)和P含量较高。在4月和9月, 两菠萝品种间对不同形态的氮素吸收均有显著差异。总体而言, ‘台农17’比‘巴厘’的氮吸收能力强(P<0.05)。‘台农17’菠萝较强的氮吸收能力和水分利用效率更有助于将其分配到地上以促进光合作用, 从而维持其植株在较短生命周期内的生长。两菠萝品种都偏好吸收铵态氮(36.8%~64.6%), 其次是甘氨酸(23.2%~47.1%), 对硝态氮吸收速率最低(9.1%~31.5%)。处于营养生长阶段的菠萝植株(5~8个月)比果实收获时期的氮吸收速率高。随着年龄的增长, 铵态氮贡献率逐渐增大, 而甘氨酸贡献率逐渐降低。不同季节和年龄条件下, 不同形态氮素的吸收速率与土壤氮含量和其他所测得植物性状的相关性不显著。总之, 本研究首次证实田间菠萝的根系具有较强直接吸收利用有机氮的能力, 菠萝的品种和生长阶段都是影响氮素获取策略的重要因素。Abstract: Pineapple [Ananas comosus (Linn.) Merr.] is China’s third largest tropical fruit, with the largest planting area in Xuwen County, Guangdong Province. As one of the most important macronutrients, nitrogen is closely related to pineapple yield. However, the uptake preferences for different nitrogen forms in field-grown pineapple plants remain unclear. In this study, the morphological, physiological, and growth traits of plants with different ages were measured in two field-grown pineapple cultivars (‘Tainang 17’ and ‘Bali’) with different growth periods in April and September, respectively, in Xuwen County. In addition, nitrogen acquisition strategies for three different forms of nitrogen (ammonium nitrogen, nitrate nitrogen, and glycine) in the pineapple roots were determined using the stable isotope 15N tracer technique. The results indicated that the growth period of the ‘Tainang 17’ pineapple (16 months) was shorter than that of ‘Bali’ (20 months). During the fruit harvest period in April, compared with the ‘Bali’ pineapple (796 g fresh fruit weight per plant), ‘Tainang 17’ pineapple plants had lower yield (532 g fresh fruit weight per plant), root biomass, and P content; but had similar plant height, plant biomass per plant, leaf N and K contents, and specific leaf area. As an indicator of long-term water-use efficiency, the δ13C value ranging from −15.16‰ to −13.28‰, was higher in the leaves of ‘Tainang 17’ pineapple than that in ‘Bali.’ Neither cultivar nor age greatly affected the leaf δ13C values. In April and September, there were significant differences in the different forms of nitrogen uptake between the two pineapple cultivars. The nitrogen uptake capacity of ‘Tainang 17’ pineapple was higher than that of ‘Bali.’ The high acquirement capacity of nitrogen and water use efficiency of ‘Tainang 17’ pineapple is attributed to promoting photosynthesis and thus maintaining plant growth in a relatively short life cycle. Both pineapple cultivars preferred to acquire ammonium nitrogen (36.8%–64.6%), followed by glycine (23.2%–47.1%), and the uptake rate of nitrate nitrogen was the lowest (9.1%–31.5%). The nitrogen uptake rate of pineapple plants in the vegetative growth stage (5–8-month-old) was higher than that of plants in the fruit-harvesting stage. However, with increasing plant age, the contribution rate of ammonium nitrogen increased, whereas that of glycine gradually decreased. Across different pineapple cultivars and plant ages, the rates of different forms of nitrogen uptake were not linearly correlated with the soil nitrogen content or measured plant traits. To the best of our knowledge, this is the first study to show that the roots of field-grown pineapple plants can directly absorb organic nitrogen from the soil. Cultivar and plant growth stages of pineapples are important factors that affect nitrogen acquisition strategies. However, the linear relationships between the absorption rates of different forms of nitrogen and soil nitrogen content or measured plant traits were very weak. These results contribute to nitrogen fertilizer management in pineapple plantations.
-
图 1 不同季节两个菠萝品种不同生长时期叶片N、P、K含量
C: 品种; A: 年龄; M: 月。*: P<0.05; **: P<0.01; ns: 无显著差异。不同小写字母表示差异显著(P<0.05)。 C: cultivar; A: age; M: months. Different lowercase letters indicate significant differences at P<0.05 level.
Figure 1. Leaf N, P and K contents of two pineapple cultivars in different stages sampled in different seasons
图 2 不同季节两个菠萝品种不同生长时期的叶片δ13C值
C: 品种; A: 年龄; M: 月。*: P<0.05; ns: 无显著差异。不同小写字母表示差异显著(P<0.05)。C: cultivar; A: age; M: months. Different lowercase letters indicate significant differences at P<0.05 level.
Figure 2. Leaf δ13C values of two pineapple cultivars in different growth period sampled in different seasons
图 3 不同季节的两个菠萝品种对不同形态氮的吸收速率
C: 品种; A: 年龄; F: 氮形态; M:月。*: P<0.05; ns: 无显著差异。不同小写字母表示差异显著(P<0.05)。C: cultivar; A: age; F: nitrogen form; M: months. Different lowercase letters indicate significant differences at P<0.05 level.
Figure 3. Uptake rates of different nitrogen forms in two pineapple cultivars sampled in different seasons
表 1 不同季节的两菠萝品种的形态和生长特征
Table 1. Morphological and growth traits of two pineapple cultivars sampled in different seasons
季节
Season品种
Cultivar年龄
Age
(months)生长阶段
Growth stage株高
Height
(cm)植株鲜重
Fresh weight
(g)比叶面积
Specific leaf area
(cm2∙g−1)根干重
Root dry
weight (g)单果重
Weight per
fruit (g)比根长
Specific fine-root
length (m∙g−1)4月
April巴厘
Bali8 营养生长期
Vegetative stage43.0±5.5b 652±113.7b 85.5±25.9a 33.8±13.8b / / 20 果实收获期
Harvest stage90.0±8.1a 3064±904.2a 56.0±2.9b 68.5±16.3a 796±197.7a / 台农17
Tainong175 营养生长期
Vegetative stage51.6±6.7b 752±384.1b 55.5±22.9b 39.0±15.6b / / 16 果实收获期
Harvest stage96.8±6.6a 2868±595.9a 59.4±5.1b 49.8±13.2b 532±100.6b / 二维方差分析
Two-way ANOVA品种 Cultivar (C) * ** ns ns * 年龄 Age (A) *** ** ns ** C×A ns ns * * 9月
September巴厘
Bali13# 营养生长期
Vegetative stage59.2±13.9b 1521±757.6b 59.1±5.2b 12.9±6.1b / 11±1.8a 15 营养生长期
Vegetative stage64.8±4.0ab 1959±523.9b 59.2±5.7b 14.4±7.5b / 10±5.1ab 台农17
Tainong1710# 营养生长期
Vegetative stage69.0±4.6ab 2170±176.6b 67.9±4.6a 18.2±4.2b / 7.5±2.5ab 12 营养生长期
Vegetative stage72.6±6.6a 3246±410.8a 59.4±6.5b 31.5±5.6a / 6.2±1.4b 二维方差分析
Two-way ANOVA品种 Cultivar (C) * ** ns ** * 年龄 Age (A) ns ** ns * ns C×A ns ns ns * ns 同一个月内不同字母表示不同品种不同生育期间差异显著(P<0.05)。*: P<0.05; **: P<0.01; ***: P<0.001; ns: 无显著差异; #: 4月起的标记追踪材料。Different lowercase letters indicate significant differences among growth stages of two cultivars within the same season at P<0.05 level. ns: no significant difference. #: tracked plants from seedlings growing in April to September. 表 2 不同季节两个菠萝品种不同生长时期的土壤不同形态氮含量
Table 2. Contents of different nitrogen forms in soils of two pineapple cultivars in different stages sampled in different seasons
mg∙kg−1 季节 Season 品种 Cultivar 年龄 Age (months) 铵态氮 MH4+-N 硝态氮 NO3−-N 甘氨酸 Glycine 4月 April 巴厘 Bali 8 38.4±1.11b 8.53±0.04a 691.58±16.80b 20 142.33±19.07a 8.70±0.19b 856.82±69.94a 台农17 Tainong17 5 52.33±2.78b 8.03±0.05a 710.12±55.25b 16 17.37±0.59c 5.20±0.03c 617.07±91.07b 9月September 巴厘 Bali 13 10.63 11.1 249.75 15 9.87 11.51 268.03 台农17 Tainong17 10 7.75 9.02 189.32 12 4.67 4.84 296.44 同列不同小写字母表示4月不同土壤样品间存在显著差异(P<0.05)。Different lowercase letters in the same column indicate significant differences among soil samples in April at P<0.05 level. 表 3 菠萝功能性状与氮素吸收速率的相关性
Table 3. Correlation between plant traits and N uptake rates of pineapple
功能性状
Ttrait氮吸收速率 N uptake rate 铵态氮 NH4+-N 硝态氮 NO3−-N 甘氨酸 Glycine 总吸收速率 Total absorption 整株生物量 Plant biomass 0.012 −0.475 −0.617 −0.388 比叶面积 Specific leaf area 0.088 −0.183 0.324 0.063 根生物量 Root biomass 0.229 0.254 −0.119 0.169 比根长 Specific root length −0.882 −0.881 −0.875 −0.918 叶片氮含量 Leaf N content −0.203 −0.576 −0.389 −0.453 -
[1] 王春晓, 凌飞, 鹿泽启, 等. 不同氮效率花生品种氮素累积与利用特征[J]. 中国生态农业学报(中英文), 2019, 27(11): 1706−1713WANG C X, LING F, LU Z Q, et al. Characteristics of nitrogen accumulation and utilization in peanuts (Arachis hypogaea) with different nitrogen use efficiencies[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1706−1713 [2] 连盈, 卢娟, 胡成梅, 等. 低氮胁迫对谷子苗期性状的影响和耐低氮品种的筛选[J]. 中国生态农业学报(中英文), 2020, 28(4): 523−534LIAN Y, LU J, HU C M, et al. Effects of low nitrogen stress on foxtail millet seedling characteristics and screening of low nitrogen tolerant varieties[J]. Chinese Journal of Eco-Agriculture, 2020, 28(4): 523−534 [3] MA L N, XU X F, ZHANG C X, et al. Strong non-growing season N uptake by deciduous trees in a temperate forest: A 15N isotopic experiment[J]. Journal of Ecology, 2021, 109: 3752−3766 doi: 10.1111/1365-2745.13754 [4] STUART CHAPIN F III, MOILANEN L, KIELLAND K. Preferential use of organic nitrogen for growth by a non-mycorrhizal Arctic sedge[J]. Nature, 1993, 361(6408): 150−153 doi: 10.1038/361150a0 [5] NÄSHOLM T, HUSS-DANELL K, HÖGBERG P. Uptake of glycine by field grown wheat[J]. New Phytologist, 2001, 150(1): 59−63 doi: 10.1046/j.1469-8137.2001.00072.x [6] ICHIHASHI Y, DATE Y, SHINO A, et al. Multi-omics analysis on an agroecosystem reveals the significant role of organic nitrogen to increase agricultural crop yield[J]. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(25): 14552−14560 doi: 10.1073/pnas.1917259117 [7] FARZADFAR S, CONGREVES K A. Soil organic nitrogen: an overlooked but potentially significant contribution to crop nutrition[J]. Plant and Soil, 2021, 462(1): 7−23 [8] ZHANG J B, WANG J, MÜLLER C, et al. Ecological and practical significances of crop species preferential N uptake matching with soil N dynamics[J]. Soil Biology and Biochemistry, 2016, 103: 63−70 doi: 10.1016/j.soilbio.2016.08.009 [9] CUI J H, YU C Q, QIAO N, et al. Plant preference for NH4+ versus NO3− at different growth stages in an alpine agroecosystem[J]. Field Crops Research, 2017, 201: 192−199 doi: 10.1016/j.fcr.2016.11.009 [10] HENNERON L, KARDOL P, WARDLE D A, et al. Rhizosphere control of soil nitrogen cycling: a key component of plant economic strategies[J]. The New Phytologist, 2020, 228(4): 1269−1282 doi: 10.1111/nph.16760 [11] MERCIER H, KERBAUY G B, CARVALHO M T, et al. Growth and GDH and AAT isoenzyme patterns in terrestrial and epiphytic bromeliads as influenced by nitrogen source[J]. Selbyana, 1997, 18(1): 89−94 [12] ENDRES L, MERCIER H. Ammonium and urea as nitrogen sources for bromeliads[J]. Journal of Plant Physiology, 2001, 158(2): 205−212 doi: 10.1078/0176-1617-00170 [13] MAIA V M, PEGORARO R F, ASPIAZÚ I, et al. Diagnosis and management of nutrient constraints in pineapple[M]// SRIVASTAVA A K, HU C X. Fruit Crops: Diagnosis and Management of Nutrient Constraints. Amsterdam: Elsevier, 2020: 739–760 [14] PEGORARO R F, DE SOUZA B A M, MAIA V M, et al. Growth and production of irrigated Vitória pineapple grown in semi-arid conditions[J]. Revista Brasileira De Fruticultura, 2014, 36(3): 693−703 doi: 10.1590/0100-2945-265/13 [15] 陈菁, 徐明岗, 孙光明, 等. 叶面追施硝态氮肥抑制菠萝营养生长效应[J]. 中国土壤与肥料, 2018(4): 82−86 doi: 10.11838/sfsc.20180413CHEN J, XU M G, SUN G M, et al. Effect of nitrate nitrogen on inhibiting the vegetative growth of pineapple[J]. Soil and Fertilizer Sciences in China, 2018(4): 82−86 doi: 10.11838/sfsc.20180413 [16] 卢明, 剧虹伶, 洪珊, 等. 不同菠萝品种矿质养分的积累特性及利用效率[J]. 果树学报, 2017, 34(9): 1152−1160 doi: 10.13925/j.cnki.gsxb.20170072LU M, JU H L, HONG S, et al. A study on the mineral nutrient accumulation properties and use efficiency in different pineapple varieties[J]. Journal of Fruit Science, 2017, 34(9): 1152−1160 doi: 10.13925/j.cnki.gsxb.20170072 [17] 张锡铜, 吴青松, 林文秋, 等. 18份菠萝种质果实外观性状比较分析[J]. 果树学报, 2022, 39(1): 78−85 doi: 10.13925/j.cnki.gsxb.20200569ZHANG X T, WU Q S, LIN W Q, et al. Comparative analysis of fruit appearance traits of 18 accessions in pineapple germplasm[J]. Journal of Fruit Science, 2022, 39(1): 78−85 doi: 10.13925/j.cnki.gsxb.20200569 [18] 陈菁, 孙光明, 习金根, 等. 菠萝不同品种氮、磷、钾养分累积差异性研究[J]. 广东农业科学, 2010, 37(6): 87–88CHEN J, SUN G M, XI J G, et al. Study on the N, P, K accumulative rule of plantlets of different pinpeapple variety[J]. Guangdong Agricultural Sciences, 2010, 37(6): 87–88 [19] 李常诚, 李倩茹, 徐兴良, 等. 不同林龄杉木氮素的获取策略[J]. 生态学报, 2016, 36(9): 2620−2625LI C C, LI Q R, XU X L, et al. Nitrogen acquisition strategies of Cunninghamia lanceolata at different ages[J]. Acta Ecologica Sinica, 2016, 36(9): 2620−2625 [20] ZHANG Z L, LI N, XIAO J, et al. Changes in plant nitrogen acquisition strategies during the restoration of spruce plantations on the eastern Tibetan Plateau, China[J]. Soil Biology and Biochemistry, 2018, 119: 50−58 doi: 10.1016/j.soilbio.2018.01.002 [21] 董鸣. 陆地生物群落调查观测与分析[M]. 北京: 中国标准出版社, 1997DONG M. Survey, Observation and Analysis of Terristal Biocommunities [M]. Beijing: Standards Press of China, 1997 [22] LAMBERS H, OLIVEIRA R S. Plant Physiological Ecology[M]. Springer Cham: Springer, 2019 [23] MASCLAUX-DAUBRESSE C, DANIEL-VEDELE F, DECHORGNAT J, et al. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture[J]. Annals of Botany, 2010, 105(7): 1141−1157 doi: 10.1093/aob/mcq028 [24] FRESCHET G T, ROUMET C, COMAS L H, et al. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs[J]. The New Phytologist, 2021, 232(3): 1123−1158 doi: 10.1111/nph.17072 [25] MOREAU D, BARDGETT R D, FINLAY R D, et al. A plant perspective on nitrogen cycling in the rhizosphere[J]. Functional Ecology, 2019, 33(4): 540−552 doi: 10.1111/1365-2435.13303 [26] 徐坤, 赵青春. 甜椒对不同形态氮素的吸收和分配[J]. 核农学报, 1999, 13(6): 339−342 doi: 10.3969/j.issn.1000-8551.1999.06.004XU K, ZHAO Q C. Absorption and distribution of different form of nitrogen in sweet pepper[J]. Journal of Nuclear Agricultural Sciences, 1999, 13(6): 339−342 doi: 10.3969/j.issn.1000-8551.1999.06.004 [27] LEROY C, CARRIAS J F, CÉRÉGHINO R, et al. The contribution of microorganisms and metazoans to mineral nutrition in bromeliads[J]. Journal of Plant Ecology, 2016, 9(3): 241−255 doi: 10.1093/jpe/rtv052 [28] MATIZ A, MIOTO P T, AIDAR M M, et al. Utilization of urea by leaves of bromeliad Vriesea gigantea under water deficit: much more than a nitrogen source[J]. Biologia Plantarum, 2017, 61(4): 751−762 doi: 10.1007/s10535-017-0721-z -