Peaking process and decoupling analysis of carbon emissions of crop production in China
-
摘要: 判断种植业碳达峰进程, 可为温室气体减排提供农业领域的数据支撑。考虑农用物资、水稻种植、土壤管理和秸秆燃烧4类排放源, 本文对2000—2020年中国30省(市、自治区)种植业碳排放进行核算, 分类别、分量级对达峰进程展开初步探索, 利用Tapio脱钩指数探讨种植业碳排放与农业产值之间的关系。结果显示: 全国种植业碳排放量年均为23 326.860万t, 在2015年达到峰值26 264.777万t, 达峰后年均变化率为−1.560%, 尚处于平台期。根据达峰进程, 可将30省(市、自治区)分为下降期(北京、天津等13地)、平台期(山西、重庆等10地)、达峰期(河南、安徽等7地)。从全国层面来看, 种植业碳排放与农业产值的长期关系表现为弱脱钩, 短期关系已由弱脱钩转变为强脱钩。就省域层面而言, 短期关系自多种类型并存格局演化为强脱钩主导的极化态势。应根据达峰阶段及特点, 分区域、分类型制定全局减排策略, 加快我国种植业碳排放达峰转降进程。Abstract: Exploring the peaking process of carbon emissions of crop production provides a basis for greenhouse gas emission mitigation. Existing studies have generally found that the carbon emissions of crop production in China reached an inflection point in 2015. Nonetheless, it is far from reliable to judge whether the peak was reached without verifying the specific peaking process by statistical approaches. To better understand the peaking process, this paper calculated the carbon emissions of crop production in 30 Chinese provinces from 2000 to 2020 with four carbon sources considered, including agricultural materials, rice paddies, soil management, and straw burning. Then, the peaking process of carbon emissions was explored from both national and provincial levels. The Tapio decoupling index was used to verify the relationship between carbon emissions and economic output. The results show that: (1) The total carbon emissions of crop production in China had an annual average of 233.269 Mt, increasing from 200.020 Mt to 242.819 Mt during the study period, which peaked at 262.647 Mt in 2015. The average annual change rate after reaching the peak was −1.560%, indicating the emissions entered the plateau. Over time, agricultural materials became the primary emission source with a proportion of 34.6% while soil management contributed the least with a proportion of 11.6% in 2020. (2) Carbon emissions of crop production were positively correlated with the cropping scale. Merely two provinces, Hunan and Henan, had the highest emissions over 20 Mt, five provinces, such as Hubei and Shandong, had the highest emissions distributing in 15~20 Mt, and other five provinces like Jiangxi and Sichuan had the highest emissions ranging from 10 to 15 Mt. In contrast, the highest emissions in 18 provinces were less than 10 Mt, especially in Beijing, Tianjin, and Qinghai, with emission peaks below 1 Mt. As far as the peaking process, the carbon emissions in 13 provinces, including Beijing and Tianjin, were in a state of decline, those of 10 provinces, such as Shanxi and Chongqing, entered a plateau, and those of seven provinces like Henan and Anhui hadn’t met their peak yet. (3) At the national level, the long-term relationship between carbon emissions and economic output showed a weak decoupling, while the short-term one had changed from weak decoupling to strong decoupling. At the provincial level, the short-term relationship had evolved from multi-type coexistence to mainly strong decoupling. Consequently, it is recommended that emission mitigation of crop production in China should be sped up by source and phase based on the peaking process and emission magnitude. The provinces that had emissions in the states of peaking and plateauing require additional attention, as their subsequent developments determined the overall emission reduction. In comparison, flexible space of emission mitigation can be given to the provinces of declining states, as many of them are accompanied by low emissions and optimistic momentum. Nevertheless, three high-emission provinces, Hubei, Jiangxi, and Shandong, had also reached peak emissions and began to decline, which may serve as an example for provinces with similar conditions. The findings provide local solutions to accelerate the peaking process of carbon emissions of crop production in China.
-
图 1 基于指标变化率与弹性值的种植业经济产出的碳排放Tapio脱钩类别划分(ε为脱钩指数, ΔE/E表示种植业碳排放变化率, ΔA/A表示农业产值变化率)
Figure 1. Classification of Tapio decoupling states of carbon emission of crop production based on the changing rate and elasticity (ε is decoupling index, ΔE/E is the change rate of carbon emissions of crop production, ΔA/A is the change rate of agricultural output value)
图 3 2000—2020年中国30省(市、自治区)种植业碳排放总量、结构及达峰进程
纵轴表示种植业碳排放, 横轴表示年份, 从左至右为2000—2020年。每幅堆积柱状图的纵轴区间统一标注于最左侧, 图幅下方依次呈现对应省份、基期(2000年)排放量(×104 t)→峰值排放量(×104 t)→末期(2020年)排放量(×104 t)和达峰后年均变化率。The vertical axis denotes carbon emissions of crop production, and the horizontal axis denotes time, from 2000 to 2020. The range of the vertical axis of the line graph by province is marked on the left side, and the corresponding provinces, emissions (×104 t) in 2000 → peak emissions (×104 t) → emissions (×104 t) in 2020, and annual average change rates after peaking are presented below each bar graph.
Figure 3. Amount, composition, and peaking process of carbon emissions of crop production in 30 Chinese provinces between 2000 and 2020
图 4 基于种植业碳排放和农业产值的省域类型划分
1: 湖南; 2: 河南; 3: 安徽; 4: 江苏; 5: 山东; 6: 湖北; 7: 黑龙江; 8: 江西; 9: 广东; 10: 广西; 11: 四川; 12: 河北; 13: 吉林; 14: 云南; 15: 浙江; 16: 辽宁; 17: 福建; 18: 内蒙古; 19: 新疆; 20: 陕西; 21: 山西; 22: 重庆; 23: 贵州; 24: 甘肃; 25: 海南; 26: 宁夏; 27: 上海; 28: 天津; 29: 北京; 30: 青海。1: Hunan; 2: Henan; 3: Anhui; 4: Jiangsu; 5: Shandong; 6: Hubei; 7: Heilongjiang; 8: Jiangxi; 9: Guangdong; 10: Guangxi; 11: Sichuan; 12: Hebei; 13: Jilin; 14: Yunnan; 15: Zhejiang; 16: Liaoning; 17: Fujian; 18: Inner Mongolia; 19: Xinjiang; 20: Shaanxi; 21: Shanxi; 22: Chongqing; 23: Guizhou; 24: Gansu; 25: Hainan; 26: Ningxia; 27: Shanghai; 28: Tianjin; 29: Beijing; 30: Qinghai.
Figure 4. Provincial classification based on carbon emissions of crop production and agricultural output value
表 1 2000—2020年中国30省(市、自治区)种植业碳排放与农业产值的脱钩状态
Table 1. Decoupling states between carbon emissions of crop production and agricultural output value in 30 Chinese provinces from 2000 to 2020
省份
Province2000—2005 2005—2010 2010—2015 2015—2020 ΔE/E ΔA/A ε s ΔE/E ΔA/A ε s ΔE/E ΔA/A ε s ΔE/E ΔA/A ε s 北京 Beijing −0.197 0.066 −2.973 a −0.011 0.130 −0.088 a −0.279 −0.103 2.713 c −0.427 −0.359 1.190 e 天津 Tianjin 0.137 −0.020 −6.745 g 0.088 0.199 0.440 b −0.051 0.207 −0.245 a −0.175 0.167 −1.048 a 河北 Hebei 0.308 0.313 0.985 d −0.016 0.228 −0.072 a 0.058 0.205 0.285 b −0.160 0.170 −0.940 a 山西 Shanxi 0.226 0.084 2.682 f 0.181 0.227 0.800 b 0.123 0.237 0.520 b −0.045 0.184 −0.243 a 内蒙古 Inner Mongolia 0.400 0.213 1.878 f 0.473 0.205 2.314 f 0.360 0.373 0.963 d −0.013 0.146 −0.088 a 辽宁 Liaoning 0.222 0.341 0.652 b 0.171 0.144 1.189 d 0.050 0.445 0.112 b −0.071 0.057 −1.252 a 吉林 Jilin 0.310 0.410 0.757 b 0.192 0.290 0.662 b 0.295 0.329 0.898 d −0.035 0.259 −0.134 a 黑龙江 Heilongjiang 0.136 0.478 0.285 b 0.738 0.255 2.890 f 0.278 0.356 0.781 b −0.069 0.192 −0.362 a 上海 Shanghai −0.282 −0.090 3.150 c −0.005 0.012 −0.456 a −0.116 −0.087 1.330 c −0.205 −0.216 0.950 e 江苏 Jiangsu −0.016 0.164 −0.095 a 0.062 0.197 0.317 b 0.023 0.210 0.108 b −0.034 0.108 −0.314 a 浙江 Zhejiang −0.187 0.113 −1.656 a −0.084 0.167 −0.505 a −0.091 0.111 −0.817 a −0.087 0.168 −0.517 a 安徽 Anhui 0.057 0.024 2.414 f 0.163 0.276 0.589 b 0.151 0.250 0.606 b −0.042 0.156 −0.272 a 福建 Fujian −0.082 0.187 −0.435 a −0.052 0.224 −0.232 a −0.050 0.237 −0.213 a −0.136 0.212 −0.643 a 江西 Jiangxi 0.124 0.209 0.590 b 0.105 0.175 0.604 b 0.054 0.262 0.204 b −0.093 0.247 −0.376 a 山东 Shandong 0.112 0.186 0.604 b 0.059 0.189 0.311 b 0.032 0.218 0.145 b −0.082 0.214 −0.381 a 河南 Henan 0.175 0.267 0.658 b 0.243 0.279 0.869 d 0.111 0.241 0.460 b −0.030 0.249 −0.121 a 湖北 Hubei 0.051 0.144 0.352 b 0.121 0.216 0.559 b 0.078 0.240 0.324 b −0.116 0.231 −0.501 a 湖南 Hunan 0.006 0.218 0.026 b 0.099 0.241 0.410 b 0.055 0.210 0.264 b −0.089 0.192 −0.461 a 广东 Guangdong −0.078 0.254 −0.308 a 0.003 0.196 0.013 b 0.007 0.222 0.031 a −0.060 0.272 −0.221 a 广西 Guangxi 0.085 0.308 0.276 b −0.016 0.289 −0.055 a 0.015 0.296 0.051 b −0.074 0.347 −0.212 a 海南 Hainan 0.018 0.354 0.050 b 0.220 0.422 0.522 b 0.001 0.348 0.003 a −0.203 0.302 −0.672 a 重庆 Chongqing 0.036 0.199 0.181 b 0.021 0.327 0.064 b 0.029 0.253 0.116 b −0.037 0.239 −0.155 a 四川 Sichuan −0.002 0.113 −0.016 a 0.052 0.167 0.309 b 0.023 0.226 0.101 b −0.065 0.350 −0.186 a 贵州 Guizhou 0.041 0.135 0.301 b 0.056 0.188 0.296 b 0.122 0.396 0.309 b −0.178 0.456 −0.391 a 云南 Yunnan 0.113 0.245 0.461 b 0.102 0.324 0.315 b 0.177 0.350 0.506 b −0.130 0.400 −0.324 a 陕西 Shaanxi 0.055 0.372 0.148 b 0.223 0.349 0.641 b 0.136 0.321 0.425 b −0.063 0.261 −0.239 a 甘肃 Gansu 0.206 0.353 0.585 b 0.340 0.320 1.065 d 0.334 0.317 1.056 d −0.201 0.304 −0.659 a 青海 Qinghai −0.046 0.182 −0.250 a 0.280 0.372 0.754 b 0.198 0.274 0.721 b −0.236 0.252 −0.936 a 宁夏 Ningxia 0.157 0.402 0.390 b 0.279 0.473 0.589 b 0.042 0.274 0.155 b −0.030 0.190 −0.156 a 新疆 Xinjiang 0.257 0.270 0.954 d 0.465 0.392 1.188 d 0.469 0.420 1.118 d −0.027 0.306 −0.087 a ΔE/E表示种植业碳排放变化率, ΔA/A表示农业产值变化率, ε表示脱钩指数, s表示脱钩状态, a为强脱钩, b为弱脱钩, c为衰退脱钩, d为增长连接, e为衰退连接, f为扩张负脱钩, g为强负脱钩。ΔE/E is the change rate of carbon emissions of crop production, ΔA/A is the change rate of agricultural output value, ε is the decoupling index. s denotes the decoupling states, a denotes the strong decoupling, b denotes the weak decoupling, c denotes the recessive decoupling, d denotes the expansive coupling, e denotes the recessive coupling, f denotes the expansive negative decoupling, and g denotes the strong negative decoupling. -
[1] 潘家华, 廖茂林, 陈素梅. 碳中和: 中国能走多快?[J]. 改革, 2021(7): 1−13PAN J H, LIAO M L, CHEN S M. Carbon neutrality: how fast can China go?[J]. Reform, 2021(7): 1−13 [2] 林斌, 徐孟, 汪笑溪. 中国农业碳减排政策、研究现状及展望[J]. 中国生态农业学报(中英文), 2022, 30(4): 500−515 doi: 10.12357/cjea.20210843LIN B, XU M, WANG X X. Mitigation of greenhouse gas emissions in China’s agricultural sector: Current status and future perspectives[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 500−515 doi: 10.12357/cjea.20210843 [3] WEST T O, BRANDT C C, BASKARAN L M, et al. Cropland carbon fluxes in the United States: increasing geospatial resolution of inventory-based carbon accounting[J]. Ecological Applications, 2010, 20(4): 1074−1086 doi: 10.1890/08-2352.1 [4] ZOU J, HUANG Y, JIANG J, et al. A 3-year field measurement of methane and nitrous oxide emissions from rice paddies in China: Effects of water regime, crop residue, and fertilizer application[J]. Global Biogeochemical Cycles, 2005, 19(2): 1−9 [5] BERTRAND G, BENOIT G, CLAIRE C, et al. Can N2O emissions offset the benefits from soil organic carbon storage?[J]. Global Change Biology, 2020, 27(2): 237−256 [6] WANG P, WANG W, ZHANG J. Carbon emission measurement using different utilization methods of waste products: Taking cotton straw resources of south Xinjiang in China as an example[J]. Nature Environment and Pollution Technology, 2018, 17(2): 383−390 [7] 石祖梁, 贾涛, 王亚静, 等. 我国农作物秸秆综合利用现状及焚烧碳排放估算[J]. 中国农业资源与区划, 2017, 38(9): 32−37 doi: 10.7621/cjarrp.1005-9121.20170905SHI Z L, JIA T, WANG Y J, et al. Comprehensive utilization status of crop straw and estimation of carbon from burning in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2017, 38(9): 32−37 doi: 10.7621/cjarrp.1005-9121.20170905 [8] 田云, 陈池波. 市场与政府结合视角下的中国农业碳减排补偿机制研究[J]. 农业经济问题, 2021(5): 120−136 doi: 10.13246/j.cnki.iae.2021.05.013TIAN Y, CHEN C B. Research on the compensation mechanism of agricultural carbon emission reduction in China from the perspective of combination of market and government[J]. Issues in Agricultural Economy, 2021(5): 120−136 doi: 10.13246/j.cnki.iae.2021.05.013 [9] SMITH P, MARTINO D, CAI Z C, et al. Greenhouse gas mitigation in agriculture[J]. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences, 2008, 363(1492): 789−813 doi: 10.1098/rstb.2007.2184 [10] TUBIELLO F N, SALVATORE M, ROSSI S, et al. The FAOSTAT database of greenhouse gas emissions from agriculture[J]. Environmental Research Letters, 2013, 8(1): 15009 doi: 10.1088/1748-9326/8/1/015009 [11] 李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86 doi: 10.3969/j.issn.1002-2104.2011.08.013 [12] ZHANG D, SHEN J, ZHANG F, et al. Carbon footprint of grain production in China[J]. Scientific Reports, 2017, 7(1): 4126 doi: 10.1038/s41598-017-04182-x [13] 王学婷, 张俊飚. 双碳战略目标下农业绿色低碳发展的基本路径与制度构建[J]. 中国生态农业学报(中英文), 2022, 30(4): 516−526 doi: 10.12357/cjea.20210772WANG X T, ZHANG J B. Basic path and system construction of agricultural green and low-carbon development with respect to the strategic target of carbon peak and carbon neutrality[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 516−526 doi: 10.12357/cjea.20210772 [14] 严圣吉, 邓艾兴, 尚子吟, 等. 我国作物生产碳排放特征及助力碳中和的减排固碳途径[J]. 作物学报, 2022, 48(4): 930−941 doi: 10.3724/SP.J.1006.2022.12073YAN S J, DENG A X, SHANG Z Y, et al. Characteristics of carbon emission and approaches of carbon mitigation and sequestration for carbon neutrality in China’s crop production[J]. Acta Agronomica Sinica, 2022, 48(4): 930−941 doi: 10.3724/SP.J.1006.2022.12073 [15] WU H, HUANG H, CHEN W, et al. Estimation and spatiotemporal analysis of the carbon-emission efficiency of crop production in China[J]. Journal of Cleaner Production, 2022, 371: 133516 doi: 10.1016/j.jclepro.2022.133516 [16] ZHANG Z. Decoupling China’s carbon emissions increase from economic growth: an economic analysis and policy implications[J]. World Development, 2000, 28(4): 739−752 doi: 10.1016/S0305-750X(99)00154-0 [17] Organisation for Economic Co-operation and Development. Sustainable development: indicators to measure decoupling of environmental pressure from economic growth[R/OL]. Paris: Organisation for Economic Co-operation and Development , (2002-05-16). https://www.oecd.org/env/indicators-modelling-outlooks/indicatorstomeasuredecouplingofenvironmentalpressurefromeconomicgrowth.htm [18] TAPIO P. Towards a theory of decoupling: degrees of decoupling in the EU and the case of road traffic in Finland between 1970 and 2001[J]. Transport Policy, 2005, 12(2): 137−151 doi: 10.1016/j.tranpol.2005.01.001 [19] ZHOU X, ZHANG M, ZHOU M, et al. A comparative study on decoupling relationship and influence factors between China’s regional economic development and industrial energy-related carbon emissions[J]. Journal of Cleaner Production, 2017, 142: 783−800 doi: 10.1016/j.jclepro.2016.09.115 [20] YANG L, YANG Y, ZHANG X, et al. Whether China’s industrial sectors make efforts to reduce CO2 emissions from production? A decomposed decoupling analysis[J]. Energy, 2018, 160: 796−809 doi: 10.1016/j.energy.2018.06.186 [21] SHI C. Decoupling analysis and peak prediction of carbon emission based on decoupling theory[J]. Sustainable Computing:Informatics and Systems, 2020, 28: 100424 doi: 10.1016/j.suscom.2020.100424 [22] LI H, QIN Q. Challenges for China’s carbon emissions peaking in 2030: A decomposition and decoupling analysis[J]. Journal of Cleaner Production, 2019, 207: 857−865 doi: 10.1016/j.jclepro.2018.10.043 [23] 陈柔, 何艳秋, 朱思宇, 等. 我国农业碳排放双重性及其与经济发展的协调性研究[J]. 软科学, 2020, 34(1): 132−138 doi: 10.13956/j.ss.1001-8409.2020.01.21CHEN R, HE Y Q, ZHU S Y, et al. Duality of agricultural carbon emissions and coordination with economic development in China[J]. Soft Science, 2020, 34(1): 132−138 doi: 10.13956/j.ss.1001-8409.2020.01.21 [24] 田云, 林子娟. 长江经济带农业碳排放与经济增长的时空耦合关系[J]. 中国农业大学学报, 2021, 26(1): 208−218 doi: 10.11841/j.issn.1007-4333.2021.01.21TIAN Y, LIN Z J. Spatio-temporal coupling relationship between agricultural carbon emissions and economic growth in the Yangtze River Economic Belt[J]. Journal of China Agricultural University, 2021, 26(1): 208−218 doi: 10.11841/j.issn.1007-4333.2021.01.21 [25] Intergovernmental Panel on Climate Change. Climate Change 2013 — The Physical Science Basis Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014 [26] 张立, 万昕, 蒋含颖, 等. 二氧化碳排放达峰期、平台期及下降期定量判断方法研究[J]. 环境工程, 2021, 39(10): 1−7 doi: 10.13205/j.hjgc.202110001ZHANG L, WAN X, JIANG H Y, et al. Quantitative evaluation on the status of CO2 emissions: peak period, plateau period, and decline period[J]. Environmental Engineering, 2021, 39(10): 1−7 doi: 10.13205/j.hjgc.202110001 [27] 孙睿. Tapio脱钩指数测算方法的改进及其应用[J]. 技术经济与管理研究, 2014(8): 7−11SUN R. Improving Tapio decoupling measurement method and its applications[J]. Technoeconomics & Management Research, 2014(8): 7−11 [28] 田云, 尹忞昊. 中国农业碳排放再测算: 基本现状、动态演进及空间溢出效应[J]. 中国农村经济, 2022(3): 104−127TIAN Y, YIN M H. Re-evaluation of China’s agricultural carbon emissions: basic status, dynamic evolution and spatial spillover effects[J]. Chinese Rural Economy, 2022(3): 104−127 [29] 胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62 doi: 10.13546/j.cnki.tjyjc.2020.05.012HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics and Decision, 2020, 36(5): 56−62 doi: 10.13546/j.cnki.tjyjc.2020.05.012 [30] 黄晓慧, 杨飞. 碳达峰背景下中国农业碳排放测算及其时空动态演变[J]. 江苏农业科学, 2022, 50(14): 232−239 doi: 10.15889/j.issn.1002-1302.2022.14.033HUANG X H, YANG F. Measurement of agricultural carbon emissions in China under the background of peak carbon dioxide emissions and its temporal and spatial dynamic evolution[J]. Jiangsu Agricultural Sciences, 2022, 50(14): 232−239 doi: 10.15889/j.issn.1002-1302.2022.14.033 [31] 程琳琳. 中国农业碳生产率时空分异: 机理与实证[D]. 武汉: 华中农业大学, 2018CHENG L L. Spatio-temporal differentiation of agricultural carbon productivity in China: mechanism and empirical study[D]. Wuhan: Huazhong Agricultural University, 2018. [32] 吴义根, 冯开文. 中国省际农业碳排放的时空分异特征及关联效应[J]. 环境科学与技术, 2019, 42(3): 180−190WU Y G, FENG K W. Spatial-temporal differentiation features and correlation effects of provincial agricultural carbon emissions in China[J]. Environmental Science and Technology, 2019, 42(3): 180−190 -