留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

化肥与有机肥配施对再生稻稻田土壤容重、pH和碳氮代谢的影响

姜硕琛 张海维 杨迪 胡丰琴 邹宇傲 杜斌 吴启侠 朱建强

姜硕琛, 张海维, 杨迪, 胡丰琴, 邹宇傲, 杜斌, 吴启侠, 朱建强. 化肥与有机肥配施对再生稻稻田土壤容重、pH和碳氮代谢的影响[J]. 中国生态农业学报 (中英文), 2023, 31(7): 1053−1066 doi: 10.12357/cjea.20220886
引用本文: 姜硕琛, 张海维, 杨迪, 胡丰琴, 邹宇傲, 杜斌, 吴启侠, 朱建强. 化肥与有机肥配施对再生稻稻田土壤容重、pH和碳氮代谢的影响[J]. 中国生态农业学报 (中英文), 2023, 31(7): 1053−1066 doi: 10.12357/cjea.20220886
JIANG S C, ZHANG H W, YANG D, HU F Q, ZOU Y A, DU B, WU Q X, ZHU J Q. Effects of combined application of chemical and organic fertilizer on soil bulk density, pH, and carbon and nitrogen metabolism in ratooning rice fields[J]. Chinese Journal of Eco-Agriculture, 2023, 31(7): 1053−1066 doi: 10.12357/cjea.20220886
Citation: JIANG S C, ZHANG H W, YANG D, HU F Q, ZOU Y A, DU B, WU Q X, ZHU J Q. Effects of combined application of chemical and organic fertilizer on soil bulk density, pH, and carbon and nitrogen metabolism in ratooning rice fields[J]. Chinese Journal of Eco-Agriculture, 2023, 31(7): 1053−1066 doi: 10.12357/cjea.20220886

化肥与有机肥配施对再生稻稻田土壤容重、pH和碳氮代谢的影响

doi: 10.12357/cjea.20220886
基金项目: 国家自然科学基金区域联合基金重点项目(U21A2039)资助
详细信息
    作者简介:

    姜硕琛, 主要研究方向为作物高产栽培技术。E-mail: 18229920540@163.com

    通讯作者:

    朱建强, 主要研究方向为农业水土环境保护。E-mail: 200572@yangtzeu.edu.cn

  • 中图分类号: S146; S158

Effects of combined application of chemical and organic fertilizer on soil bulk density, pH, and carbon and nitrogen metabolism in ratooning rice fields

Funds: This study was supported by the National Natural Science Foundation of China (U21A2039).
More Information
  • 摘要: 再生稻模式在我国粮食生产中具有重要地位, 研究化肥与有机肥配施对再生稻稻田土壤肥力性状的影响, 可为土壤肥力维持和再生稻高效生产提供科学依据。大田试验于2020—2021年进行, 各试验处理磷(P2O5)、钾(K2O)养分施用量分别为75 kg∙hm−2和150 kg∙hm−2, 氮(N)施用量200 kg∙hm−2 (不包括不施氮处理N0)。按化肥与有机肥施用情况分为5种基肥处理: 不施氮肥(N0); 基肥氮(N 75 kg∙hm−2)全部来自常规尿素(CK); 两种物料配施时, 基肥氮由2种物料各提供一半, 两种物料配施包括缓释尿素与常规尿素(T1)、生物炭与常规尿素(T2)、畜牧粪便与常规尿素(T3)。T2处理区在2021年不再施入生物炭, 施肥与CK处理相同。结果表明: T2和T3处理均可降低土壤容重, 以T2处理效果更佳; T2处理第1年, 土壤pH、有机碳和总氮显著提高; 在第1年头季稻分蘖期、抽穗期和再生稻抽穗期, 土壤无机氮含量分别以CK、T1和T3处理最高; T3和T2处理可提高土壤微生物量碳和微生物量氮含量, 其中在头季稻拔节期前T2处理的效果较好, 拔节期后以T3处理的效果较好。此外, 在T3处理下, β-葡萄糖苷酶和脲酶活性较高。比较而言, T3处理在降低土壤容重、提高有机碳和总氮的效果上次于T2处理, 在提高无机氮、微生物生物量和土壤酶活性上效果优于T2处理, 因此, 建议基肥采用畜牧粪便与化肥配施, 由畜牧粪便取代其中50%的化肥氮。
  • 图  1  2020年和2021年不同施肥处理下再生稻模式不同生育期土壤pH

    各处理介绍见表1。S1~S7分别表示头季稻分蘖期、头季稻拔节期、头季稻抽穗期、头季稻灌浆期、再生稻拔节期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S7 indicate the tillering stage, jointing stage, heading stage and filling stage of the main season rice, and jointing stage, heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).

    Figure  1.  Soil pH at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021

    图  2  2020年和2021年不同施肥处理下再生稻模式不同生育期不同土层有机碳和总氮含量

    各处理介绍见表1。S1~S5分别表示2020年头季稻收获期、2020年再生稻收获期、2021年头季稻移栽前、2021年头季稻收获期和2021年再生稻收获期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represents the main season rice harvest stage in 2020, the ratooning rice harvest stage in 2020, before the main season rice transplanting in 2021, the main season rice harvest stage in 2021 and the ratooning rice harvest stage in 2021, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).

    Figure  2.  Soil organic carbon and total ntirogne contents in different soil layers at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021

    图  3  2020年和2021年不同施肥处理下再生稻模式不同生育期土壤无机氮含量

    各处理介绍见表1。S1~S3分别表示头季稻分蘖期、头季稻抽穗期和再生稻抽穗期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S3 indicate the tillering stage and heading stage of the main season rice, and the heading stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same gorwth stage (P<0.05).

    Figure  3.  Soil inorganic nitrogen contents at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021

    图  4  2020年和2021年不同施肥处理下再生稻模式不同生育期土壤微生物生物量含量

    各处理介绍见表1。S1~S5分别表示头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represent the tillering stage, heading stage and filling stage of the main season rice, and the heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).

    Figure  4.  Soil microbial biomass at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021

    图  5  2020年和2021年不同施肥处理下再生稻模式不同生 育期的土壤酶活性

    各处理介绍见表1。S1~S5分别表示头季稻分蘖期、头季稻抽穗期、头季稻灌浆期、再生稻抽穗期和再生稻灌浆期。不同字母表示同一生育期不同处理间差异显著(P<0.05)。Details of the treatments can be seen in Table 1. S1−S5 represent the tillering stage, heading stage and filling stage of the main season rice, and the heading stage and filling stage of the ratooning season rice, respectively. Different letters indicate significant differences among treatments at the same growth stage (P<0.05).

    Figure  5.  Soil enzyme activity at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021

    表  1  2020年肥料施用方式

    Table  1.   Application method of fertilizer in 2020

    kg∙hm−2 
    处理
    Treatment
    肥料类型
    Type of fertilizer
    头季稻基肥
    Base fertilizer for main season rice
    头季稻分蘖肥
    Tiller fertilizer for main season rice
    头季稻穗肥
    Spike fertilizer for main season rice
    再生稻促芽肥
    Shoot fertilizer for ratoon season rice
    N0过磷酸钙
    Superphosphate
    625 (P2O5 75)
    氯化钾
    Potassium chloride
    125 (K2O 75)125 (K2O 75)
    CK常规尿素
    Conventional urea
    163 (N 75)98 (N 45)65 (N 30)108 (N 50)
    过磷酸钙
    Superphosphate
    625 (P2O5 75)
    氯化钾
    Potassium chloride
    125 (K2O 75)125 (K2O 75)
    T1缓释尿素
    Slow-release urea
    89 (N 37.5)
    常规尿素
    Conventional urea
    82 (N 37.5)98 (N 45)65 (N 30)108 (N 50)
    过磷酸钙
    Superphosphate
    625 (P2O5 75)
    氯化钾
    Potassium chloride
    125 (K2O 75)125 (K2O 75)
    T2生物炭
    Biochar
    5000 (N 37.5, P2O5 17.5, K2O 76)
    常规尿素
    Conventional urea
    82 (N 37.5)98 (N 45)65 (N 30)108 (N 50)
    过磷酸钙
    Superphosphate
    478 (57.5)
    氯化钾
    Potassium chloride
    125 (K2O 75)
    T3畜牧粪便
    Livestock manure
    2450 (N 37.5, P2O5 29, K2O 31)
    常规尿素
    Conventional urea
    82 (N 37.5)98 (N 45)65 (N 30)108 (N 50)
    过磷酸钙
    Superphosphate
    383 (P2O5 46)
    氯化钾
    Potassium chloride
    73 (K2O 44)125 (K2O 75)
      N0、CK、T1、T2和T3分别表示不施氮肥处理、常规尿素处理、缓释尿素与常规尿素配施处理、生物炭与常规尿素配施处理和畜牧粪便与常规尿素配施处理。2021年N0、CK、T1和T3处理与2020年一致, 2021年T2处理与CK一致。N0, CK, T1, T2 and T3 are no nitrogen fertilizer application treatment, conventional urea applicaiton treatment, slow-release urea and conventional urea combined application treatment, biochar and conventional urea combined application treatment, and livestock manure and conventional urea combined application treatment, respectively. The treatment N0, CK, T1 and T3 in 2021 are consistent with those in 2020, and the treatment T2 in 2021 is consistent with CK in 2020.
    下载: 导出CSV

    表  2  2020年和2021年不同施肥处理下再生稻模式不同生育期土壤不同土层的容重变化

    Table  2.   Variation of soil bulk densities of different layers at different growth stages of ratoon rice system under different fertilization treatments in 2020 and 2021

    g∙cm−3 
    年份
    Year
    处理
    Treatment
    头季稻分蘖期
    Tillering stage of main season rice
    头季稻抽穗期
    Heading stage of main season rice
    再生稻抽穗期
    Heading stage of ratoon rice
    0~20 cm20~40 cm0~20 cm20~40 cm0~20 cm20~40 cm
    2020N01.003±0.016a1.301±0.042a1.063±0.014a1.344±0.024a1.092±0.015a1.374±0.017a
    CK0.993±0.009a1.296±0.010a1.013±0.006b1.317±0.024a1.027±0.008b1.392±0.039a
    T11.013±0.011a1.311±0.029a1.008±0.033b1.308±0.027a1.016±0.017b1.363±0.028a
    T20.829±0.009c1.161±0.033c0.876±0.012c1.152±0.021c0.916±0.015d1.191±0.026b
    T30.896±0.023b1.226±0.045b0.952±0.030c1.217±0.021b0.970±0.010c1.208±0.022b
    2021N01.014±0.013a1.293±0.058a1.061±0.014a1.371±0.025a1.104±0.019a1.428±0.023a
    CK1.030±0.028a1.290±0.047a1.028±0.016b1.338±0.029ab1.034±0.038b1.411±0.013a
    T10.999±0.015a1.308±0.035a1.023±0.024b1.302±0.011b1.032±0.013b1.390±0.067a
    T20.865±0.007c1.178±0.014c0.869±0.009d1.180±0.012d0.940±0.001c1.179±0.037b
    T30.928±0.017b1.217±0.010b0.971±0.016c1.223±0.015c0.955±0.006c1.194±0.026b
    年份 Year (Y)nsnsnsnsnsns
    处理 Treatment (T)************
    年份×处理 Y×Tnsnsnsnsnsns
      各处理介绍见表1。同列不同字母表示同年不同处理间差异显著(P<0.05)。“ns”和“**”分别表示无差异和P<0.01水平显著差异。Details of the treatments can be seen in Table 1. Different letters in the same column indicate significant differences among treatments in the same year (P<0.05). “ns” and “**” indicate no difference and significant differences at P<0.01 level, respectively.
    下载: 导出CSV
  • [1] CHU G, WANG Z Q, ZHANG H, et al. Alternate wetting and moderate drying increases rice yield and reduces methane emission in paddy field with wheat straw residue incorporation[J]. Food and Energy Security, 2015, 4(3): 238−254 doi: 10.1002/fes3.66
    [2] WANG W Q, HE A B, JIANG G L, et al. Ratoon rice technology: a green and resource-efficient way for rice production[J]. Advances in Agronomy, 2020, 159: 135−167
    [3] FIROUZI S, NIKKHAH A, AMINPANAH H. Rice single cropping or ratooning agro-system: which one is more environment-friendly?[J]. Environmental Science and Pollution Research, 2018, 25(32): 32246−32256 doi: 10.1007/s11356-018-3076-x
    [4] ZHENG C, WANG Y C, YUAN S, et al. Heavy soil drying during mid-to-late grain filling stage of the main crop to reduce yield loss of the ratoon crop in a mechanized rice ratooning system[J]. The Crop Journal, 2022, 10(1): 280−285 doi: 10.1016/j.cj.2021.06.003
    [5] ZHANG S L, HUANG G F, ZHANG J, et al. Genotype by environment interactions for performance of perennial rice genotypes (Oryza sativa L./Oryza longistaminata) relative to annual rice genotypes over regrowth cycles and locations in southern China[J]. Field Crops Research, 2019, 241: 107556 doi: 10.1016/j.fcr.2019.107556
    [6] CHEN J, SUN X, LI L, et al. Change in active microbial community structure, abundance and carbon cycling in an acid rice paddy soil with the addition of biochar[J]. European Journal of Soil Science, 2016, 67(6): 857−867 doi: 10.1111/ejss.12388
    [7] SUN J L, LI H B, WANG Y N, et al. Biochar and nitrogen fertilizer promote rice yield by altering soil enzyme activity and microbial community structure[J]. GCB Bioenergy, 2022, 14(12): 1266−1280 doi: 10.1111/gcbb.12995
    [8] XIAO M, ZANG H, GE T, et al. Effect of nitrogen fertilizer on rice photosynthate allocation and carbon input in paddy soil[J]. European Journal of Soil Science, 2019, 70: 786−795
    [9] OLADELE S, ADEYEMO A, AWODUN M, et al. Effects of biochar and nitrogen fertilizer on soil physicochemical properties, nitrogen use efficiency and upland rice (Oryza sativa) yield grown on an Alfisol in southwestern Nigeria[J]. International Journal of Recycling of Organic Waste in Agriculture, 2019, 8(3): 295−308 doi: 10.1007/s40093-019-0251-0
    [10] YANG Y, LIU B M, YU L X, et al. Nitrogen loss and rice profits with matrix-based slow-release urea[J]. Nutrient Cycling in Agroecosystems, 2018, 110(2): 213−225 doi: 10.1007/s10705-017-9892-4
    [11] JI M Y, WANG X X, USMAN M, et al. Effects of different feedstocks-based biochar on soil remediation: a review[J]. Environmental Pollution, 2022, 294: 118655 doi: 10.1016/j.envpol.2021.118655
    [12] YANG Z B, YU Y, HU R J, et al. Effect of rice straw and swine manure biochar on N2O emission from paddy soil[J]. Scientific Reports, 2020, 10(1): 1−11 doi: 10.1038/s41598-019-56847-4
    [13] 黄国勤, 杨滨娟, 王淑彬, 等. 稻田实行保护性耕作对水稻产量、土壤理化及生物学性状的影响[J]. 生态学报, 2015, 35(4): 1225−1234

    HUANG G Q, YANG B J, WANG S B, et al. Effects of 8 years of conservational tillage on rice yield and soil physical, chemical and biological properties[J]. Acta Ecologica Sinica, 2015, 35(4): 1225−1234
    [14] 鲁如坤. 土壤农业化学分析方法[M]. 北京: 中国农业科技出版社, 2000

    LU R K. Methods of Soil Agrochemical Analysis[M]. China Agriculture Science and Technology Press, 2000
    [15] 罗佳琳, 赵亚慧, 于建光, 等. 麦秸与氮肥配施对水稻根际区土壤微生物量碳氮的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1582−1591

    LUO J L, ZHAO Y H, YU J G, et al. Effects of wheat straw and nitrogen fertilizer application on the soil microbial biomass carbon and nitrogen in the rhizosphere of rice[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1582−1591
    [16] 宋鹏, 杨振中, 万祖梁, 等. 水稻秸秆秋季湿耙还田对土壤酶活性和养分的影响[J]. 生态学杂志, 2023, 42(3): 569−576

    SONG P, YANG Z Z, WAN Z L, et al. Effects of rice straw returned to the fields by wet harrow in autumn on soil enzyme activities and nutrients[J]. Chinese Journal of Ecology, 2023, 42(3): 569−576
    [17] 孟祥宇, 冉成, 刘宝龙, 等. 秸秆还田配施氮肥对东北黑土稻区土壤养分及水稻产量的影响[J]. 作物杂志, 2021(3): 167−172 doi: 10.16035/j.issn.1001-7283.2021.03.025

    MENG X Y, RAN C, LIU B L, et al. Effects of straw returning to field and nitrogen application on soil nutrients and rice yield in black soil areas of northeast China[J]. Crops, 2021(3): 167−172 doi: 10.16035/j.issn.1001-7283.2021.03.025
    [18] IQBAL A, HE L, KHAN A, et al. Organic manure coupled with inorganic fertilizer: an approach for the sustainable production of rice by improving soil properties and nitrogen use efficiency[J]. Agronomy, 2019, 9(10): 651 doi: 10.3390/agronomy9100651
    [19] CARLOS F S, SCHAFFER N, MARCOLIN E, et al. A long-term no-tillage system can increase enzymatic activity and maintain bacterial richness in paddy fields[J]. Land Degradation & Development, 2021, 32(6): 2257−2268
    [20] WANG X, QI J Y, ZHANG X Z, et al. Effects of tillage and residue management on soil aggregates and associated carbon storage in a double paddy cropping system[J]. Soil and Tillage Research, 2019, 194: 104339 doi: 10.1016/j.still.2019.104339
    [21] BU R Y, REN T, LEI M J, et al. Tillage and straw-returning practices effect on soil dissolved organic matter, aggregate fraction and bacteria community under rice-rice-rapeseed rotation system[J]. Agriculture, Ecosystems & Environment, 2020, 287: 106681
    [22] JIANG X, WRIGHT A L, WANG J, et al. Long-term tillage effects on the distribution patterns of microbial biomass and activities within soil aggregates[J]. Catena, 2011, 87(2): 276−280 doi: 10.1016/j.catena.2011.06.011
    [23] 曹巧滢, 詹曜玮, 丁尔全, 等. 分次施用碱性肥料对土壤pH及土壤镉有效性的影响[J]. 农业环境科学学报, 2022, 41(7): 1483−1489 doi: 10.11654/jaes.2021-0252

    CAO Q Y, ZHAN Y W, DING E Q, et al. Influences of alkaline fertilizer application on soil pH and soil available cadmium[J]. Journal of Agro-Environment Science, 2022, 41(7): 1483−1489 doi: 10.11654/jaes.2021-0252
    [24] DING C F, DU S Y, MA Y B, et al. Changes in the pH of paddy soils after flooding and drainage: modeling and validation[J]. Geoderma, 2019, 337: 511−513 doi: 10.1016/j.geoderma.2018.10.012
    [25] 刘杰云, 张文正, 沈健林, 等. 水分管理及生物质炭对稻田土壤含水率及pH值的影响[J]. 灌溉排水学报, 2021, 40(7): 44−50 doi: 10.13522/j.cnki.ggps.2020385

    LIU J Y, ZHANG W Z, SHEN J L, et al. The combined effects of water management and biochar amendment on soil water content and pH of paddy soil[J]. Journal of Irrigation and Drainage, 2021, 40(7): 44−50 doi: 10.13522/j.cnki.ggps.2020385
    [26] XIAO W D, YE X Z, ZHU Z Q, et al. Continuous flooding stimulates root iron plaque formation and reduces chromium accumulation in rice (Oryza sativa L.)[J]. Science of the Total Environment, 2021, 788: 147786 doi: 10.1016/j.scitotenv.2021.147786
    [27] LI H L, YU Y, GUO J X, et al. Dynamics of the rice rhizosphere microbial community under continuous and intermittent flooding treatment[J]. Journal of Environmental Management, 2019, 249: 109326 doi: 10.1016/j.jenvman.2019.109326
    [28] LUO W X, MA J W, MUHAMMAD A K, et al. Cadmium accumulation in rice and its bioavailability in paddy soil with application of silicon fertilizer under different water management regimes[J]. Soil Use and Management, 2021, 37(2): 299−306 doi: 10.1111/sum.12679
    [29] SEYFFERTH A L, AMARAL D, LIMMER M A, et al. Combined impacts of Si-rich rice residues and flooding extent on grain As and Cd in rice[J]. Environment International, 2019, 128: 301−309 doi: 10.1016/j.envint.2019.04.060
    [30] DAS S, JEONG S T, DAS S, et al. Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy[J]. Frontiers in Microbiology, 2017, 8: 1702 doi: 10.3389/fmicb.2017.01702
    [31] BENBI D K, BRAR K, TOOR A S, et al. Sensitivity of labile soil organic carbon pools to long-term fertilizer, straw and manure management in rice-wheat system[J]. Pedosphere, 2015, 25(4): 534−545 doi: 10.1016/S1002-0160(15)30034-5
    [32] DONG D, FENG Q B, MCGROUTHER K, et al. Effects of biochar amendment on rice growth and nitrogen retention in a waterlogged paddy field[J]. Journal of Soils and Sediments, 2015, 15(1): 153−162 doi: 10.1007/s11368-014-0984-3
    [33] LIU Y X, YAO S, WANG Y Y, et al. Bio- and hydrochars from rice straw and pig manure: inter-comparison[J]. Bioresource Technology, 2017, 235: 332−337 doi: 10.1016/j.biortech.2017.03.103
    [34] 潘剑玲, 代万安, 尚占环, 等. 秸秆还田对土壤有机质和氮素有效性影响及机制研究进展[J]. 中国生态农业学报, 2013, 21(5): 526−535 doi: 10.3724/SP.J.1011.2013.00526

    PAN J L, DAI W A, SHANG Z H, et al. Review of research progress on the influence and mechanism of field straw residue incorporation on soil organic matter and nitrogen availability[J]. Chinese Journal of Eco-Agriculture, 2013, 21(5): 526−535 doi: 10.3724/SP.J.1011.2013.00526
    [35] SUN X, ZHONG T, ZHANG L, et al. Reducing ammonia volatilization from paddy field with rice straw derived biochar[J]. Science of the Total Environment, 2019, 660: 512−518 doi: 10.1016/j.scitotenv.2018.12.450
    [36] OLADELE S O, ADEYEMO A J, AWODUN M A. Influence of rice husk biochar and inorganic fertilizer on soil nutrients availability and rain-fed rice yield in two contrasting soils[J]. Geoderma, 2019, 336: 1−11 doi: 10.1016/j.geoderma.2018.08.025
    [37] NGUYEN T T N, XU C Y, TAHMASBIAN I, et al. Effects of biochar on soil available inorganic nitrogen: a review and meta-analysis[J]. Geoderma, 2017, 288: 79−96 doi: 10.1016/j.geoderma.2016.11.004
    [38] SINGH C, TIWARI S, GUPTA V K, et al. The effect of rice husk biochar on soil nutrient status, microbial biomass and paddy productivity of nutrient poor agriculture soils[J]. Catena, 2018, 171: 485−493 doi: 10.1016/j.catena.2018.07.042
    [39] WEI L, GE T D, ZHU Z K, et al. Paddy soils have a much higher microbial biomass content than upland soils: a review of the origin, mechanisms, and drivers[J]. Agriculture, Ecosystems & Environment, 2022, 326: 107798
    [40] PANDEY D, AGRAWAL M, BOHRA J S. Effects of conventional tillage and no tillage permutations on extracellular soil enzyme activities and microbial biomass under rice cultivation[J]. Soil and Tillage Research, 2014, 136: 51−60 doi: 10.1016/j.still.2013.09.013
    [41] ZHANG J, HANG X N, LAMINE S M, et al. Interactive effects of straw incorporation and tillage on crop yield and greenhouse gas emissions in double rice cropping system[J]. Agriculture, Ecosystems & Environment, 2017, 250: 37−43
    [42] ZHAO Z H, GAO S F, LU C Y, et al. Effects of different tillage and fertilization management practices on soil organic carbon and aggregates under the rice–wheat rotation system[J]. Soil and Tillage Research, 2021, 212: 105071 doi: 10.1016/j.still.2021.105071
    [43] YUAN G Y, HUAN W W, SONG H, et al. Effects of straw incorporation and potassium fertilizer on crop yields, soil organic carbon, and active carbon in the rice–wheat system[J]. Soil and Tillage Research, 2021, 209: 104958 doi: 10.1016/j.still.2021.104958
    [44] YANG X C, LIU D P, FU Q, et al. Characteristics of greenhouse gas emissions from farmland soils based on a structural equation model: regulation mechanism of biochar[J]. Environmental Research, 2022, 206: 112303 doi: 10.1016/j.envres.2021.112303
    [45] WANG M H, FU Y X, WANG Y, et al. Pathways and mechanisms by which biochar application reduces nitrogen and phosphorus runoff losses from a rice agroecosystem[J]. Science of the Total Environment, 2021, 797: 149193 doi: 10.1016/j.scitotenv.2021.149193
    [46] OLADELE S, ADEYEMO A, ADEGAIYE A, et al. Effects of biochar amendment and nitrogen fertilization on soil microbial biomass pools in an Alfisol under rain-fed rice cultivation[J]. Biochar, 2019, 1(2): 163−176 doi: 10.1007/s42773-019-00017-2
    [47] IQBAL A, LIANG H, MCBRIDE S G, et al. Manure applications combined with chemical fertilizer improves soil functionality, microbial biomass and rice production in a paddy field[J]. Agronomy Journal, 2022, 114(2): 1431−1446 doi: 10.1002/agj2.20990
    [48] 刘杰云, 邱虎森, 汤宏, 等. 生物质炭对双季稻水稻土微生物生物量碳、氮及可溶性有机碳氮的影响[J]. 环境科学, 2019, 40(8): 3799−3807 doi: 10.13227/j.hjkx.201901182

    LIU J Y, QIU H S, TANG H, et al. Effects of biochar amendment on soil microbial biomass carbon, nitrogen and dissolved organic carbon, nitrogen in paddy soils[J]. Environmental Science, 2019, 40(8): 3799−3807 doi: 10.13227/j.hjkx.201901182
    [49] HOU Q, NI Y M, HUANG S, et al. Effects of substituting chemical fertilizers with manure on rice yield and soil labile nitrogen in paddy fields of China: a meta-analysis[J]. Pedosphere, 2023, 33(1): 172−184 doi: 10.1016/j.pedsph.2022.09.003
    [50] XIA Y H, CHEN X B, ZHENG S M, et al. Manure application accumulates more nitrogen in paddy soils than rice straw but less from fungal necromass[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107575
    [51] HOU Q, LIN S, NI Y M, et al. Assembly of functional microbial communities in paddy soil with long-term application of pig manure under rice-rape cropping system[J]. Journal of Environmental Management, 2022, 305: 114374 doi: 10.1016/j.jenvman.2021.114374
    [52] DOTANIYA M L, APARNA K, DOTANIYA C K, et al. Role of soil enzymes in sustainable crop production[M]//Enzymes in Food Biotechnology. Amsterdam: Elsevier, 2019: 569–589
    [53] SAIKIA R, SHARMA S, THIND H S, et al. Temporal changes in biochemical indicators of soil quality in response to tillage, crop residue and green manure management in a rice-wheat system[J]. Ecological Indicators, 2019, 103: 383−394 doi: 10.1016/j.ecolind.2019.04.035
    [54] BHATTACHARJYA S, CHANDRA R, PAREEK N, et al. Biochar and crop residue application to soil: effect on soil biochemical properties, nutrient availability and yield of rice (Oryza sativa L.) and wheat (Triticum aestivum L.)[J]. Archives of Agronomy and Soil Science, 2016, 62(8): 1095−1108
    [55] ZHENG J F, CHEN J H, PAN G X, et al. Biochar decreased microbial metabolic quotient and shifted community composition four years after a single incorporation in a slightly acid rice paddy from southwest China[J]. Science of the Total Environment, 2016, 571: 206−217 doi: 10.1016/j.scitotenv.2016.07.135
    [56] ALI I, ADNAN M, ULLAH S, et al. Biochar combined with nitrogen fertilizer: a practical approach for increasing the biomass digestibility and yield of rice and promoting food and energy security[J]. Biofuels, Bioproducts and Biorefining, 2022, 16(5): 1304−1318 doi: 10.1002/bbb.2334
    [57] GÜNAL E, ERDEM H, DEMIRBAŞ A. Effects of three biochar types on activity of β-glucosidase enzyme in two agricultural soils of different textures[J]. Archives of Agronomy and Soil Science, 2018, 64(14): 1963−1974 doi: 10.1080/03650340.2018.1471205
    [58] WANG Y D, HU N, GE T D, et al. Soil aggregation regulates distributions of carbon, microbial community and enzyme activities after 23-year manure amendment[J]. Applied Soil Ecology, 2017, 111: 65−72 doi: 10.1016/j.apsoil.2016.11.015
    [59] YANG X, LIU J J, MCGROUTHER K, et al. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil[J]. Environmental Science and Pollution Research, 2016, 23(2): 974−984 doi: 10.1007/s11356-015-4233-0
    [60] HUANG D L, LIU L S, ZENG G M, et al. The effects of rice straw biochar on indigenous microbial community and enzymes activity in heavy metal-contaminated sediment[J]. Chemosphere, 2017, 174: 545−553 doi: 10.1016/j.chemosphere.2017.01.130
    [61] KHAN M N, LI D C, SHAH A, et al. The impact of pristine and modified rice straw biochar on the emission of greenhouse gases from a red acidic soil[J]. Environmental Research, 2022, 208: 112676 doi: 10.1016/j.envres.2022.112676
    [62] DU Y D, CUI B J, ZHANG Q, et al. Effects of manure fertilizer on crop yield and soil properties in China: a meta-analysis[J]. CATENA, 2020, 193: 104617 doi: 10.1016/j.catena.2020.104617
  • 加载中
图(5) / 表(2)
计量
  • 文章访问数:  295
  • HTML全文浏览量:  160
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-13
  • 录用日期:  2023-03-02
  • 网络出版日期:  2023-03-14
  • 刊出日期:  2023-07-10

目录

    /

    返回文章
    返回