Differences in effects of non-crop habitat on the distribution of carabid beetles and spiders in adjacent farmlands
-
摘要: 在农业景观中非耕作生境通常会为地表节肢动物提供适宜的生存场所, 步甲和蜘蛛群落作为天敌类地表节肢动物的重要组成部分, 非耕作生境类型对其多样性和空间分布的作用有所差异。本文在辽宁省昌图县调查了非耕作生境(即果园、草地、乔木林地和其他林地生境)以及其相邻耕地内部和耕地边缘的步甲和蜘蛛个体数、物种数和多样性, 采用方差分析、聚类分析和冗余分析等方法, 讨论了不同生境内步甲和蜘蛛群落分布特征以及非耕作生境类型对邻近耕地边缘及内部步甲和蜘蛛多样性的影响机制。结果表明: 1)不同非耕作生境类型对耕地内部溢出效应明显, 但产生的影响有所差异, 草地对耕地内部步甲多样性影响显著, 其他林地对耕地内部蜘蛛的多样性影响显著。2)不同非耕作生境类型产生的边缘效应与溢出效应规律一致, 均会促进耕地内部步甲和蜘蛛的多样性; 步甲的多样性在邻近草地的耕地边缘显著高于其他边缘类型, 蜘蛛的多样性在邻近其他林地的耕地边缘显著高于其他边缘类型。3)非耕作生境的植被盖度和多样性显著影响步甲和蜘蛛的多样性。总体而言, 非耕作生境对提升耕地内天敌多样性有积极作用, 林地和草地作用效果更为明显, 并且非耕作生境内植被群落结构越复杂, 越有利于维持较高的天敌多样性, 进而提高生物控害功能。因此, 在农业景观中, 增加非耕作生境景观建设, 如设置合适农田边界带、种植合适的植被群落等, 可以促进农业景观中的生物控制服务, 提升害虫防治功能维持生态系统稳定, 对建设高标准农田具有重要意义。Abstract: Conservation of species diversity is an important basis for sustainable agricultural development in agricultural landscapes, and non-crop habitats usually provide suitable habitats for epigeic arthropods. However, as common natural enemies of surface arthropods, carabid beetles and spiders respond differently to different types of non-crop habitats. Although previous studies have been comprehensive and detailed, most of them only focused on specific habitat types, neglecting the role of non-crop habitats on the edge of and inside adjacent cultivated land. Therefore, the present study examined whether non-crop habitats had a positive effect on carabid beetles and spiders and which habitat type had the most significant effect. In this study, Changtu County, Liaoning Province, China, was selected as the sampling area to investigate the abundance of carabid beetles and spiders in non-crop habitats, inner farmlands, and farmland margins. Using variance analysis, cluster analysis, redundancy analysis, and other methods, the distribution characteristics of carabid beetles and spider communities in different habitats and the impact mechanism of non-crop habitat types on diversity were assessed in detail. Different non-crop habitat types had clear spillover effects on farmland; however, these effects were different. Grasslands had significant effects on the diversity of carabid beetles in farmland, and other woodlands had significant effects on the diversity of spiders in farmland. The biodiversity of the farmland margin was significantly higher than that of the surrounding farmland and non-crop habitats. The diversity of carabid beetles at the farmland margin adjacent to native grassland was significantly higher than that at types of farmland margin, the diversity of spiders at the edge of the land adjacent to other woodlands was significantly higher. This study suggested that the rules of edge and spillover effects are consistent, enhancing the biodiversity of adjacent habitats. Among the herbaceous vegetation structural factors, vegetation coverage and diversity significantly affected the diversity of carabid beetles and spiders. This study verified that non-crop habitats could enhance biodiversity at the edge and inside farmlands. In general, non-crop habitats had a positive effect on improving the diversity of the natural enemies in farmlands, and the effects of forestland and grassland were distinct. The more complicated the vegetation community structure of non-crop habitats, the more conducive it is to maintaining a higher natural enemy diversity, thereby improving biological risk control. A detailed discussion of the response of epigeic arthropod diversity to environmental changes at multiple spatial scales is essential for the sustainable development of arable land systems in the context of global change and biodiversity crises.
-
Key words:
- Non-crop habitat /
- Carabid beetles /
- Spiders /
- Edge effect /
- Vegetation factor
-
图 2 不同类型耕地-耕地边缘-非耕作生境(非耕作生境分为果园、草地、其他林地和乔木林地)的结构布局和每个样品区内的陷阱布局
Figure 2. Structural layout of different types of farmland - farmland margin - non-crop habitat (non-crop habitat includes orchard, native grassland, other woodlands and arbor forest) and specific method of trap layout in each sample area
图 3 8种生境类型步甲和蜘蛛层次距离聚类分析个体数热点图
W1: 邻近果园耕地; W2: 果园; W3: 邻近草地耕地; W4: 草地; W5: 邻近其他林地耕地; W6: 其他林地; W7: 邻近乔木林地耕地; W8: 乔木林地。SP1-SP13名称见表2。W1: farmland adjacent to orchard; W2: orchard; W3: farmland adjacent to native grassland; W4: native grassland; W5: farmland adjacent to other woodlands; W6: other woodlands; W7: farmland adjacent to arbor forest; W8: arbor forest. Name of SP1 to SP13 is shown in Table 2.
Figure 3. Hotspot map of cluster analysis of carabid and spiders in different habitat types
图 4 非耕作生境内部及邻近农田内部步甲(A)和蜘蛛(B)多样性分析
W1: 邻近果园耕地; W2: 果园; W3: 邻近草地耕地; W4: 草地; W5: 邻近其他林地耕地; W6: 其他林地; W7: 邻近乔木林地耕地; W8: 乔木林地。图中不同字母表示不同生境类型间差异显著。W1: farmland adjacent to orchard; W2: orchard; W3: farmland adjacent to native grassland; W4: native grassland; W5: farmland adjacent to other woodlands; W6: other woodlands; W7: farmland adjacent to arbor forest; W8: arbor forest. Different lowercase letters indicate significant differences among habitat types.
Figure 4. Diversities of carabid beetle (A) and spider (B) in non-crop habitats and adjacent farmlands
表 1 研究区生境类型的划分方式、数量及特征
Table 1. Division, quantity and characteristics of habitat types in the study area
生境类型 Type of habitat 编号 Code 地块数量 Number 主要特征 Main feature 邻近果园耕地
Farmland adjacent to orchardW1 2 耕地样区面积为 9~20 hm2, 种植玉米
The farmland area is 9−20 hm2, and corn (Zea mays) are planted果园
OrchardW2 2 种植山楂(Crataegus pinnatifida)、苹果(Malus pumila)等作物
Planting hawthorn (Crataegus pinnatifida), apple (Malus pumila) and other crops邻近草地耕地
Farmland adjacent to native grasslandW3 3 耕地样区面积为9~20 hm2, 种植玉米
The farmland area is 9−20 hm2, and corn are planted草地
Native grasslandW4 3 草本层盖度>50%
Herbal layer coverage > 50%邻近其他林地耕地
Farmland adjacent to other woodlandsW5 3 耕地样区面积为9~20 hm2, 种植玉米
The farmland area is 9−20 hm2, and corn are planted其他林地
Other woodlandsW6 3 0.1<树木郁闭度<0.2的林地
0.1<tree canopy density < 0.2邻近乔木林地耕地
Cultivated land adjacent to arbor forestW7 3 耕地样区面积为9~20 hm2, 种植玉米
The farmland area is 9−20 hm2, and corn are planted乔木林地
Arbor forestW8 3 树木郁闭度>0.2的林地, 种植乔木
The arbor forest canopy density is > 0.2表 2 不同生境地表节肢动物类型及数量统计表
Table 2. Statistics of arthropod types and numbers in different habitats
地表节肢动物类群
Surface Arthropods代码
Code数量 Number 总计
Total耕地内部
Farmland耕地边缘
Farmland margin非耕作生境
Non-crop farmland昆虫纲
Insecta鞘翅目
Coleoptera步甲科
Carabidae蠋步甲
Dolichus halensisSP1 44 306 133 483 大暗黑步甲
Amara majusculaSP2 34 127 57 218 中华婪步甲
Harpalus sinicusSP3 14 35 46 95 普通暗黑步甲
Amara brevicollisSP4 148 191 159 498 黄斑青步甲
Chlaenius micansSP5 50 81 78 209 点沟青步甲
Chlaenius proefectusSP6 5 13 4 22 广屁步甲
Pheropsophus occiptalisSP7 52 142 42 236 毛盒步甲
Harpalus griseusSP8 2 3 9 14 谷婪步甲
Harpalus calceatusSP9 6 20 10 36 淡鞘婪步甲
Harpalus pallidipennisSP10 17 58 35 110 总计 Total 372 976 573 1921 蛛形纲
Arachnida盲蛛目
Order opiliones长奇盲蛛科
Phalangiidae盲蛛
Leiobunum speciesSP11 49 130 96 275 蜘蛛目
Araneae漏斗蛛科
Agelena labyrinthica漏斗蛛
Agelena labyrinthicaSP12 35 130 89 254 球蛛科
Theridiidae球蛛
TheridiidaeSP13 5 19 14 38 总计 Total 89 279 199 567 -
[1] GARRATT M D, BOMMARCO R, KLEIJN D, et al. Enhancing soil organic matter as a route to the ecological intensification of European arable systems[J]. Ecosystems, 2018, 21(7): 1404−1415 doi: 10.1007/s10021-018-0228-2 [2] AVIRON S, BUREL F, BAUDRY J, et al. Carabid assemblages in agricultural landscapes: impacts of habitat features, landscape context at different spatial scales and farming intensity[J]. Agriculture, Ecosystems & Environment, 2005, 108(3): 205−217 [3] TSCHARNTKE T, BOMMARCO R, CLOUGH Y, et al. Conservation biological control and enemy diversity on a landscape scale[J]. Biological Control, 2007, 43(3): 294−309 doi: 10.1016/j.biocontrol.2007.08.006 [4] 龚玲春. 下辽河平原典型县域农田景观组成对玉米螟天敌数量的影响——以昌图县为例[D]. 沈阳: 沈阳农业大学, 2018GONG L C. Effect of agricultural landscape configuration on quantity of corn borer’s natural enemy in representative county in the lower reaches of Liaohe River Plain[D]. Shenyang: Shenyang Agricultural University, 2018 [5] AVIRON S, LALECHÈRE E, DUFLOT R, et al. Connectivity of cropped vs. semi-natural habitats mediates biodiversity: a case study of carabid beetles communities[J]. Agriculture, Ecosystems & Environment, 2018, 268: 34−43 [6] 王文帆. 荒漠固沙植被区沙丘微地形对土壤、植被和节肢动物群落分布的影响[D]. 银川: 宁夏大学, 2021WANG W F. Effects of dune microtopography on the distribution of soil, vegetation and arthropod communities in revegetation area in Tengger desert[D]. Yinchuan: Ningxia University, 2021 [7] MACEDO-REIS L E, QUESADA M, FREDERICO D S N. Forest cover drives insect guild diversity at different landscape scales in tropical dry forests[J]. Forest Ecology and Management, 2019, 443: 36−42 doi: 10.1016/j.foreco.2019.04.007 [8] 刘芝若, 尹豪. 城市森林建设背景下天敌保护型林地研究[J]. 风景园林, 2022, 29(9): 113−120LIU Z R, YIN H. Research on woodlands for conservation of natural enemies in view of urban forest construction[J]. Landscape Architecture, 2022, 29(9): 113−120 [9] JELASKA L Š, DUMBOVIĆ V, KUČINIĆ M. Carabid beetle diversity and mean individual biomass in beech forests of various ages[J]. ZooKeys, 2011(100): 393−405 [10] 刘启龙, 程赛赛, 陈婷, 等. 不同林型地表甲虫食性及营养级关系: 基于碳氮稳定同位素分析[J]. 生态学报, 2023, 43(6): 2242−2252LIU Q L, CHENG S S, CHEN T, et al. Relationship between feeding habits and trophic levels of surface beetles in different forest types: based on carbon and nitrogen stable isotope analysis[J]. Acta Ecologica Sinica, 2023, 43(6): 2242−2252 [11] SCHIRMEL J, MANTILLA-CONTRERAS J, GAUGER D, et al. Carabid beetles as indicators for shrub encroachment in dry grasslands[J]. Ecological Indicators, 2015, 49: 76−82 doi: 10.1016/j.ecolind.2014.09.041 [12] 胡文浩, 段美春, 那书豪, 等. 坝上地区农田及两种恢复生境中蜘蛛多样性与群落特征[J]. 应用生态学报, 2020, 31(2): 643−650HU W H, DUAN M C, NA S H, et al. Spider diversity and community characteristics in cropland and two kinds of recovery habitats in Bashang area, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 643−650 [13] 杨涛, 唐劲驰, 高文伟, 等. 不同管理类型茶园蜘蛛多样性及时空变化[J]. 中国农业科技导报, 2022, 24(11): 148−158YANG T, TANG J C, GAO W W, et al. Diversity and temporal and spatial changes of spiders in different management types of tea gardens[J]. Journal of Agricultural Science and Technology, 2022, 24(11): 148−158 [14] 刘云慧, 张鑫, 张旭珠, 等. 生态农业景观与生物多样性保护及生态服务维持[J]. 中国生态农业学报, 2012, 20(7): 819−824 doi: 10.3724/SP.J.1011.2012.00819LIU Y H, ZHANG X, ZHANG X Z, et al. Ecoagricultural landscape for biodiversity conservation and ecological service maintenance[J]. Chinese Journal of Eco-Agriculture, 2012, 20(7): 819−824 doi: 10.3724/SP.J.1011.2012.00819 [15] JAWORSKI C C, THOMINE E, RUSCH A, et al. At which spatial scale does crop diversity enhance natural enemy populations and pest control? an experiment in a mosaic cropping system[J]. Agronomy, 2022, 12(8): 1973 doi: 10.3390/agronomy12081973 [16] KEYLOCK C J. Simpson diversity and the Shannon-Wiener index as special cases of a generalized entropy[J]. Oikos, 2005, 109(1): 203−207 doi: 10.1111/j.0030-1299.2005.13735.x [17] 杨文君. 乡村城市化背景下农田边界景观营造研究——以南京城市边缘区村落为例[D]. 南京: 南京工业大学, 2018YANG W J. Study on construction of field margin landscape under the background of rural urbanization — A case study of villages in Nanjing urban fringe[D]. Nanjing: Nanjing University of Technology, 2018 [18] HOFFMANN H, PETER F, HERRMANN J D, et al. Benefits of wildflower areas as overwintering habitats for ground-dwelling arthropods depend on landscape structural complexity[J]. Agriculture, Ecosystems & Environment, 2021, 314: 107421 [19] KOLOZSVARY M B, SWIHART R K. Habitat fragmentation and the distribution of amphibians: patch and landscape correlates in farmland[J]. Canadian Journal of Zoology, 1999, 77(8): 1288−1299 doi: 10.1139/z99-102 [20] VANNIER C, VASSEUR C, HUBERT-MOY L, et al. Multiscale ecological assessment of remote sensing images[J]. Landscape Ecology, 2011, 26(8): 1053−1069 doi: 10.1007/s10980-011-9626-y [21] LOUREIRO A M M C, NAMS V O, WHITE S N, et al. Short-term dispersal and long-term spatial and temporal patterns of Carabidae (Coleoptera) in lowbush blueberry fields[J]. Environmental Entomology, 2020, 49(3): 572−579 doi: 10.1093/ee/nvaa047 [22] PFIFFNER L, LUKA H. Overwintering of arthropods in soils of arable fields and adjacent semi-natural habitats[J]. Agriculture, Ecosystems & Environment, 2000, 78(3): 215−222 [23] LUO W T, MURAINA T O, GRIFFIN-NOLAN R J, et al. Responses of a semiarid grassland to recurrent drought are linked to community functional composition[J]. Ecology, 2022, 104(2): e3920 [24] 张旭珠, 张鑫, 宋潇, 等. 植被边界带对相邻麦田地表步甲和蜘蛛分布及蚜虫发生的影响[J]. 生态学报, 2018, 38(23): 8442−8454ZHANG X Z, ZHANG X, SONG X, et al. Effects of vegetated field margins on the distribution of epigaeic carabid beetles and spiders and aphid development in adjacent wheat fields[J]. Acta Ecologica Sinica, 2018, 38(23): 8442−8454 [25] BLARY C, KERBIRIOU C, LE VIOL I, et al. Assessing the importance of field margins for bat species and communities in intensive agricultural landscapes[J]. Agriculture, Ecosystems & Environment, 2021, 319: 107494 [26] 林志文, 张文祥, 张贵良, 等. 区域尺度下不同生境甲虫多样性比较−以云南红河州为例[J]. 西部林业科学, 2022, 51(2): 106−112LIN Z W, ZHANG W X, ZHANG G L, et al. Comparison of beetle diversity in different habitats at regional scale — Taking Honghe area of Yunnan Province as an example[J]. Journal of West China Forestry Science, 2022, 51(2): 106−112 [27] 赵紫华, 王颖, 贺达汉, 等. 麦蚜和寄生蜂对农业景观格局的响应及其关键景观因子分析[J]. 生态学报, 2012, 32(2): 472−482 doi: 10.5846/stxb201012011711ZHAO Z H, WANG Y, HE D H, et al. Effects of landscape structure and key landscape factors on aphids-parasitoidshyper parasitoids populations in wheat fields[J]. Acta Ecologica Sinica, 2012, 32(2): 472−482 doi: 10.5846/stxb201012011711 [28] INGLE K, KAUR H, GALLÉ-SZPISJAK N, et al. Winter-active spider fauna is affected by plantation forest type[J]. Environmental Entomology, 2020, 49(3): 601−606 doi: 10.1093/ee/nvaa025 [29] 王丽娟. 陕西子午岭国家级自然保护区不同林型地表甲虫多样性及边缘效应研究[D]. 延安: 延安大学, 2018WANG L J. Study on diversity and edge effect of ground-dwelling beetles of different forest types in Ziwuling National Nature Reserve, Shaanxi[D]. Yan’an: Yan’an University, 2018 [30] 张旭珠, 韩印, 宇振荣, 等. 半自然农田边界与相邻农田步甲和蜘蛛的时空分布[J]. 应用生态学报, 2017, 28(6): 1879−1888ZHANG X Z, HAN Y, YU Z R, et al. Spatio-temporal distribution of carabids and spiders between semi-natural field margin and the adjacent crop fields in agricultural landscape[J]. Chinese Journal of Applied Ecology, 2017, 28(6): 1879−1888 [31] 赵紫华, 欧阳芳, 贺达汉. 农业景观中不同生境界面麦蚜天敌的边缘效应与溢出效应[J]. 中国科学: 生命科学, 2012, 42(10): 825−840 doi: 10.1360/052012-184ZHAO Z H, OUYANG F, HE D H. Edge effects and spillover effects of natural enemies on different habitat interfaces of agricultural landscape[J]. Scientia Sinica (Vitae), 2012, 42(10): 825−840 doi: 10.1360/052012-184 [32] JONASON D, SMITH H G, BENGTSSON J, et al. Landscape simplification promotes weed seed predation by carabid beetles (Coleoptera: Carabidae)[J]. Landscape Ecology, 2013, 28(3): 487−494 doi: 10.1007/s10980-013-9848-2 [33] SCHELLHORN N A, BIANCHI F A, HSU C L. Movement of entomophagous arthropods in agricultural landscapes: links to pest suppression[J]. Annual Review of Entomology, 2014, 59: 559−581 doi: 10.1146/annurev-ento-011613-161952 [34] 杨玉静. 多层级农田景观特征对地表节肢动物多样性的影响[D]. 沈阳: 沈阳农业大学, 2022YANG Y J. Effects of multi-level farmland landscape characteristics on epigaeic arthropod diversity[D]. Shenyang: Shenyang Agricultural University, 2022 [35] MARTIN E A, SEO B, PARK C R, et al. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields[J]. Ecological Applications: a Publication of the Ecological Society of America, 2016, 26(2): 448−462 doi: 10.1890/15-0856 [36] BIAN Z X, WANG C Q, LIU Y, et al. Ecological network characteristics of the functional groups of epigaeic arthropod in arable land with different field margin types[J]. Chinese Journal of Eco-Agriculture, 2022, 30(9): 1381−1392 [37] 刘继亮, 赵文智, 李锋瑞, 等. 天然和人工固沙灌木林蜘蛛和甲虫分布与环境因子的关系[J]. 生态学报, 2020, 40(21): 7987−7996LIU J L, ZHAO W Z, LI F R, et al. The relationship of ground spider and beetle assemblage with environmental factors in the natural and artificial fixed-sand shrub forests[J]. Acta Ecologica Sinica, 2020, 40(21): 7987−7996 -