留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

1960—2018年中国玉米生育期及各生育阶段水热条件时空变化特征

刘行 张晓龙 王艺璇 郭英 罗建美 沈彦军

刘行, 张晓龙, 王艺璇, 郭英, 罗建美, 沈彦军. 1960—2018年中国玉米生育期及各生育阶段水热条件时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(8): 1417-1429. doi: 10.13930/j.cnki.cjea.201009
引用本文: 刘行, 张晓龙, 王艺璇, 郭英, 罗建美, 沈彦军. 1960—2018年中国玉米生育期及各生育阶段水热条件时空变化特征[J]. 中国生态农业学报(中英文), 2021, 29(8): 1417-1429. doi: 10.13930/j.cnki.cjea.201009
LIU Hang, ZHANG Xiaolong, WANG Yixuan, GUO Ying, LUO Jianmei, SHEN Yanjun. Spatio-temporal characteristics of the hydrothermal conditions in the growth period and various gro wth stages of maize in China from 1960 to 2018[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1417-1429. doi: 10.13930/j.cnki.cjea.201009
Citation: LIU Hang, ZHANG Xiaolong, WANG Yixuan, GUO Ying, LUO Jianmei, SHEN Yanjun. Spatio-temporal characteristics of the hydrothermal conditions in the growth period and various gro wth stages of maize in China from 1960 to 2018[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1417-1429. doi: 10.13930/j.cnki.cjea.201009

1960—2018年中国玉米生育期及各生育阶段水热条件时空变化特征

doi: 10.13930/j.cnki.cjea.201009
基金项目: 

中国科学院农业水资源重点实验室重点方向培育项目 42001037

国家自然科学基金项目 41807157

详细信息
    作者简介:

    刘行, 主要从事气候变化对农业产量的影响研究。E-mail: liuhang.950923@foxmail.com

    通讯作者:

    沈彦军, 主要从事流域生态水文模拟与水环境管理方向研究。E-mail: shenyanjun@sjziam.ac.cn

  • 中图分类号: S162.3

Spatio-temporal characteristics of the hydrothermal conditions in the growth period and various gro wth stages of maize in China from 1960 to 2018

Funds: 

the Key Cultivation Project of the Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences 42001037

the National Natural Science Foundation of China 41807157

More Information
  • 摘要: 水热条件是影响作物分布与农业生产的重要因素。玉米不仅是我国重要的粮食作物,同时也是重要的饲料作物和能源作物,探讨其生育期及各生育阶段水热条件的时空变化特征对农业应对气候变化带来的风险及粮食安全具有重要意义。本文选取平均温度(Tmean)、生长度日(GDD)、高温度日(KDD)、日照时数(SD)、有效降水(Pe)和灌溉需水量(IR)为水热条件指标,基于全国422个气象站点和292个农气站点观测数据,采用趋势和空间分析方法,揭示了1960—2018年中国九大玉米种植区玉米全生育期及各生育阶段水热条件的时空变化特征。结果表明,玉米生育期Tmean、GDD的增幅分别为0.18~0.36℃·(10a)-1和5.73~41.23℃·(10a)-1,东北、甘新区、黄淮海平原和黄土高原等种植区增加最显著。生育期KDD的高值区主要集中在黄淮海平原和甘新地区;除黄淮海平原西南局部区域呈不显著下降趋势外,其他地区呈增加趋势;且KDD的增加主要集中在苗期到花粒期。玉米生育期SD整体表现为显著下降趋势,其中黄淮海平原和黄土高原地区玉米各生育阶段均存在显著下降趋势,花粒期SD下降最明显。玉米生育期Pe和IR变化趋势总体上不显著但空间差异明显;除甘新区和内蒙Pe呈现不显著增加趋势外,全国大部分玉米种植区Pe呈不显著减少趋势。生育期IR在南疆及黄淮海平原西南部呈不显著减少、东北东南部不显著增加趋势;从各生育阶段来看,黄淮海平原区及东北地区Pe在穗期和花粒期减少且IR相对增加,黄淮海平原区及黄土高原西部的IR分别在播期和苗期呈现减少趋势。总体来看,全国玉米生育期热量资源有增加趋势,光照资源减少,有效降水和灌溉需水量的变化趋势不明显,但是各生育阶段及区域间水热条件变化差异明显,如黄淮海平原和黄土高原地区苗期到花粒期KDD增加显著但SD下降,高温胁迫可能会对玉米生长产生负影响,同时影响对水分的消耗。因此,未来研究更应该关注生育阶段的水热条件变化以及极端情况对玉米生长的影响。
  • 图  1  中国九大农业种植区(a)和玉米种植面积、气象和农业站点(b)分布

    Figure  1.  Distribution of nine agricultural planting areas (a) and maize planting areas, meteorological and agricultural observation stations (b) in China

    图  2  1960—2018年玉米生育期平均温度(Tmean)、生长度日(GDD)、高温度日(KDD)多年均值及变化趋势的空间分布

    a-c为各因子多年均值图, 图中棕色线为各因子等值线; d-f为各因子多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  2.  Spatial distributions of annual averages and trends of mean temperature (Tmean), growing degree days (GDD), killing degree days (KDD) during growth period of maize from 1960 to 2018

    Figure a-c are maps of annual means of indicators, in which the brown line is contour line. Figure d-f are maps of trends of indicators, in which SN indicates significant changes (P < 0.05).

    图  3  1960—2018年玉米生育期日照时数(SD)、有效降水(Pe)、灌溉需水量(IR)多年均值及变化趋势空间分布

    a-c为各因子多年均值图, 图中棕色线为各因子等值线; d-f为各因子多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  3.  Spatial distributions of annual average and trends of sunshine duration (SD), effective precipitation (Pe) and irrigation water demand (IR) during growth period of maize from 1960 to 2018

    Figure a-c are maps of annual means of indicators, in which the brown line is contour line. Figure d-f are maps of trends of indicators, in which SN indicates significant changes (P < 0.05).

    图  4  1960—2018年玉米播种期、苗期、穗期、花粒期生长度日(GDD)多年均值及变化趋势空间分布

    a-d为GDD多年均值图, 图中棕色线为GDD等值线; e-h为GDD多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  4.  Spatial distributions of annual average and trend of growing degree days (GDD) in sowing period, seedling period, ear period and flowering to maturity period of maize from 1960 to 2018

    Figure a-d are maps of annual means of GDD, in which the brown line is contour line. Figure e-h are maps of GDD trends, in which SN indicates significant changes (P < 0.05).

    图  5  1960—2018年玉米播种期、苗期、穗期、花粒期高温度日(KDD)多年均值及变化趋势空间分布

    a-d为KDD多年均值图, 图中棕色线为KDD等值线; e-h为KDD多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  5.  Spatial distributions of annual average and trend of killing degree days (KDD) in sowing period, seedling period, ear period and flowering to maturity period of maize from 1960 to 2018

    Figure a-d are maps of annual means of KDD, in which the brown line is contour line. Figure e-h are maps of KDD trends, in which SN indicates significant changes (P < 0.05).

    图  6  1960—2018年玉米播种期、苗期、穗期、花粒期光照时数(SD)多年均值及变化趋势空间分布

    a-d为SD多年均值图, 图中棕色线为SD等值线; e-h为SD多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  6.  Spatial distributions of annual average and trend of sunshine duration (SD) in sowing period, seedling period, ear period and flowering to maturity period of maize from 1960 to 2018

    Figure a-d are maps of annual means of SD, in which the brown line is contour line. Figure e-h are maps of SD trends, in which SN indicates significant changes (P < 0.05).

    图  7  1960—2018年玉米播种期、苗期、穗期、花粒期有效降水(Pe)多年均值及变化趋势空间分布

    a-d为Pe多年均值图, 图中棕色线为Pe等值线; e-h为Pe多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  7.  Spatial distributions of annual average and trend of effective precipitation (Pe) in sowing period, seedling period, ear period and flowering to maturity period of maize from 1960 to 2018

    Figure a-d are maps of annual means of Pe, in which the brown line is contour line. Figure e-h are maps of Pe trends, in which SN indicates significant changes (P < 0.05).

    图  8  1960—2018年玉米播种期、苗期、穗期、花粒期灌溉需水量(IR)多年均值及变化趋势空间分布

    a-d为IR多年均值图, 图中棕色线为IR等值线; e-h为IR多年变化趋势图, 其中SN代表通过显著性检验的站点(P < 0.05)。

    Figure  8.  Spatial distributions of annual average and trend of irrigation water demand (IR) in sowing period, seedling period, ear period and flowering to maturity period of maize from 1960 to 2018

    Figure a-d are maps of annual means of IR, in which the brown line is contour line. Figure e-h are maps of IR trends, in which SN indicates significant changes (P < 0.05).

    表  1  中国不同农业种植区玉米生育期划分

    Table  1.   Division of maize growth periods in different regions of China

    农业种植区
    Agricultural zone
    春/夏玉米
    Spring/summer maize
    播种期(月-日)
    Sowing period (month-day)
    苗期(月-日)
    Seedling period (month-day)
    穗期(月-日)
    Ear period (month-day)
    花粒期(月-日)
    Flowering to maturity period (month-day)
    东北区
    Northeast zone
    春Spring 04-20—05-10 05-10—06-17 06-17—07-25 07-25—09-10
    内蒙古及长城沿线地区
    Inner Mongolia and areas along the Great Wall
    春Spring 05-05—05-25 05-25—06-25 06-25—07-25 07-25—09-23
    黄土高原地区
    Loess Plateau zone
    夏Summer 06-05—06-20 06-20—07-10 07-10—08-10 08-10—09-16
    春Spring 04-20—05-10 05-10—06-20 06-20—07-25 07-25—09-24
    黄淮海地区
    Huang-Huai-Hai zone
    春Spring 04-20—05-10 05-10—06-20 06-20—07-25 07-25—09-24
    夏Summer 06-05—06-20 06-20—07-10 07-10—08-10 08-10—09-16
    甘新区
    Gansu-Xinjiang zone
    春Spring 04-25—05-13 05-13—06-17 06-17—07-20 07-20—09-25
    夏Summer 06-16—07-05 07-05—08-05 08-05—09-05 09-05—10-03
    西南区
    Southwest zone
    春Spring 04-01—04-11 04-11—05-11 05-11—06-12 06-12—08-01
    长江中下游流域地区
    Middle and Lower Reaches of the Yangtze River
    春Spring 03-05—03-15 03-15—05-01 05-01—06-01 06-01—07-11
    华南区
    Southern zone
    春Spring 02-25—03-05 03-05—04-01 04-01—05-01 05-01—06-11
    下载: 导出CSV
  • [1] LOBELL D B, SCHLENKER W, COSTA-ROBERTS J. Climate trends and global crop production since 1980[J]. Science, 2011, 333(6042): 616-620 doi: 10.1126/science.1204531
    [2] GOURDJI S M, SIBLEY A M, LOBELL D B. Global crop exposure to critical high temperatures in the reproductive period: historical trends and future projections[J]. Environmental Research Letters, 2013, 8(2): 024041 doi: 10.1088/1748-9326/8/2/024041
    [3] 周广胜. 气候变化对中国农业生产影响研究展望[J]. 气象与环境科学, 2015, 38(1): 80-94 doi: 10.3969/j.issn.1673-7148.2015.01.012

    ZHOU G S. Research prospect on impact of climate change on agricultural production in China[J]. Meteorological and Environmental Sciences, 2015, 38(1): 80-94 doi: 10.3969/j.issn.1673-7148.2015.01.012
    [4] 刘彦随, 刘玉, 郭丽英. 气候变化对中国农业生产的影响及应对策略[J]. 中国生态农业学报, 2010, 18(4): 905-910 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201004050.htm

    LIU Y S, LIU Y, GUO L Y. Impact of climatic change on agricultural production and response strategies in China[J]. Chinese Journal of Eco-Agriculture, 2010, 18(4): 905-910 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201004050.htm
    [5] 赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策[J]. 中国农业科技导报, 2013, 15(3): 1-6 doi: 10.3969/j.issn.1008-0864.2013.03.01

    ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China[J]. Journal of Agricultural Science and Technology, 2013, 15(3): 1-6 doi: 10.3969/j.issn.1008-0864.2013.03.01
    [6] DERYNG D, CONWAY D, RAMANKUTTY N, et al. Global crop yield response to extreme heat stress under multiple climate change futures[J]. Environmental Research Letters, 2014, 9(3): 034011 doi: 10.1088/1748-9326/9/3/034011
    [7] IIZUMI T, FURUYA J, SHEN Z H, et al. Responses of crop yield growth to global temperature and socioeconomic changes[J]. Scientific Reports, 2017, 7: 7800 doi: 10.1038/s41598-017-08214-4
    [8] TEBALDI C, LOBELL D. Estimated impacts of emission reductions on wheat and maize crops[J]. Climatic Change, 2018, 146(3/4): 533-545
    [9] LOBELL D B, FIELD C B. Global scale climate-crop yield relationships and the impacts of recent warming[J]. Environmental Research Letters, 2007, 2(1): 014002 doi: 10.1088/1748-9326/2/1/014002
    [10] CEGLAR A, TORETI A, PRODHOMME C, et al. Land-surface initialisation improves seasonal climate prediction skill for maize yield forecast[J]. Scientific Reports, 2018, 8(1): 1322 doi: 10.1038/s41598-018-19586-6
    [11] ZIPPER S C, QIU J X, KUCHARIK C J. Drought effects on US maize and soybean production: spatiotemporal patterns and historical changes[J]. Environmental Research Letters, 2016, 11(9): 094021 doi: 10.1088/1748-9326/11/9/094021
    [12] BARNABÁS B, JÄGER K, FEHÉR A. The effect of drought and heat stress on reproductive processes in cereals[J]. Plant, Cell & Environment, 2008, 31(1): 11-38 http://europepmc.org/abstract/MED/17971069
    [13] 郝卫平. 干旱复水对玉米水分利用效率及补偿效应影响研究[D]. 北京: 中国农业科学院, 2013

    HAO W P. Influence of water stress and rewatering on maize WUE and compensation effects[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013
    [14] MATIU M, ANKERST D P, MENZEL A. Interactions between temperature and drought in global and regional crop yield variability during 1961-2014[J]. PLoS One, 2017, 12(5): e0178339 doi: 10.1371/journal.pone.0178339
    [15] 张吉旺. 光温胁迫对玉米产量和品质及其生理特性的影响[D]. 泰安: 山东农业大学, 2005

    ZHANG J W. Effects of light and temperature stress on physiological characteristics of yield and quality in maize (Zea mays L. )[D]. Tai'an: Shandong Agricultural University, 2005
    [16] 郭建平. 气候变化对中国农业生产的影响研究进展[J]. 应用气象学报, 2015, 26(1): 1-11 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201501001.htm

    GUO J P. Advances in impacts of climate change on agricultural production in China[J]. Journal of Applied Meteorological Science, 2015, 26(1): 1-11 https://www.cnki.com.cn/Article/CJFDTOTAL-YYQX201501001.htm
    [17] 马洁华, 刘园, 杨晓光, 等. 全球气候变化背景下华北平原气候资源变化趋势[J]. 生态学报, 2010, 30(14): 3818-3827 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201014021.htm

    MA J H, LIU Y, YANG X G, et al. Characteristics of climate resources under global climate change in the North China Plain[J]. Acta Ecologica Sinica, 2010, 30(14): 3818-3827 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201014021.htm
    [18] 杨若子, 周广胜. 1961-2013年东北三省玉米低温冷害强度的时空分布特征[J]. 生态学报, 2016, 36(14): 4386-4394 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201614018.htm

    YANG R Z, ZHOU G S. Spatio-temporal distribution of maize chilling damage intensity in the Three Provinces of Northeast China during 1961 to 2013[J]. Acta Ecologica Sinica, 2016, 36(14): 4386-4394 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201614018.htm
    [19] 高晓容, 王春乙, 张继权, 等. 近50年东北玉米生育阶段需水量及旱涝时空变化[J]. 农业工程学报, 2012, 28(12): 101-109 doi: 10.3969/j.issn.1002-6819.2012.12.017

    GAO X R, WANG C Y, ZHANG J Q, et al. Crop water requirement and temporal-spatial variation of drought and flood disaster during growth stages for maize in Northeast during past 50 years[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(12): 101-109 doi: 10.3969/j.issn.1002-6819.2012.12.017
    [20] 王曼, 郭燕云, 杨彩虹, 等. 1991-2019年喀什地区夏玉米生长季热量资源变化及其影响[J]. 新疆农业科技, 2020, (4): 8-12 doi: 10.3969/j.issn.1007-3574.2020.04.004

    WANG M, GUO Y Y, YANG C H, et al. Changes and effects of heat resources in summer maize season in Kashgar region from 1991 to 2019[J]. Xinjiang Agricultural Science and Technology, 2020, (4): 8-12 doi: 10.3969/j.issn.1007-3574.2020.04.004
    [21] 代立芹, 李春强, 魏瑞江. 河北省夏玉米气候适宜度及其变化特征分析[J]. 生态环境学报, 2011, 20(Z1): 1031-1036 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ2011Z1008.htm

    DAI L Q, LI C Q, WEI R J. Climatic suitability of summer corn and its changes in Hebei Province[J]. Ecology and Environmental Sciences, 2011, 20(Z1): 1031-1036 https://www.cnki.com.cn/Article/CJFDTOTAL-TRYJ2011Z1008.htm
    [22] PORTMANN F T, SIEBERT S, DÖLL P. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: a new high-resolution data set for agricultural and hydrological modeling[J]. Global Biogeochemical Cycles, 2010, 24(1): DOI: 10.1029/2008gb003435
    [23] 全国农业区划委员会《中国综合农业区划》编写组. 中国综合农业区划[M]. 北京: 农业出版社, 1981

    Compilation Group of China's Comprehensive Agricultural Division. China's Comprehensive Agricultural Division[M]. Beijing: Agricultural Press, 1981
    [24] 郑永丹. 中国主要粮食作物生育期时空格局及其变化[D]. 武汉: 华中师范大学, 2015

    ZHENG Y D. Research on the spatial-temporal distribution of growth period of main grain crops and its change in China[D]. Wuhan: Central China Normal University, 2015
    [25] 曹永强, 王怡涵, 冯兴兴, 等. 河北省夏玉米不同生育期干旱时空分析[J]. 华北水利水电大学学报: 自然科学版, 2020, 41(4): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202004001.htm

    CAO Y Q, WANG Y H, FENG X X, et al. Spatial and temporal analysis of drought in different growth stages of summer corn in Hebei Province[J]. Journal of North China University of Water Resources and Electric Power: Natural Science Edition, 2020, 41(4): 1-9 https://www.cnki.com.cn/Article/CJFDTOTAL-HBSL202004001.htm
    [26] 赵秀萍. 玉米的生育期划分及生长发育特性[J]. 养殖技术顾问, 2014, (4): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-HLCM201404084.htm

    ZHAO X P. Classification and growth characteristics of maize grwoth stages[J]. Technical Advisor for Animal Husbandry, 2014, (4): 85 https://www.cnki.com.cn/Article/CJFDTOTAL-HLCM201404084.htm
    [27] 佟屏亚, 凌碧莹. 关于统一划分玉米生育期的若干建议[J]. 耕作与栽培, 1985, (4): 55-59 https://www.cnki.com.cn/Article/CJFDTOTAL-GZZP198504018.htm

    TONG P Y, LING B Y. Some suggestions on uniform division of maize growth stages[J]. Tillage and Cultivation, 1985, (4): 55-59 https://www.cnki.com.cn/Article/CJFDTOTAL-GZZP198504018.htm
    [28] TIGCHELAAR M, BATTISTI D S, NAYLOR R L, et al. Future warming increases probability of globally synchronized maize production shocks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(26): 6644-6649 doi: 10.1073/pnas.1718031115
    [29] BUTLER E E, MUELLER N D, HUYBERS P. Peculiarly pleasant weather for US maize[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): 11935-11940 doi: 10.1073/pnas.1808035115
    [30] ZHU P, ZHUANG Q L, ARCHONTOULIS S V, et al. Dissecting the nonlinear response of maize yield to high temperature stress with model-data integration[J]. Global Change Biology, 2019, 25(7): 2470-2484 doi: 10.1111/gcb.14632
    [31] BUTLER E E, HUYBERS P. Variations in the sensitivity of US maize yield to extreme temperatures by region and growth phase[J]. Environmental Research Letters, 2015, 10(3): 034009 doi: 10.1088/1748-9326/10/3/034009
    [32] 胡玮, 严昌荣, 李迎春, 等. 气候变化对华北冬小麦生育期和灌溉需水量的影响[J]. 生态学报, 2014, 34(9): 2367-2377 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201409022.htm

    HU W, YAN C R, LI Y C, et al. Impacts of climate change on winter wheat growing period and irrigation water requirements in the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(9): 2367-2377 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201409022.htm
    [33] 王卫光, 彭世彰, 孙风朝, 等. 气候变化下长江中下游水稻灌溉需水量时空变化特征[J]. 水科学进展, 2012, 23(5): 656-664 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201205010.htm

    WANG W G, PENG S Z, SUN F C, et al. Spatiotemporal variations of rice irrigation water requirements in the mid-lower reaches of Yangtze River under changing climate[J]. Advances in Water Science, 2012, 23(5): 656-664 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ201205010.htm
    [34] WU D, FANG S B, LI X, et al. Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain[J]. Agricultural Water Management, 2019, 214: 78-86 doi: 10.1016/j.agwat.2019.01.004
    [35] 刘钰, 汪林, 倪广恒, 等. 中国主要作物灌溉需水量空间分布特征[J]. 农业工程学报, 2009, 25(12): 6-12 doi: 10.3969/j.issn.1002-6819.2009.12.002

    LIU Y, WANG L, NI G H, et al. Spatial distribution characteristics of irrigation water requirement for main crops in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(12): 6-12 doi: 10.3969/j.issn.1002-6819.2009.12.002
    [36] ALLEN R G, PEREIRA L S, RAES D, et al. Crop Evapotranspiration Guidelines for Computing Crop Water Requirements. FAO Irrigation and Drainage Paper 56[R]. Rome: FAO, 1998: 100-109
    [37] 刘钰, Pereira L S. 对FAO推荐的作物系数计算方法的验证[J]. 农业工程学报, 2000, 16(5): 26-30 doi: 10.3321/j.issn:1002-6819.2000.05.007

    LIU Y, PEREIRA L S. Validation of FAO methods for estimating crop coefficients[J]. Transactions of the Chinese Society of Agricultural Engineering, 2000, 16(5): 26-30 doi: 10.3321/j.issn:1002-6819.2000.05.007
    [38] PEREIRA L S, PAREDES P, HUNSAKER D J, et al. Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method[J]. Agricultural Water Management, 2021, 243: 106466 doi: 10.1016/j.agwat.2020.106466
    [39] 崔耀平, 肖登攀, 刘素洁, 等. 中国夏玉米和冬小麦近年生育期变化及其与气候的关系[J]. 中国生态农业学报, 2018, 26(3): 388-396 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201803008.htm

    CUI Y P, XIAO D P, LIU S J, et al. Growth periods variation of summer maize and winter wheat and their correlations with hydrothermal conditions in recent years in China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 388-396 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201803008.htm
    [40] 王琪, 马树庆, 郭建平, 等. 温度变化对东北春玉米生长发育速率的影响[J]. 现代农业科技, 2011, (7): 46-48 doi: 10.3969/j.issn.1007-5739.2011.07.018

    WANG Q, MA S Q, GUO J P, et al. Effect of temperature change on maize growth rate in northeast China[J]. Modern Agricultural Sciences and Technology, 2011, (7): 46-48 doi: 10.3969/j.issn.1007-5739.2011.07.018
    [41] MENG Q F, HOU P, LOBELL D B, et al. The benefits of recent warming for maize production in high latitude China[J]. Climatic Change, 2014, 122(1/2): 341-349 doi: 10.1007/s10584-013-1009-8
    [42] ZHANG T Y, LIN X M, SASSENRATH G F. Current irrigation practices in the central United States reduce drought and extreme heat impacts for maize and soybean, but not for wheat[J]. Science of the Total Environment, 2015, 508: 331-342 doi: 10.1016/j.scitotenv.2014.12.004
    [43] 王柳, 熊伟, 温小乐, 等. 温度降水等气候因子变化对中国玉米产量的影响[J]. 农业工程学报, 2014, 30(21): 138-146 doi: 10.3969/j.issn.1002-6819.2014.21.017

    WANG L, XIONG W, WEN X L, et al. Effect of climatic factors such as temperature, precipitation on maize production in China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2014, 30(21): 138-146 doi: 10.3969/j.issn.1002-6819.2014.21.017
    [44] FENG S F, HAO Z C, ZHANG X, et al. Probabilistic evaluation of the impact of compound dry-hot events on global maize yields[J]. Science of the Total Environment, 2019, 689: 1228-1234 doi: 10.1016/j.scitotenv.2019.06.373
    [45] 王占彪, 王猛, 尹小刚, 等. 气候变化背景下华北平原夏玉米各生育期水热时空变化特征[J]. 中国生态农业学报, 2015, 23(4): 473-481 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201504011.htm

    WANG Z B, WANG M, YIN X G, et al. Spatiotemporal characteristics of heat and rainfall changes in summer maize season under climate change in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2015, 23(4): 473-481 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201504011.htm
    [46] HAWKINS E, FRICKER T E, CHALLINOR A J, et al. Increasing influence of heat stress on French maize yields from the 1960s to the 2030s[J]. Global Change Biology, 2013, 19(3): 937-947 doi: 10.1111/gcb.12069
    [47] 赵龙飞. 玉米花期高温响应的基因型差异及其生理机制研究[D]. 郑州: 河南农业大学, 2012

    ZHAO L F. Genotypic responses and physiological mechanisms of maize (Zea mays L. ) to high temperature stress during flowering[D]. Zhengzhou: Henan Agricultural University, 2012
    [48] 秦雅, 刘玉洁, 葛全胜. 气候变化背景下1981-2010年中国玉米物候变化时空分异[J]. 地理学报, 2018, 73(5): 906-916 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE201903003.htm

    QIN Y, LIU Y J, GE Q S. Spatiotemporal variations in maize phenology of China under climate change from 1981 to 2010[J]. Acta Geographica Sinica, 2018, 73(5): 906-916 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGDE201903003.htm
    [49] 杨鹏宇, 胡琦, 马雪晴, 等. 1961-2015年华北平原夏玉米生长季光热资源变化及其影响[J]. 中国农业气象, 2018, 39(7): 431-441 doi: 10.3969/j.issn.1000-6362.2018.07.001

    YANG P Y, HU Q, MA X Q, et al. Spatiotemporal variation of heat and solar resources and its impact on summer maize in the North China Plain over the period 1961-2015[J]. Chinese Journal of Agrometeorology, 2018, 39(7): 431-441 doi: 10.3969/j.issn.1000-6362.2018.07.001
    [50] 史建国. 不同光照对夏玉米产量及其根系生理特性的影响[D]. 泰安: 山东农业大学, 2015

    SHI J G. Effect of different light conditions on yield and the root characteristics of summer maize[D]. Tai'an: Shandong Agricultural University, 2015
    [51] 李亮. 气候变化条件下中国西北地区主要作物需水量时空演变及干旱指标研究[D]. 杨凌: 西北农林科技大学, 2019

    LI L. Impact of climate change on crop water requirement and drought indices in Northwest China[D]. Yangling: Northwest A&F University, 2019
    [52] 纪瑞鹏, 张玉书, 姜丽霞, 等. 气候变化对东北地区玉米生产的影响[J]. 地理研究, 2012, 31(2): 290-298 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201202009.htm

    JI R P, ZHANG Y S, JIANG L X, et al. Effect of climate change on maize production in Northeast China[J]. Geographical Research, 2012, 31(2): 290-298 https://www.cnki.com.cn/Article/CJFDTOTAL-DLYJ201202009.htm
    [53] XU H Q, TIAN Z, HE X G, et al. Future increases in irrigation water requirement challenge the water-food Nexus in the northeast farming region of China[J]. Agricultural Water Management, 2019, 213: 594-604 doi: 10.1016/j.agwat.2018.10.045
    [54] 石建省, 王昭, 张兆吉, 等. 华北平原深层地下水超采程度计算与分析[J]. 地学前缘, 2010, 17(6): 215-220 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006029.htm

    SHI J S, WANG Z, ZHANG Z J, et al. Assessment of over-exploitation of deep groundwater in the North China Plain[J]. Earth Science Frontiers, 2010, 17(6): 215-220 https://www.cnki.com.cn/Article/CJFDTOTAL-DXQY201006029.htm
  • 加载中
图(8) / 表(1)
计量
  • 文章访问数:  345
  • HTML全文浏览量:  202
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-27
  • 录用日期:  2021-03-09
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回