留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于NSGA-Ⅱ算法的白洋淀上游种植结构优化

王璐 杜雄 王荣 杨艳敏 胡玉昆 侯振军

王璐, 杜雄, 王荣, 杨艳敏, 胡玉昆, 侯振军. 基于NSGA-Ⅱ算法的白洋淀上游种植结构优化[J]. 中国生态农业学报(中英文), 2021, 29(8): 1370-1383. doi: 10.13930/j.cnki.cjea.201021
引用本文: 王璐, 杜雄, 王荣, 杨艳敏, 胡玉昆, 侯振军. 基于NSGA-Ⅱ算法的白洋淀上游种植结构优化[J]. 中国生态农业学报(中英文), 2021, 29(8): 1370-1383. doi: 10.13930/j.cnki.cjea.201021
WANG Lu, DU Xiong, WANG Rong, YANG Yanmin, HU Yukun, HOU Zhenjun. Optimization of the planting structure in the upstream region of Baiyangdian Lake based on the non-dominated sorting genetic algorithm (NSGA-Ⅱ)[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1370-1383. doi: 10.13930/j.cnki.cjea.201021
Citation: WANG Lu, DU Xiong, WANG Rong, YANG Yanmin, HU Yukun, HOU Zhenjun. Optimization of the planting structure in the upstream region of Baiyangdian Lake based on the non-dominated sorting genetic algorithm (NSGA-Ⅱ)[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1370-1383. doi: 10.13930/j.cnki.cjea.201021

基于NSGA-Ⅱ算法的白洋淀上游种植结构优化

doi: 10.13930/j.cnki.cjea.201021
基金项目: 

国家水体污染控制与治理专项 2018ZX07110001

科技部国际合作项目 2018YFE0110100

国家自然科学基金项目 31871518

国家重点研发计划项目 2017YFD0300908

详细信息
    作者简介:

    王璐, 主要从事农业耗水方面的研究。E-mail: 1742646162@qq.com

    通讯作者:

    杜雄, 主要从事作物生长系统调控工程方面的研究, E-mail: duxiong2002@163.com

    杨艳敏, 主要从事农业耗水评估方面的研究, E-mail: ymyang@sjziam.ac.cn

  • 中图分类号: S5-3

Optimization of the planting structure in the upstream region of Baiyangdian Lake based on the non-dominated sorting genetic algorithm (NSGA-Ⅱ)

Funds: 

the National Water Pollution Control and Treatment Special Project of China 2018ZX07110001

the International Cooperation Program of Ministry of Science and Technology of China 2018YFE0110100

the National Natural Science Foundation of China 31871518

the National Key Research and Development Program of China 2017YFD0300908

More Information
  • 摘要: 合理的种植结构是实现区域水资源及土地资源优化配置的基础。针对白洋淀上游水资源紧缺、种植结构不合理等问题,结合当前主要作物种植结构现状,本研究以作物种植面积为优化变量,以水资源、土地资源、社会需求等为约束条件,以经济效益、生态效益最大及总灌溉耗水量最小为目标,构建基于非支配排序遗传算法(NSGA-Ⅱ)的作物种植结构多目标调整模型,并提出了针对白洋淀上游平原区、山区等不同水资源限制和农业机械化程度情景下的种植结构调整优化方案。研究结果表明,在平原区现状机械化水平下,在不限制用水的情景下,可以通过调减一年两作的种植面积,增加蔬菜和绿豆-鲜食玉米等的种植面积,达到提高经济效益12.6%的目的,而生态效益和节水效益都有所降低。在限水情景下,小麦-玉米调减比例增加,调增绿豆-鲜食玉米、春季甘薯、蔬菜和果蔬的面积,实现经济效益和节水效益的提高;而要达到节水20%的目标,所有作物的种植面积都要缩减,高耗水种植制度小麦-玉米种植面积缩减比例达21.5%,同时经济效益和生态效益都下降。在未来提高机械化水平的情景下,调整优化后的经济效益相比现状机械化水平提高或下降减少。在山区所有情景下,小麦-玉米种植面积随着对水分限制水平(不限水—小于现状水资源—节水20%)的增加调减比例增加,同时增加果树的种植面积。在山区可以通过种植结构的调整达到既节水20%,同时经济效益提高的目标,这是平原区所不能达到的。总之,无论是平原区还是山区,均是在不限水情景下优化后的经济效益、生态效益相对较高,而节水越多,优化后的经济效益、生态效益增幅越小、降幅越大。并且在平原区如果在节水要求不高的情景下应适当增加蔬菜面积,减少粮食种植面积;在节水要求高的情景下应削减所有作物包括水果、蔬菜的种植面积,在山区应该适当削减粮食种植面积,扩大果树的种植面积。该研究不仅可为研究区未来作物种植结构调整提供决策依据,也为在类似地区种植结构调整和水资源优化管理提供了新的情景参考。
  • 图  1  NSGA-Ⅱ主要流程图

    Figure  1.  NSGA-Ⅱmain flow chart

    表  1  白洋淀上游各种种植制度单位面积机械种植成本

    Table  1.   Mechanical planting cost per unit area of various cropping system in the upper stream of Baiyangdian Lake  ¥∙hm–2

    种植制度
    Cropping system
    灌溉
    Irrigation
    种子
    Seeds
    耕地
    Cultivated
    land
    播种
    Sowing
    收获
    Harvest
    肥料
    Fertilizer
    农药
    Pesticide
    农膜
    Mulching
    films
    劳力
    Labor
    总成本
    Total
    cost
    小麦-玉米Wheat-maize 1875 1800 1800 675 2100 3900 630 60 1200 14 040
    小麦-谷子Wheat-millet 1875 1140 1800 750 1800 3975 480 0 1080 12 900
    小麦-大豆Wheat-soybean 1875 1470 1800 600 1800 3405 630 0 1320 12 900
    小麦-夏甘薯
    Wheat-summer sweet potato
    2100 6300 2775 3900 3300 4950 630 0 2130 26 085
    小麦-绿豆
    Wheat-mung bean
    1875 1575 1800 600 1800 3585 630 60 1470 13 395
    绿豆-鲜食玉米
    Mung beans-fresh maize
    1575 2775 900 675 2100 3210 600 120 2050 14 005
    玉米一作Maize 375 750 900 375 1200 1800 300 60 390 6150
    棉花一作Cotton 1200 540 900 375 1200 2550 1080 615 3180 11 640
    春甘薯一作
    Spring sweet potato
    1800 15 750 1875 3600 2400 3000 1250 900 3740 34 315
    谷子一作Millet 375 90 900 450 900 975 150 0 270 4110
    花生一作Peanut 375 2370 900 375 900 2250 615 120 750 8655
    高粱一作Sorghum 375 600 900 375 900 900 225 0 1095 5370
    下载: 导出CSV

    表  2  白洋淀上游各种种植制度单位面积非机械类种植成本

    Table  2.   Non-mechanical planting cost per unit area of various cropping system in the upper stream of Baiyangdian Lake  ¥∙hm–2

    种植制度
    Cropping system
    灌溉Irrigation 种子
    Seed
    耕地Cultivated
    land
    播种Sowing 收获Harvest 肥料Fertilizer 农药Pesticide 农膜Mulching
    films
    劳力Labor 总成本
    Total
    cost
    小麦-谷子
    Wheat-millet
    1875 1140 3600 1200 3150 3975 480 0 1080 16 500
    小麦-大豆
    Wheat-soybean
    1875 1470 3600 900 3150 3405 630 0 1320 16 350
    小麦-夏甘薯
    Wheat-summer sweet potato
    2100 6300 6300 3900 5700 4950 630 0 2130 32 010
    小麦-绿豆
    Wheat-mung bean
    1875 1575 3600 900 3150 3585 630 60 1470 16 845
    绿豆-鲜食玉米
    Mung beans-fresh maize
    1575 2775 2700 1375 5950 3210 600 120 2050 20 355
    玉米一作Maize 375 750 2700 750 2700 1800 300 60 390 9825
    棉花一作Cotton 1200 540 2700 750 3000 2550 1080 615 3180 15 615
    春甘薯一作
    Spring sweet potato
    1800 15 750 5400 3600 4800 3000 1250 900 3740 40 240
    谷子一作Millet 375 90 2700 900 2250 975 150 0 270 7710
    花生一作Peanut 375 2370 2700 750 2700 2250 615 120 750 12 630
    高粱一作Sorghum 375 600 2700 900 2250 900 225 0 1095 9045
    下载: 导出CSV

    表  3  白洋淀上游蔬菜的完全非机械化以及完全机械化种植成本

    Table  3.   Cost of fully mechanized and completely non-mechanized planting of vegetables in the upper stream of Baiyangdian Lake  ¥∙hm–2

    项目
    Item
    蔬菜类别
    Vegetables category
    蔬菜名称
    Vegetable
    name
    种子
    Seeds
    灌溉Irrigation 耕地
    Cultivated
    land
    播种
    Sowing
    收获
    Harvest
    肥料
    Fertilizer
    农药
    Pesticide
    劳力
    Labor
    总成本
    Total
    cost
    完全非机械化种植成本Completely non-mechanized planting cost 大田蔬菜
    Outdoor
    vegetables
    白菜Cabbage 1450 2750 2250 2200 7500 4000 1362 3300 24 812
    萝卜Radish 1350 2850 2250 2015 9200 3800 1254 3100 25 819
    南瓜Pumpkin 1050 2890 2250 2350 8000 4150 1450 3300 25 440
    大葱Onion 1500 2630 2250 2550 7670 4550 1560 3000 25 710
    设施蔬菜Facilities vegetables 黄瓜Cucumber 2650 3750 3125 3750 12 500 7420 3600 4658 41 453
    西红柿Tomatoes 2600 3055 3125 3250 12 300 7500 3000 4575 39 405
    豆角Beans 2825 3175 3125 3500 10 920 7650 3250 4820 39 265
    辣椒Chili 2750 3505 3125 3620 10 620 7200 3060 3200 37 080
    完全机械化
    种植成本
    Fully mechanized planting cost
    大田蔬菜Outdoor
    vegetables
    白菜Cabbage 1450 2750 1500 1467 5000 4000 1362 3300 20 829
    萝卜Radish 1350 2850 1500 1343 6133 3800 1254 3100 21 331
    南瓜Pumpkin 1050 2890 1500 1567 5333 4150 1450 3300 21 240
    大葱Onion 1500 2630 1500 1700 5113 4550 1560 3000 21 553
    设施蔬菜Facilities vegetables 黄瓜Cucumber 2650 3750 2083 2500 8333 7420 3600 4658 34 994
    西红柿Tomatoes 2600 3055 2083 2167 8200 7500 3000 4575 33 180
    豆角Beans 2825 3175 2083 2333 7280 7650 3250 4820 33 416
    辣椒Chili 2750 3505 2083 2413 7080 7200 3060 3200 31 291
    下载: 导出CSV

    表  4  白洋淀上游各果树的完全机械化以及完全非机械化种植成本

    Table  4.   Cost of fully mechanized and completely non-mechanized planting of fruit trees in the upper stream of Baiyangdian Lake  ¥∙hm–2

    项目
    Item
    水果
    Fruit
    灌溉加人工Irrigation and labor 施肥加人工Fertilization
    and labor
    农药加人工
    Pesticide
    and labor
    剪枝
    Pruning
    疏果
    Fruit
    thinning
    套袋加袋子
    Bagging and bags
    收获
    Harvest
    反光膜Reflective film 总成本
    Total cost
    完全非机械化种植成本
    Completely non-mechanized
    planting cost
    苹果Apple 1200 5400 6350 1500 6000 8000 5400 2250 36 100
    梨Pear 1170 5175 5160 1450 5600 8025 4500 31 080
    葡萄Grapes 1300 7500 6500 1700 6500 9000 4800 37 300
    桃Peach 1350 5700 6600 1300 5400 7500 4000 31 850
    完全机械化种植成本Fully mechanized
    planting cost
    苹果Apple 1200 5400 6350 1500 6000 8000 3600 2250 34 300
    梨Pear 1170 5175 5160 1450 5600 8025 3000 29 580
    葡萄Grapes 1300 7500 6500 1700 6500 9000 3200 35 700
    桃Peach 1350 5700 6600 1300 5400 7500 2667 30 517
    下载: 导出CSV

    表  5  白洋淀上游平原区、山区不同种植制度的作物单位面积产量与产值

    Table  5.   Output value per unit area and yield per unit area of crops of different cropping systems in plain and mountainous areas in the upper stream of Baiyangdian Lake

    种植制度
    Cropping system
    价格
    Price
    (¥∙kg–1)
    平原区Plain area 山区Mountainous area
    产量Yield
    (×103 kg∙hm–2)
    产值Output value
    (×103 ¥∙hm–2)
    产量Yield
    (×103 kg∙hm–2)
    产值Output vale
    (×103 ¥∙hm–2)
    小麦-玉米Wheat-maize 2.2~1.8 6.5~7.6 27.9 5.8~5.9 23.4
    小麦-谷子Wheat-millet 2.2~4.0 6.5~3.9 29.7 5.8~3.4 26.5
    小麦-大豆Wheat-soybean 2.2~4.5 6.5~2.3 24.8 5.8~2.1 22.3
    小麦-夏甘薯Wheat-summer sweet potato 2.2~2.0 6.5~15.2 44.8 5.8~11.1 35.0
    小麦-绿豆Wheat-mung bean 2.2~7.4 6.5~1.4 24.8 5.8~1.1 21.1
    绿豆-鲜食玉米Mung beans-fresh maize 7.4~2.2 1.4~13.7 40.6 1.1~10.6 31.6
    玉米一作Maize 1.8 7.6 13.7 5.9 10.6
    棉花一作Cotton 7.6 3.2 24.2 2.3 17.6
    春甘薯一作Spring sweet potato 2 31.0 61.9 22.6 45.1
    谷子一作Millet 4 3.9 15.4 3.4 13.7
    花生一作Peanut 5.5 4.9 26.8 4.2 23.1
    高粱一作Sorghum 2.6 6.0 15.6 6.0 15.5
    蔬菜Vegetables / / 99.3 / 99.3
    果树Fruit / / 113.1 / 113.1
    下载: 导出CSV

    表  6  白洋淀上游不同情景下平原区、山区各作物单位面积净产值取值

    Table  6.   Value of net output value per unit area of crops of different cropping systems in plain and mountain areas under differentscenarios in the upper stream of Baiyangdian Lake  ×103 ¥∙hm–2

    种植制度
    Cropping system
    平原区Plain area 山区Mountainous area
    现状机械化情景
    Current mechanization scenario
    未来机械化情景
    Future mechanization scenario
    现状机械化情景
    Current mechanization scenario
    未来机械化情景
    Future mechanization scenario
    小麦-玉米Wheat-maize 13.9 13.9 9.4 9.4
    小麦-谷子Wheat-millet 16.2 16.8 11.7 12.2
    小麦-大豆Wheat-soybean 11.3 11.9 7.5 8.0
    小麦-夏甘薯Wheat-summer sweet potato 17.6 18.7 5.8 6.6
    小麦-绿豆Wheat-mung bean 10.8 11.4 5.8 6.3
    绿豆-鲜食玉米Mung beans-fresh maize 25.4 26.5 14.1 15.0
    玉米一作Maize 6.8 7.5 2.5 3.0
    棉花一作Cotton 11.9 12.6 3.8 4.4
    春甘薯一作Spring sweet 26.6 27.6 7.6 8.4
    谷子一作Millet 10.7 11.3 7.6 8.1
    花生一作Peanut 17.4 18.2 12.3 12.8
    高粱一作Sorghum 9.6 10.2 8.2 8.7
    蔬菜Vegetables 68.5 68.6 68.5 68.6
    果树Fruit 79.9 80.0 80.0 80.0
    下载: 导出CSV

    表  7  白洋淀上游平原区不同情景下种植结构优化调整后不同种植制度的面积变化

    Table  7.   Changes in planting areas of different cropping systems after planting structure adjustment under different scenarios of mechanization level and irrigation in the plain area of the upstream of Baiyangdian Lake

    种植制度
    Cropping system
    面积现状
    Area status (hm2)
    面积变化率Change rate of area (%)
    CS1 CS2 CS3 FS1 FS2 FS3
    小麦-玉米Wheat-maize 266 117.0 –5.8 –15.9 –21.5 –6.0 –16.1 –22.0
    小麦-谷子Wheat-millet 886.5 –15.9 –14.3 –8.0 –13.3 –16.1 –6.5
    小麦-大豆Wheat-soybean 4923.0 –19.4 –18.2 –17.6 –17.7 –15.8 –15.7
    小麦-夏甘薯Wheat-summer sweet potato 644.8 –18.0 –13.1 –7.2 –13.4 –8.9 –2.9
    小麦-绿豆Wheat-mung bean 459.9 –17.1 –12.1 –8.7 –14.9 –10.3 –6.9
    绿豆-鲜食玉米Mung beans-fresh maize 51.1 1.1 2.2 –3.9 6.2 7.1 2.1
    玉米一作Maize 10 182.0 –19.1 –18.5 –15.6 –19.0 –18.3 –15.4
    棉花一作Cotton 4633.0 –17.4 –11.5 –13.7 –14.9 –9.6 –11.9
    春薯一作Spring sweet 5803.2 –19.2 3.3 –16.2 –14.5 8.5 –11.3
    谷子一作Millet 98.5 –7.8 –11.3 –10.2 –5.4 –9.4 –8.5
    花生一作Peanut 86 791.0 –17.8 –13.9 –14.9 –15.3 –12.7 –12.9
    高粱一作Sorghum 27.0 –19.0 –17.2 –15.1 –17.1 –15.9 –13.8
    蔬菜Vegetables 113 838.0 32.1 17.6 –18.0 32.6 17.7 –17.5
    果树Fruit 20 140.0 –4.5 15.6 –17.6 1.1 20.0 –12.4
    CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively.
    下载: 导出CSV

    表  8  白洋淀上游平原区不同情景下种植结构优化调整的效益分析

    Table  8.   Benefits of planting structure adjustment under different scenarios of mechanization level and irrigation in the plain area of the upstream of Baiyangdian Lake

    种植制度
    Cropping system
    现状
    Status quo
    变化率Change rate (%)
    CS1 CS2 CS3 FS1 FS2 FS3
    经济Economic benefit 149.8×108 ¥ 12.6 5.3 –18.4 14.9 6.6 –16.9
    生态Ecological benefit 11.4×108 ¥ –1.0 –8.1 –19.7 –0.4 –7.7 –19.4
    用水Water consumption 15.9×108 m3 3.0 –6.3 –19.8 3.4 –5.9 –19.6
    产量Crop yield 40.7×108 kg –6.8 –15.0 –20.9 –6.7 –14.9 –21.1
    CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。表中产量仅为粮食作物产量, 不包括经济作物以及蔬菜、果树产量。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively. The crop yield is the output of food crops, excluding those of cash crops, vegetables and fruit trees.
    下载: 导出CSV

    表  9  白洋淀上游山区种植结构优化调整后不同种植制度的面积变化

    Table  9.   Changes in planting areas of different cropping systems after planting structure adjustment under different scenarios of mechanization level and irrigation in the mountainous area of the upstream of Baiyangdian Lake

    种植制度
    Cropping system
    面积现状
    Area status (hm2)
    面积变化率Change rate of area (%)
    CS1 CS2 CS3 FS1 FS2 FS3
    小麦-玉米Wheat-maize 72 304.0 –6.3 –11.8 –65.9 –6.7 –11.7 –61.5
    小麦-谷子Wheat-millet 1439.5 –18.4 –17.7 –14.1 –12.2 –16.8 –15.9
    小麦-大豆Wheat-soybean 6141.0 –16.7 –18.4 –17.9 –17.7 –17.4 –17.8
    小麦-夏甘薯Wheat-summer sweet potato 1338.4 –16.6 –14.8 –18.5 –9.1 –13.0 –14.9
    小麦-绿豆Wheat-mung bean 461.7 –16.9 –11.6 –15.4 –11.7 –11.8 –15.4
    绿豆-鲜食玉米Mung beans-fresh maize 51.3 0.6 1.7 3.5 –2.1 –10.2 1.1
    玉米一作Maize 74 083.0 –11.0 –8.5 –18.2 –17.8 –19.4 –18.1
    棉花一作Cotton 1903.0 –18.0 –16.8 –17.5 –16.4 –13.1 –13.8
    春薯一作Spring sweet 12 045.6 –19.0 –18.1 –19.2 –18.2 –19.4 –18.2
    谷子一作Millet 12 955.5 –16.3 –18.3 –14.4 –19.0 –16.8 –19.2
    花生一作Peanut 20 964.0 –18.0 –18.8 –17.9 –17.0 –18.3 –18.2
    高粱一作Sorghum 1880.0 –13.9 –16.0 –18.0 –16.3 –17.1 –18.1
    蔬菜Vegetables 36 095.0 –0.4 9.7 1.5 14.1 6.0 –17.0
    果树Fruit 115 925.0 18.5 14.7 13.2 16.1 13.9 17.1
    CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively.
    下载: 导出CSV

    表  10  白洋淀上游山区不同情景下种植结构优化调整的效益分析

    Table  10.   Benefits of planting structure adjustment under different scenarios of mechanization level and irrigation in themountainous area of the upstream of Baiyangdian Lake

    种植制度
    Cropping system
    现状
    Status quo
    变化率Change rate (%)
    CS1 CS2 CS3 FS1 FS2 FS3
    经济Economic benefit 131.4×108 ¥ 11.8 10.7 5.2 13.3 9.6 5.2
    生态Ecological benefit 8.0×108 ¥ 3.7 1.7 –13.6 3.0 0.1 –12.4
    用水Water consumption 5.8×108 m3 0.9 0.0 –20.0 1.7 –2.1 –20.0
    产量Crop yield 17.0×108 kg –10.5 –12.4 –42.0 –12.1 –15.3 –39.7
    CS1、CS2和CS3分别代表现状机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%; FS1、FS2和FS3代表未来机械化水平下农田灌溉用水不受限制、不超过现状以及不超过现状的80%。表中产量仅为粮食作物产量, 不包括经济作物以及蔬菜、果树产量。C and F represent the current and future levels of mechanization; S1, S2, and S3 represent scenarios of no-restricted irrigation water, no-exceeding the current situation and no-exceeding 80% of the current situation of irrigation water, respectively. The crop yield is the output of food crops, excluding those of cash crops, vegetables and fruit trees.
    下载: 导出CSV
  • [1] 金涛. 中国粮食作物种植结构调整及其水土资源利用效应[J]. 自然资源学报, 2019, 34(1): 14-25 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201901002.htm

    JIN T. The adjustment of China's grain cropping structure and its effect on the consumption of water and land resources[J]. Journal of Natural Resources, 2019, 34(1): 14-25 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201901002.htm
    [2] 张展羽, 司涵, 冯宝平, 等. 缺水灌区农业水土资源优化配置模型[J]. 水利学报, 2014, 45(4): 403-409 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201404004.htm

    ZHANG Z Y, SI H, FENG B P, et al. An optimal model for agriculture water and soil resources configuration in water shortage irrigation area[J]. Journal of Hydraulic Engineering, 2014, 45(4): 403-409 https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201404004.htm
    [3] HU Y K, MOIWO J P, YANG Y H, et al. Agricultural water-saving and sustainable groundwater management in Shijiazhuang Irrigation District, North China Plain[J]. Journal of Hydrology, 2010, 393(3/4): 219-232 http://www.cabdirect.org/abstracts/20103338303.html
    [4] 高明杰, 罗其友. 水资源约束地区种植结构优化研究——以华北地区为例[J]. 自然资源学报, 2008, 23(2): 204-210 doi: 10.3321/j.issn:1000-3037.2008.02.004

    GAO M J, LUO Q Y. Study on cropping structure optimization in region short of water-A case study of North China[J]. Journal of Natural Resources, 2008, 23(2): 204-210 doi: 10.3321/j.issn:1000-3037.2008.02.004
    [5] REN D D, YANG Y H, HU Y K, et al. Evaluating the potentials of cropping adjustment for groundwater conservation and food production in the piedmont region of the North China Plain[J]. Stochastic Environmental Research and Risk Assessment, 2021, 35(1): 117-128 doi: 10.1007/s00477-019-01713-y
    [6] XIAO D P, SHEN Y J, QI Y Q, et al. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain Region[J]. Agricultural Systems, 2017, 153: 109-117 doi: 10.1016/j.agsy.2017.01.018
    [7] ZHONG H L, SUN L X, FISCHER G, et al. Mission Impossible? Maintaining regional grain production level and recovering local groundwater table by cropping system adaptation across the North China Plain[J]. Agricultural Water Management, 2017, 193: 1-12 doi: 10.1016/j.agwat.2017.07.014
    [8] GAO B, JU X T, MENG Q F, et al. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use[J]. Agriculture, Ecosystems & Environment, 2015, 203: 46-54 http://www.sciencedirect.com/science/article/pii/S0167880915000213
    [9] 牛凯. 中国农业结构调整的多目标线性规划模型研究[J]. 浙江农业学报, 2011, 23(4): 840-846 doi: 10.3969/j.issn.1004-1524.2011.04.038

    NIU K. Studies of multi-objective linear programming model on Chinese agricultural structure adjustment[J]. Acta Agriculturae Zhejiangensis, 2011, 23(4): 840-846 doi: 10.3969/j.issn.1004-1524.2011.04.038
    [10] 武雪萍, 吴会军, 庄严, 等. 节水型种植结构优化灰色多目标规划模型和方法研究——以洛阳市为例[J]. 中国农业资源与区划, 2008, 29(6): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ200806007.htm

    WU X P, WU H J, ZHUANG Y, et al. Planning model with grey multiple targets for optimization of water saving plantation structure and method STUDY-Taking Luoyang City as an example[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2008, 29(6): 16-21 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGNZ200806007.htm
    [11] 张礼华, 秦灏. 多目标妥协约束法在灌区种植结构优化中的应用[J]. 现代农业科技, 2010, (12): 222-223 doi: 10.3969/j.issn.1007-5739.2010.12.146

    ZHANG L H, QIN H. The application of multi-objective compromise constraint method in the optimization of planting structure in irrigated area[J]. Modern Agricultural Sciences and Technology, 2010, (12): 222-223 doi: 10.3969/j.issn.1007-5739.2010.12.146
    [12] 汤瑞凉, 郭存芝, 董晓娟. 灌溉水资源优化调配的熵权系数模型研究[J]. 河海大学学报: 自然科学版, 2000, 28(1): 20-23 https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200001003.htm

    TANG R L, GUO C Z, DONG X J. An optimazition model with entropic coefficients for management in irrigation water resources[J]. Journal of Hohai University, 2000, 28(1): 20-23 https://www.cnki.com.cn/Article/CJFDTOTAL-HHDX200001003.htm
    [13] 陈守煜, 马建琴, 张振伟. 作物种植结构多目标模糊优化模型与方法[J]. 大连理工大学学报, 2003, 43(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200301002.htm

    CHEN S Y, MA J Q, ZHANG Z W. A multi-objective fuzzy optimization model for planting structure and its method[J]. Journal of Dalian University of Technology, 2003, 43(1): 12-15 https://www.cnki.com.cn/Article/CJFDTOTAL-DLLG200301002.htm
    [14] 周惠成, 彭慧, 张弛, 等. 基于水资源合理利用的多目标农作物种植结构调整与评价[J]. 农业工程学报, 2007, 23(9): 45-49 doi: 10.3321/j.issn:1002-6819.2007.09.008

    ZHOU H C, PENG H, ZHANG C, et al. Optimization and evaluation of multi-objective crop pattern based on irrigation water resources allocation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(9): 45-49 doi: 10.3321/j.issn:1002-6819.2007.09.008
    [15] 李茉, 郭萍, 杨献献. 基于分式规划的种植结构多目标不确定性模型研究[J]. 节水灌溉, 2013, (9): 79-81 doi: 10.3969/j.issn.1007-4929.2013.09.021

    LI M, GUO P, YANG X X. Planting configuration multi-objective & uncertainty programming model based on fractional-programming[J]. Water Saving Irrigation, 2013, (9): 79-81 doi: 10.3969/j.issn.1007-4929.2013.09.021
    [16] 高小永. 基于多目标蚁群算法的土地利用优化配置[D]. 武汉: 武汉大学, 2010

    GAO X Y. Optimizing land use allocation based on multi-objective ant colony algorithm[D]. Wuhan: Wuhan University, 2010
    [17] 邓莉. 模糊遗传算法及其在图像恢复中的应用[D]. 重庆: 西南大学, 2008

    DENG L. Fuzzy genetic algorithm and its application on the image restoration[D]. Chongqing: Southwest University, 2008
    [18] DEB K, PRATAP A, AGARWAL S, et al. A fast and elitist multiobjective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197 doi: 10.1109/4235.996017
    [19] 胡洪静, 吴鑫淼, 齐成伟, 等. 节水压采区农业种植结构多目标优化研究——以衡水市为例[J]. 灌溉排水学报, 2017, 36(10): 95-99 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201710017.htm

    HU H J, WU X M, QI C W, et al. Using multi-objective optimization to restructure agriculture with consideration of the constrains on groundwater extraction: taking Hengshui as an example[J]. Journal of Irrigation and Drainage, 2017, 36(10): 95-99 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201710017.htm
    [20] 罗建美. 京津冀平原农业种植结构优化及其节水效应研究[D]. 北京: 中国科学院大学, 2019

    LUO J M. Study on the optimization of agricultural planting structure and its water-saving effect in Beijing-Tianjin-Hebei Plain[D]. Beijing: University of Chinese Academy of Sciences, 2019
    [21] 高彦春, 王晗, 龙笛. 白洋淀流域水文条件变化和面临的生态环境问题[J]. 资源科学, 2009, 31(9): 1506-1513 doi: 10.3321/j.issn:1007-7588.2009.09.008

    GAO Y C, WANG H, LONG D. Changes in hydrological conditions and the eco-environmental problems in Baiyangdian watershed[J]. Resources Science, 2009, 31(9): 1506-1513 doi: 10.3321/j.issn:1007-7588.2009.09.008
    [22] 白志杰, 任丹丹, 杨艳敏, 等. 雄安新区上游农业种植结构及需水时空演变[J]. 中国生态农业学报(中英文), 2019, 27(7): 1067-1077 doi: 10.13930/j.cnki.cjea.190323

    BAI Z J, REN D D, YANG Y M, et al. Trend of agricultural plantation and irrigation requirements in the upper reaches of Xiongan New Area[J]. Chinese Journal of Eco-Agriculture, 2019, 27(7): 1067-1077 doi: 10.13930/j.cnki.cjea.190323
    [23] 王雷明. 水资源约束条件下的农业种植结构优化研究——以河套灌区为例[D]. 杨凌: 西北农林科技大学, 2017

    WANG L M. Optimization of agricultural planting structure under water resources constraints-study of Hetao irrigation district[D]. Yangling: Northwest A & F University, 2017
    [24] 陈兆波. 基于水资源高效利用的塔里木河流域农业种植结构优化研究[D]. 北京: 中国农业科学院, 2008

    CHEN Z B. Study on the agriculture planting structure optimization based on the high efficient utilization of water resources in Tarim watershed[D]. Beijing: Chinese Academy of Agricultural Sciences, 2008
    [25] 河北省水利厅. 河北省用水定额[R]. 石家庄: 河北省水利厅, 2016

    Department of Water Resources of Hebei Province. Water Quota of Hebei Province[R]. Shijiazhuang: Department of Water Resources of Hebei Province, 2016
    [26] 杨明智, 裴源生, 李旭东. 中国粮食自给率研究——粮食、谷物和口粮自给率分析[J]. 自然资源学报, 2019, 34(4): 881-889 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htm

    YANG M Z, PEI Y S, LI X D. Study on grain self-sufficiency rate in China: an analysis of grain, cereal grain and edible grain[J]. Journal of Natural Resources, 2019, 34(4): 881-889 https://www.cnki.com.cn/Article/CJFDTOTAL-ZRZX201904016.htm
    [27] 河北省统计局. 保定统计年鉴[M]. 北京: 中国统计出版社, 2016

    Statistics Bureau of Hebei Province. Baoding Statistical Yearbook[M]. Beijing: China Statistics Press, 2016
    [28] 王涛, 吕昌河. 基于合理膳食结构的人均食物需求量估算[J]. 农业工程学报, 2012, 28(5): 273-277 doi: 10.3969/j.issn.1002-6819.2012.05.045

    WANG T, LYU C H. Estimation of food grain demand per capita based on rational dietary pattern[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(5): 273-277 doi: 10.3969/j.issn.1002-6819.2012.05.045
    [29] 石玉林, 卢良恕. 中国农业需水与节水高效农业建设[M]. 北京: 中国水利水电出版社, 2001

    SHI Y L, LU L S. China's Agricultural Water Demand and Water-saving and Efficient Agricultural Construction[M]. Beijing: China Water Resources and Hydropower Press, 2001
    [30] 河北省政府办公厅. 河北省人民政府关于加快推进农业机械化和农机装备产业转型升级的实施意见[EB/OL]. 河北省人民政府网. [2019-09-19]. http://www.njhs.moa.gov.cn/gdxw/201909/t20190919_6328304.htm

    General Office of Hebei Provincial Government. Hebei Province People's Government on accelerating agricultural mechanization and agricultural machinery and equipment industry transformation and upgrading of the implementation opinions[EB/OL]. [2019-09-19]. http://www.njhs.moa.gov.cn/gdxw/201909/t20190919_6328304.htm
    [31] 龙新. 2018年全国农作物耕种收综合机械化率超过67%[EB/OL]. 农民日报网. [2019-01-02]. http://www.chinacoop.gov.cn/HTML/2019/01/03/147203.html

    LONG X. 2018 national farming comprehensive mechanization rate more than 67%[EB/OL]. Farmers Daily Website. [2019-01-02]. http://www.chinacoop.gov.cn/HTML/2019/01/03/147203.html
    [32] 长江蔬菜传媒. 全国设施蔬菜种植面积和分布情况[EB/OL]. 中投顾问产业研究中心网. [2020-01-16]. https://new.qq.com/omn/20200116/20200116A03JAC00.html

    Yangtze River Vegetable Media. Planting area and distribution of vegetable facilities in China[EB/OL]. CIC Consultant Industry Research Center Network. [2020-01-16]. https://new.qq.com/omn/20200116/20200116A03JAC00.html
    [33] 张珊, 谭倩, 蔡宴朋, 等. 基于模糊优选和可信性的农业水资源多目标优化配置模型[J]. 南水北调与水利科技, 2018, 16(3): 79-85 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201803012.htm

    ZHANG S, TAN Q, CAI Y P, et al. A multi-objective optimization model for agricultural water resources based on fuzzy optimal selection and credibility[J]. South-to-North Water Transfers and Water Science & Technology, 2018, 16(3): 79-85 https://www.cnki.com.cn/Article/CJFDTOTAL-NSBD201803012.htm
    [34] 马林潇, 何英, 林丽, 等. "三条红线"约束下的种植结构多目标优化模型研究[J]. 灌溉排水学报, 2018, 37(9): 123-128 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201809020.htm

    MA L X, HE Y, LIN L, et al. Multi-objective optimization of main crops cultivation in Manasi County using the genetic algorithm with the "Three Red Lines" in consideration[J]. Journal of Irrigation and Drainage, 2018, 37(9): 123-128 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201809020.htm
  • 加载中
图(1) / 表(10)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  17
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-30
  • 录用日期:  2021-03-19
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回