留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太湖流域稻田管理方式对蜘蛛群落特征的影响

满吉勇 袁凯 陈宝雄 王子睿 刘云慧

满吉勇, 袁凯, 陈宝雄, 王子睿, 刘云慧. 太湖流域稻田管理方式对蜘蛛群落特征的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1467−1479 doi: 10.13930/j.cnki.cjea.210081
引用本文: 满吉勇, 袁凯, 陈宝雄, 王子睿, 刘云慧. 太湖流域稻田管理方式对蜘蛛群落特征的影响[J]. 中国生态农业学报(中英文), 2021, 29(9): 1467−1479 doi: 10.13930/j.cnki.cjea.210081
MAN J Y, YUAN K, CHEN B X, WANG Z R, LIU Y H. Impact of rice field management on the spider community characteristics in Taihu Lake Basin[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1467−1479 doi: 10.13930/j.cnki.cjea.210081
Citation: MAN J Y, YUAN K, CHEN B X, WANG Z R, LIU Y H. Impact of rice field management on the spider community characteristics in Taihu Lake Basin[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1467−1479 doi: 10.13930/j.cnki.cjea.210081

太湖流域稻田管理方式对蜘蛛群落特征的影响

doi: 10.13930/j.cnki.cjea.210081
基金项目: 江苏省科技支撑项目(SNG201903)资助
详细信息
    作者简介:

    满吉勇, 主要研究方向为有机农业与生物多样性。E-mail: manjy@cau.edu.cn

    通讯作者:

    刘云慧, 主要研究方向为景观生态与生物多样性。E-mail: liuyh@cau.edu.cn

  • 中图分类号: Q149

Impact of rice field management on the spider community characteristics in Taihu Lake Basin

Funds: This study was supported by the Science and Technology Support Project of Jiangsu Province (SNG201903)
  • 摘要: 蜘蛛是稻田重要的天敌生物, 通过改进生产管理方式提升稻田蜘蛛多样性及其害虫生物控制服务, 对推动稻田可持续生产具有重要意义。本研究调查太湖流域有机、绿色、常规生产模式下稻田蜘蛛群落多样性及群落结构和功能组成, 以评估不同生产管理模式对稻田蜘蛛多样性的影响。结果显示: 不同生产方式蜘蛛α多样性指数差异显著, 有机生产稻田蜘蛛的丰富度、多度和辛普森多样性指数均显著高于常规及绿色生产稻田。捕猎类型在不同稻田差异显著, 有机和绿色生产稻田蜘蛛以结网型为主, 而常规生产稻田以捕猎型为主; 3种生产模式稻田蜘蛛体长和飞航能力无显著差异。有机和常规生产稻田蜘蛛群落组成间存在显著差异, 绿色生产稻田蜘蛛群落组成介于有机与常规生产稻田之间, 是这两种生境蜘蛛组成的过渡类型; 有机生产稻田具有较多的的蜘蛛指示种, 而绿色和常规生产稻田蜘蛛群落分布上以广布种与共有种为主, 缺乏特有种。稻田蜘蛛群落组成随水稻生长而变化, 但有机生产稻田蜘蛛丰富度、多度除分蘖早期和拔节期外, 其余时期均显著高于常规和绿色生产稻田。研究结果表明, 相较于常规和绿色生产, 有机生产方式可以有效提高稻田蜘蛛多样性, 维持更强的害虫捕食能力, 对推动该地区绿色发展和生态环境恢复具有重要意义。
  • 图  1  不同生产模式稻田蜘蛛的物种多样性

    Con: 常规生产稻田; Gre: 绿色生产稻田; Org: 有机生产稻田。不同小写字母表示不同处理间在P<0.05水平差异显著。Con: conventional rice field; Gre: green rice field; Org: organic rice field. Different lowercase letters indicate significant differences among different treatments at P<0.05 level.

    Figure  1.  Diversity of spiders in rice fields under different farming systems

    图  2  不同生产模式稻田蜘蛛功能特征(a, b, c)及其主成分分析(d)

    Con: 常规生产稻田; Gre: 绿色生产稻田; Org: 有机生产稻田。Con: conventional rice field; Gre: green rice field; Org: organic rice field.

    Figure  2.  Functional characteristics (a, b, c) and principal component analysis (d) of spiders in rice fields under different farming systems

    图  3  基于非度量多维尺度分析(NMDS)与群落相似度分析的不同生产模式稻田蜘蛛群落组成

    a) m=1: 各样地最小共同个体数; b) m=5: 各样地最大共同个体数。Con: 常规生产稻田; Gre: 绿色生产稻田; Org: 有机生产稻田。a) m=1: the smallest number of common individuals in each plot; b) m=5: maximum number of common individuals in each plot. Con: conventional rice field; Gre: green rice field; Org: organic rice field.

    Figure  3.  Spider community groups of rice fields under different farming systems based on non-metric multidimensional scale analysis (NMDS) and community similarity analysis

    图  4  不同生产方式稻田不同水稻发育时期蜘蛛多样性及功能特征的变化

    Con: 常规生产稻田; Gre: 绿色生产稻田; Org: 有机生产稻田。FNZ: 分蘖早期; FNH: 分蘖后期; BJ: 拔节期; CS: 抽穗期; YH: 扬花期; GJ: 灌浆期; HS: 黄熟期。Con: conventional rice field; Gre: green rice field; Org: organic rice field. FNZ: early tillering; FNH: late tillering; BJ: elongation stage; CS: heading stage; YH: booting stage; GJ: blooming stage; HS: yellow maturity stage.

    Figure  4.  Changes of spider diversity and functional characteristics at different growing stages of rice under different farming systems

    表  1  不同生产模式稻田取样农场的基本情况

    Table  1.   Farming practices of rice in sampling farms with different farming systems

    生产方式
    Farming system
    管理方式 Management method
    施肥 Fertilizing除虫 Deworming除草 Weeding
    有机
    Organic
    有机肥(鸡粪有机肥12 000 kg∙hm−2
    蚯蚓叶面肥1500 kg∙hm−2)
    Organic fertilizer (chicken manure
    12 000 kg∙hm−2, earthworm foliar
    fertilizer 1500 kg∙hm−2)
    昆虫性引诱剂(5盒∙hm−2)、苏云金杆菌+竹醋液(1500 mL∙hm−2)、除虫菊+苦参碱+印楝素(1500 mL∙hm−2)
    Insect attractant (5 boxes∙hm−2), bacillus thuringiensis-bamboo vinegar (1500 mL∙hm−2), pyrethrum-matrine-azadirachtin (1500 mL∙hm−2)
    人工拔草
    Manual weeding
    绿色
    Green
    有机-无机复合肥(1500 kg∙hm−2)
    Organic-inorganic compound fertilizer
    (1500 kg∙hm−2)
    吡呀酮(225 g∙hm−2)、呋硄胺(270 g∙hm−2)、
    甲维茚虫威(150 mL∙hm−2)、氨虫苯甲酰胺
    (150 mL∙hm−2)
    Piramidone (225 g∙hm−2), nitrofuran
    (270 g∙hm−2), mevindoxacarb (150 mL∙hm−2), amphetamine (150 mL∙hm−2)
    苄嘧丙草胺(1500 mL∙hm−2)、五氟氰氟草酯
    (900 mL∙hm−2)、草甘膦(1500 mL∙hm−2)、精吡氟水草灵(1500 mL∙hm−2)、人工除草
    Bensulfuron (1500 mL∙hm−2), pentaflufen (900 mL∙hm−2), glyphosate (1500 mL∙hm−2), diflufenicol (1500 mL∙hm−2), manual weeding
    常规
    Conventional
    有机-无机复合肥(375 kg∙hm−2)、尿素
    (300 kg∙hm−2)
    Organic-inorganic compound fertilizer
    (375 kg∙hm−2), urea (300 kg∙hm−2)
    吡呀酮(225 g∙hm−2)、甲维茚虫威(150 mL∙hm−2)、氨虫苯甲酰胺
    (3000 mL∙hm−2) Piramidone (225 g∙hm−2),
    mevindoxacarb (150 mL∙hm−2), amphetamine (3000 mL∙hm−2)
    草甘磷(3000 mL∙hm−2)、恶唑酰草胺(900 mL∙hm−2)、氰氟草酯(1500 mL∙hm−2) Glyphosate (3000 mL∙hm−2), Metamifop (900 mL∙hm−2), cyhalofopbutyl (1500 mL∙hm−2)
    下载: 导出CSV

    表  2  蜘蛛功能特征的类型及标准

    Table  2.   Types and standards of spider functional traits

    功能特征
    Functional trait
    类型
    Type
    单位/等级
    Unit / class
    标准
    Standard
    体长
    Body size
    连续型变量
    Continuous variable
    mm以雌性蜘蛛的最大体长为准
    The maximum body size of female individual
    捕猎类型
    Hunting type
    二元型变量
    Binary variable
    0/10=结网型; 1=捕猎型
    0=weber; 1=hunter
    飞航类型
    Ballooning type
    二元型变量
    Binary variable
    0/10=不具有飞航能力; 1=具有飞航能力
    0=non-ballooning; 1=ballooning
    下载: 导出CSV

    表  3  不同生产方式稻田蜘蛛指示种及其功能特征

    Table  3.   Indicator species and their functional traits in rice fields under different farming systems

    物种
    Species
    生产方式 Farming systemP功能特征 Function trait
    常规
    Conventional
    绿色
    Green
    有机
    Organic
    体长
    Body size
    捕猎类型
    Hunting type
    飞航类型
    Ballooning type
    Agrocea coreana0.200.000.001.0006.4801
    裂菱头蛛 Bianor incitatus0.290.030.580.0543.6010
    八斑丽蛛 Chrysso octomaculata0.110.050.790.0022.5001
    褶管巢蛛 Clubiona corrugata0.090.070.820.0055.8011
    粽管巢蛛 Clubiona japonicola0.000.000.201.0007.1011
    千岛管巢蛛 Clubiona kurilensis0.020.000.370.2677.6011
    狡蛛属种1 Dolomedes sp. 10.120.130.690.01016.2011
    苔齿螯蛛 Enoplognatha caricis0.000.000.201.0006.3501
    隆背微蛛 Erigone prominens0.100.270.380.6742.1001
    平腹蛛属种1 Gnaphosa. sp. 10.000.200.001.0007.2011
    驼背额角蛛 Gnathonarium gibberum0.090.150.760.0033.0001
    草间钻头蛛 Hylyphantes graminicola0.000.000.201.0004.0001
    四点高亮腹蛛 Hypsosinga pygmaea0.050.190.730.0014.6001
    红高亮腹蛛 Hypsosinga sanguinea0.000.000.201.0004.7001
    卡氏蒙蛛 Mendoza canestrinii0.020.100.850.0019.3010
    底栖小类球蛛 Nesticella mogera0.200.000.001.0002.7001
    猫蛛属种1 Oxyopes sp. 10.400.000.000.2817.7511
    四斑粗螯蛛 Pachygnatha quadrimaculata0.010.100.580.0773.2501
    亚苍白盘蛛 Paidiscura subpallens0.080.010.870.0046.4801
    雾豹蛛 Pardosa nebulosa0.120.000.081.00010.0011
    拟环纹豹蛛 Pardosa pseudoannulata0.400.160.440.3999.0011
    金蝉蛛属种1 Phintella sp. 10.010.000.950.0075.0010
    拟水狼蛛 Pirata subpiraticus0.070.060.820.0068.0011
    类小水狼蛛 Piratula piratoides0.240.080.000.4884.3511
    近缘锯足蛛 Runcinia affinis0.210.230.560.0206.4810
    锥腹肖蛸 Tetragnatha maxillosa0.300.020.420.3219.5001
    华丽肖蛸 Tetragnatha nitens0.190.310.510.17111.0001
    前齿肖蛸 Tetragnatha praedonia0.100.000.101.00011.5001
    肖蛸属种2 Tetragnatha sp. 20.200.000.001.00015.5001
    赵氏肖蛸 Tetragnatha zhaoi0.080.130.460.2084.7701
    球蛛属种1 Theridion sp. 10.070.040.390.3847.7501
    球蛛属种2 Theridion sp. 20.130.020.220.8602.5001
    食虫沟瘤蛛 Ummeliata insecticeps0.230.120.630.0053.5000
    花蟹蛛种1 Xysticus sp. 10.170.220.420.4907.5010
    花蟹蛛种2 Xysticus sp. 20.040.030.510.1086.5010
      当P<0.05时, 说明此蜘蛛物种为指示物种。This spider species is an indicator species when P<0.05.
    下载: 导出CSV
  • [1] 王芳, 陈芝聪, 谢小平. 太湖流域建设用地与耕地景观时空演变及驱动力[J]. 生态学报, 2018, 38(9): 3300−3310

    WANG F, CHEN Z C, XIE X P. Analysis of spatial-temporal evolution and it’s driving forces of construction land and cultivated landscape in Taihu Lake Basin[J]. Acta Ecologica Sinica, 2018, 38(9): 3300−3310
    [2] 周文, 刘茂松, 徐驰, 等. 太湖流域河流水质状况对景观背景的响应[J]. 生态学报, 2012, 32(16): 5043−5053 doi: 10.5846/stxb201110311624

    ZHOU W, LIU M S, XU C, et al. Response of river water quality to background characteristics of landscapes in Taihu Lake basin[J]. Acta Ecologica Sinica, 2012, 32(16): 5043−5053 doi: 10.5846/stxb201110311624
    [3] 王磊, 张磊, 段学军, 等. 江苏省太湖流域产业结构的水环境污染效应[J]. 生态学报, 2011, 31(22): 6832−6844

    WANG L, ZHANG L, DUAN X J, et al. Water-environment effects of industry structure in Taihu Lake Basin in Jiangsu Province[J]. Acta Ecologica Sinica, 2011, 31(22): 6832−6844
    [4] 刘洋, 毕军, 吕建树. 生态系统服务权衡与协同关系及驱动力−以江苏省太湖流域为例[J]. 生态学报, 2019, 39(19): 7067−7078

    LIU Y, BI J, LÜ J S. Trade-off and synergy relationships of ecosystem services and the driving forces: a case study of the Taihu Basin, Jiangsu Province[J]. Acta Ecologica Sinica, 2019, 39(19): 7067−7078
    [5] 崔玉亭, 程序, 韩纯儒, 等. 苏南太湖流域水稻经济生态适宜施氮量研究[J]. 生态学报, 2000, 20(4): 659−662 doi: 10.3321/j.issn:1000-0933.2000.04.023

    CUI Y T, CHENG X, HAN C R, et al. The economic and ecological satisfactory amount of nitrogen fertilizer using on rice in Tai Lake Watershed[J]. Acta Ecologica Sinica, 2000, 20(4): 659−662 doi: 10.3321/j.issn:1000-0933.2000.04.023
    [6] 徐琪, 刘元昌, 陆彦椿, 等. 稻田生态系统的特点及其分区−以太湖地区为例[J]. 农村生态环境, 1992, 8(2): 31−36

    XU Q, LIU Y C, LU Y C, et al. Properties of paddy soil ecosystem and its reg1onalization[J]. Rural Eco-Environment, 1992, 8(2): 31−36
    [7] 王寒, 唐建军, 谢坚, 等. 稻田生态系统多个物种共存对病虫草害的控制[J]. 应用生态学报, 2007, 18(5): 1134−1138

    WANG H, TANG J J, XIE J, et al. Controlling effects of multiple species coexistence on rice diseases, pests and weeds in paddy field ecosystem[J]. Chinese Journal of Applied Ecology, 2007, 18(5): 1134−1138
    [8] 陈欣, 唐建军, 王兆骞. 农业活动对生物多样性的影响[J]. 生物多样性, 1999, 7(3): 234−239 doi: 10.3321/j.issn:1005-0094.1999.03.012

    CHEN X, TANG J J, WANG Z Q. The impacts of agricultural activities on biodiversity[J]. Chinese Biodiversity, 1999, 7(3): 234−239 doi: 10.3321/j.issn:1005-0094.1999.03.012
    [9] KRUESS A, TSCHARNTKE T. Habitat fragmentation, species loss, and biological control[J]. Science, 1994, 264(5165): 1581−1584 doi: 10.1126/science.264.5165.1581
    [10] STEFFAN-DEWENTER I. Landscape context affects trap-nesting bees, wasps, and their natural enemies[J]. Ecological Entomology, 2002, 27(5): 631−637 doi: 10.1046/j.1365-2311.2002.00437.x
    [11] REGANOLD J P, WACHTER J M. Organic agriculture in the twenty-first century[J]. Nature Plants, 2016, 2: 15221 doi: 10.1038/nplants.2015.221
    [12] CROWDER D W, NORTHFIELD T D, STRAND M R, et al. Organic agriculture promotes evenness and natural pest control[J]. Nature, 2010, 466(7302): 109−112 doi: 10.1038/nature09183
    [13] TUCK S L, WINQVIST C, MOTA F, et al. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis[J]. The Journal of Applied Ecology, 2014, 51(3): 746−755 doi: 10.1111/1365-2664.12219
    [14] 羊绍武, 张晓明, 郭海业, 等. 多年生水稻田主要害虫、天敌消长规律及时间生态位分析[J]. 应用昆虫学报, 2019, 56(6): 1370−1381

    YANG S W, ZHANG X M, GUO H Y, et al. Dynamics and temporal niches of major pest insects and their natural enemies in perennial rice fields[J]. Chinese Journal of Applied Entomology, 2019, 56(6): 1370−1381
    [15] LANDIS D A, WRATTEN S D, GURR G M. Habitat management to conserve natural enemies of arthropod pests in agriculture[J]. Annual Review of Entomology, 2000, 45(1): 175−201 doi: 10.1146/annurev.ento.45.1.175
    [16] 姜永厚, 吴进才, 徐建祥, 等. 稻田蜘蛛生态位变化及杀虫剂对捕食功能的影响[J]. 生态学报, 2002, 22(8): 1286−1292 doi: 10.3321/j.issn:1000-0933.2002.08.017

    JIANG Y H, WU J C, XU J X, et al. Influence of seasonal and daily changes of spatial niche of spiders in paddy field and two insecticides to spatial niche and predatory function[J]. Acta Ecologica Sinica, 2002, 22(8): 1286−1292 doi: 10.3321/j.issn:1000-0933.2002.08.017
    [17] 李剑泉, 赵志模, 侯建筠. 稻田蜘蛛研究进展[J]. 蛛形学报, 2001, (2): 58−63 doi: 10.3969/j.issn.1005-9628.2001.02.015

    LI J Q, ZHAO Z M, HOU J J. Advances in the studies of spiders in rice field[J]. Acta Arachnologica Sinica, 2001, (2): 58−63 doi: 10.3969/j.issn.1005-9628.2001.02.015
    [18] 王智, 宋大祥, 朱明生. 稻田蜘蛛和害虫的生态位研究[J]. 华南农业大学学报, 2005, 26(2): 47−51 doi: 10.3969/j.issn.1001-411X.2005.02.012

    WANG Z, SONG D X, ZHU M S. Study on the ecological niches of spiders and target pests in rice field[J]. Journal of South China Agricultural University, 2005, 26(2): 47−51 doi: 10.3969/j.issn.1001-411X.2005.02.012
    [19] SCHIRMEL J, THIELE J, ENTLING M H, et al. Trait composition and functional diversity of spiders and carabids in linear landscape elements[J]. Agriculture, Ecosystems & Environment, 2016, 235: 318−328
    [20] 黄先才, 周子杨, 孟玲, 等. 稻鸭共作有机稻田蜘蛛多样性与飞虱数量的季节动态[J]. 生态学杂志, 2011, 30(7): 1342−1346

    HUANG X C, ZHOU Z Y, MENG L, et al. Seasonal dynamics of spider diversity and rice planthopper abundance in organic farming paddy rice-duck field[J]. Chinese Journal of Ecology, 2011, 30(7): 1342−1346
    [21] 刘入华, 孙仁华, 宋成军, 等. 华北丘陵及平原有机及常规农田地表蜘蛛多样性研究[J]. 中国生态农业学报(中英文), 2021, 29(3): 492−499

    LIU R H, SUN R H, SONG C J, et al. Ground-dwelling spider diversity within organic and conventional croplands in the hilly and plain areas of North China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(3): 492−499
    [22] 钟平生, 吴耀琪, 钟振芳. 有机稻田主要天敌类群发生动态调查[J]. 西南农业学报, 2010, 23(4): 1107−1110 doi: 10.3969/j.issn.1001-4829.2010.04.024

    ZHONG P S, WU Y Q, ZHONG Z F. Dynamics investigation of major natural enemies in organic rice fields[J]. Southwest China Journal of Agricultural Sciences, 2010, 23(4): 1107−1110 doi: 10.3969/j.issn.1001-4829.2010.04.024
    [23] 刘功朋, 张玉烛, 朱国奇, 等. “蜂-蛙-灯”绿色生产技术对水稻害虫、天敌及产量的影响[J]. 湖南农业科学, 2013, (7): 89−92 doi: 10.3969/j.issn.1006-060X.2013.07.026

    LIU G P, ZHANG Y Z, ZHU G Q, et al. Effects of pollution-free production technology of trichogrammae-bullfrog-lamp on insect pests and their natural enemies and rice yield[J]. Hunan Agricultural Sciences, 2013, (7): 89−92 doi: 10.3969/j.issn.1006-060X.2013.07.026
    [24] 刘向东, 刘莹, 张孝羲, 等. 单季稻田的蜘蛛群落及其与褐飞虱的相关性研究[J]. 生态学报, 1999, 19(6): 876−881 doi: 10.3321/j.issn:1000-0933.1999.06.019

    LIU X D, LIU Y, ZHANG X X, et al. Spider community and its coherency with Nilaparvata lugens in a single paddy-field[J]. Acta Ecologica Sinica, 1999, 19(6): 876−881 doi: 10.3321/j.issn:1000-0933.1999.06.019
    [25] 李雪梅, 郑晓旭, 何帅洁, 等. 不同农事操作技术对稻田害虫和天敌种群动态的影响[J]. 应用昆虫学报, 2020, 57(1): 105−112

    LI X M, ZHENG X X, HE S J, et al. Effects of different farming technologies on the population dynamics of pest and their natural enemies in rice fields[J]. Chinese Journal of Applied Entomology, 2020, 57(1): 105−112
    [26] CLOUGH Y, KRUESS A, KLEIJN D, et al. Spider diversity in cereal fields: comparing factors at local, landscape and regional scales[J]. Journal of Biogeography, 2005, 32(11): 2007−2014 doi: 10.1111/j.1365-2699.2005.01367.x
    [27] 马克平, 刘玉明. 生物群落多样性的测度方法: Ⅰ α多样性的测度方法(下)[J]. 生物多样性, 1994, 2(4): 231−239 doi: 10.3321/j.issn:1005-0094.1994.04.009

    MA K P, LIU Y M. Measurement of biotic community diversity I α diversity (Part 2)[J]. Chinese Biodiversity, 1994, 2(4): 231−239 doi: 10.3321/j.issn:1005-0094.1994.04.009
    [28] ROYSTON J P. An extension of Shapiro and Wilk’s W test for normality to large samples[J]. Applied Statistics, 1982, 31(2): 115 doi: 10.2307/2347973
    [29] BARTLETT M S. Properties of sufficiency and statistical tests[J]. Proceedings of the Royal Society of London Series A—Mathematical and Physical Sciences, 1937, 160: 268−282
    [30] CHAMBERS J M, FREENY A E, HEIBERGER R M. Analysis of variance; designed experiments[M]//CHAMBERS J M, HASTIE T J. Statistical Models in S. Boca Raton: Routledge, 2017: 145–193
    [31] HOLLANDER M, WOLFE D A. Nonparametric statistical methods[J]. Biometrische Zeitschrift, 1975, 17(8): 526
    [32] GREGO J M. Practical data analysis for designed experiments[J]. Technometrics, 1998, 40(2): 154−155
    [33] TRUEBLOOD D D, GALLAGHER E D, GOULD D M. Three stages of seasonal succession on the Savin Hill Cove mudflat, Boston Harbor[J]. Limnology and Oceanography, 1994, 39(6): 1440−1454 doi: 10.4319/lo.1994.39.6.1440
    [34] GRASSLE J F, SMITH W. A similarity measure sensitive to the contribution of rare species and its use in investigation of variation in marine benthic communities[J]. Oecologia, 1976, 25(1): 13−22 doi: 10.1007/BF00345030
    [35] HOCHBERG Y. A sharper Bonferroni procedure for multiple tests of significance[J]. Biometrika, 1988, 75(4): 800−802 doi: 10.1093/biomet/75.4.800
    [36] 段美春, 刘云慧, 王长柳, 等. 坝上地区不同海拔农田和恢复半自然生境下尺蛾多样性[J]. 应用生态学报, 2012, 23(3): 785−790

    DUAN M C, LIU Y H, WANG C L, et al. Diversity of geometrid moth (Lepidoptera: Geometridae) in cropland and reforested semi-natural habitats at different altitudes of Bashang Plateau, Hebei Province of China[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 785−790
    [37] ARGAÑARAZ C I, MARTÍNEZ PASTUR G J, RAMÍREZ M J, et al. Ground-dwelling spiders and understory vascular plants on Fuegian austral forests: Community responses to variable retention management and their association to natural ecosystems[J]. Forest Ecology and Management, 2020, 474: 118375 doi: 10.1016/j.foreco.2020.118375
    [38] 陈樟福, 张贞华. 浙江动物志. 蜘蛛类[M]. 杭州: 浙江科学技术出版社, 1991

    CHEN Z F, ZHANG Z H. Fauna of Zhejiang. Araneida[M]. Hangzhou: Zhejiang Science and Technology Publishing House, 1991
    [39] 陈孝恩. 四川农田蜘蛛彩色图册 精装本[M]. 成都: 四川科学技术出版社, 1990

    CHEN X E. The Sichuan Farmland Spiders in China[M]. Chengdu: Sichuan Scientific and Technical Publishing House, 1990
    [40] 胡金林. 中国农林蜘蛛[M]. 天津: 天津科学技术出版社, 1984

    HU J L. Chinese Agroforestry Spider[M]. Tianjin: Tianjin Science and Technology Press, 1984
    [41] BELL J R, BOHAN D A, SHAW E M, et al. Ballooning dispersal using silk: world fauna, phylogenies, genetics and models[J]. Bulletin of Entomological Research, 2005, 95(2): 69−114 doi: 10.1079/BER2004350
    [42] BLANDENIER G. Ballooning of spiders (Araneae) in Switzerland: general results from an eleven-year survey[J]. Arachnology, 2009, 14(7): 308−316 doi: 10.13156/arac.2009.14.7.308
    [43] GREENSTONE M, MORGAN C, HULTSCH A, et al. Ballooning spiders in Missouri, USA, and New South Wales, Australia: Family and mass distributions[J]. Journal of Arachnology, 1987, 15(2): 163−170
    [44] 武鹏峰, 崔淑艳, Abid Ali等. 蜘蛛飞航研究进展[J/OL]. 生物多样性, https://kns.cnki.net/kcms/detail/11.3247.Q.20201202.1032.002.html

    WU P F, CUI S Y, ALI A, et al. Advances in spider ballooning research[J/OL]. Biodiversity Science. https://kns.cnki.net/kcms/detail/11.3247.Q.20201202.1032.002.html
    [45] RYPSTRA A L, SCHMIDT J M, REIF B D, et al. Tradeoffs involved in site selection and foraging in a wolf spider: effects of substrate structure and predation risk[J]. Oikos, 2007, 116(5): 853−863 doi: 10.1111/j.0030-1299.2007.15622.x
    [46] Uetz G W. Guild structure of spiders in major crops[J]. The Journal of Arachnology, 1999, 27(1): 270−280
    [47] LALIBERTÉ E, LEGENDRE P. A distance-based framework for measuring functional diversity from multiple traits[J]. Ecology, 2010, 91(1): 299−305 doi: 10.1890/08-2244.1
    [48] 马晓慧, 车喜庆, 王井士, 等. 稻蟹共作与常规稻田蜘蛛群落组成及多样性分析[J]. 中国生态农业学报(中英文), 2019, 27(8): 1157−1162

    MA X H, CHE X Q, WANG J S, et al. The structure of spider communities in crab paddies and conventional paddies[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1157−1162
    [49] ANDERSON M J, ELLINGSEN K E, MCARDLE B H. Multivariate dispersion as a measure of beta diversity[J]. Ecology Letters, 2006, 9(6): 683−693 doi: 10.1111/j.1461-0248.2006.00926.x
    [50] VÄRE H, OHTONEN R, OKSANEN J. Effects of reindeer grazing on understorey vegetation in dry Pinus sylvestris forests[J]. Journal of Vegetation Science, 1995, 6(4): 523−530 doi: 10.2307/3236351
    [51] BOTTA-DUKÁT Z. Rao’s quadratic entropy as a measure of functional diversity based on multiple traits[J]. Journal of Vegetation Science, 2005, 16(5): 533−540 doi: 10.1111/j.1654-1103.2005.tb02393.x
    [52] 黎秀娣, 冯平万, 黎健龙, 等. 茶树上游猎型蜘蛛功能团对景观低碳管理模式的反应[J]. 生态环境学报, 2014, 23(1): 64−72 doi: 10.3969/j.issn.1674-5906.2014.01.010

    LI X D, FENG P W, LI J L, et al. The response of a canopy-wandering-spider functional group to a low-carbon management approach in tea plantations[J]. Ecology and Environmental Sciences, 2014, 23(1): 64−72 doi: 10.3969/j.issn.1674-5906.2014.01.010
    [53] TSUTSUI M H, TANAKA K, BABA Y G, et al. Spatio-temporal dynamics of generalist predators (Tetragnatha spider) in environmentally friendly paddy fields[J]. Applied Entomology and Zoology, 2016, 51(4): 631−640 doi: 10.1007/s13355-016-0440-5
    [54] 张俊喜, 胡春林, 成晓松, 等. 九种农药对稻田蜘蛛的影响及其对飞虱的防治效果[J]. 江西植保, 2011, 34(3): 107−110

    ZHANG J X, HU C L, CHENG X S, et al. Effects of 9 insecticides on killing spiders and controlling planthoppers[J]. Jiangxi Plant Protection, 2011, 34(3): 107−110
    [55] TSUTSUI M H, KOBAYASHI K, MIYASHITA T. Temporal trends in arthropod abundances after the transition to organic farming in paddy fields[J]. PLoS One, 2018, 13(1): e0190946 doi: 10.1371/journal.pone.0190946
    [56] YUAN X, ZHOU W W, JIANG Y D, et al. Organic regime promotes evenness of natural enemies and planthopper control in paddy fields[J]. Environmental Entomology, 2019, 48(2): 318−325 doi: 10.1093/ee/nvz013
    [57] 黄德超, 曾玲, 梁广文, 等. 不同耕种稻田害虫及天敌的种群动态[J]. 应用生态学报, 2005, 16(11): 2122−2125 doi: 10.3321/j.issn:1001-9332.2005.11.022

    HUANG D C, ZENG L, LIANG G W, et al. Population dynamics of pests and their enemies in different cultivated rice fields[J]. Chinese Journal of Applied Ecology, 2005, 16(11): 2122−2125 doi: 10.3321/j.issn:1001-9332.2005.11.022
    [58] 张文庆, 张古忍, 古德祥. 稻田生境调节和捕食性天敌对稻飞虱的控制作用[J]. 生态学报, 1998, 18(3): 283−288 doi: 10.3321/j.issn:1000-0933.1998.03.008

    ZHANG W Q, ZHANG G R, GU D X. Biological control of rice planthopper by habitat manipulation and arthropod predators in Dasha township[J]. Acta Ecologica Sinica, 1998, 18(3): 283−288 doi: 10.3321/j.issn:1000-0933.1998.03.008
    [59] 黄炎忠, 罗小锋, 李兆亮. 我国农业绿色生产水平的时空差异及影响因素[J]. 中国农业大学学报, 2017, 22(9): 183−190 doi: 10.11841/j.issn.1007-4333.2017.09.22

    HUANG Y Z, LUO X F, LI Z L. Analysis on spatial-temporal differences and influence factors of agricultural green production level in China[J]. Journal of China Agricultural University, 2017, 22(9): 183−190 doi: 10.11841/j.issn.1007-4333.2017.09.22
    [60] 张正斌, 王大生. 加快中国绿色农业和绿色食品技术标准体系建设[J]. 中国科学院院刊, 2010, 25(3): 288−297 doi: 10.3969/j.issn.1000-3045.2010.03.006

    ZHANG Z B, WANG D S. Suggestions for speeding up the construction of technical standards system of green agriculture and green food in China[J]. Bulletin of Chinese Academy of Sciences, 2010, 25(3): 288−297 doi: 10.3969/j.issn.1000-3045.2010.03.006
    [61] 吕仲贤, 俞晓平, Heong K L, 等. 氮肥对水稻叶冠层捕食性天敌种群及其自然控制能力的影响[J]. 植物保护学报, 2006, 33(3): 225−229 doi: 10.3321/j.issn:0577-7518.2006.03.001

    LYU Z X, YU X P, HEONG K L, et al. Dynamics of predators in rice canopy and capacity of natural control on insect pests in paddy fields with different nitrogen regimes[J]. Acta Phytophylacica Sinica, 2006, 33(3): 225−229 doi: 10.3321/j.issn:0577-7518.2006.03.001
    [62] MARTIN E A, SEO B, PARK C R, et al. Scale-dependent effects of landscape composition and configuration on natural enemy diversity, crop herbivory, and yields[J]. Ecological Applications, 2016, 26(2): 448−462 doi: 10.1890/15-0856
    [63] 胡文浩, 段美春, 那书豪, 等. 坝上地区农田及两种恢复生境中蜘蛛多样性与群落特征[J]. 应用生态学报, 2020, 31(2): 643−650

    HU W H, DUAN M C, NA S H, et al. Spider diversity and community characteristics in cropland and two kinds of recovery habitats in Bashang area, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 643−650
    [64] 韩大青, 周庆高, 孙中钦, 等. 不同杀虫剂防治稻飞虱药效试验[J]. 上海农业科技, 2020, (4): 118−119 doi: 10.3969/j.issn.1001-0106.2020.04.055

    HAN D Q, ZHOU Q G, SUN Z Q, et al. Effect test of different insecticides against rice planthopper[J]. Shanghai Agricultural Science and Technology, 2020, (4): 118−119 doi: 10.3969/j.issn.1001-0106.2020.04.055
    [65] 魏巍, 孔云, 张玉萍, 等. 梨园芳香植物间作区中国梨木虱与其天敌类群的相互作用[J]. 生态学报, 2010, 30(8): 2063−2074

    WEI W, KONG Y, ZHANG Y P, et al. The interaction among Psylla chinensis and natural enemies in the different aromatic plants intercropping plots of pear orchard[J]. Acta Ecologica Sinica, 2010, 30(8): 2063−2074
    [66] YANG H L, PENG Y D, TIAN J X, et al. Rice field spiders in China: A review of the literature[J]. Journal of Economic Entomology, 2018, 111(1): 53−64 doi: 10.1093/jee/tox319
    [67] 王智, 李科, 魏宝阳. 敌敌畏对食虫沟瘤蛛体内消化酶活性的影响[J]. 中国生物防治, 2008, 24(2): 179−181

    WANG Z, LI K, WEI B Y. Effect of dichlorvos on the activities of digestive enzymes in Ummeliata insecticeps[J]. Chinese Journal of Biological Control, 2008, 24(2): 179−181
    [68] XIAO Y H, HE Y Y, YANG H M. The starvation endurance of Ummeliata insecticeps[J]. Acta Ecologica Sinica, 2006, 26(6): 1725−1731
    [69] 肖永红, 贺一原, 柳丰, 等. 荧光物示踪法测定除草剂对食虫沟瘤蛛摄食量的影响[J]. 昆虫学报, 2006, 49(4): 630−635 doi: 10.3321/j.issn:0454-6296.2006.04.015

    XIAO Y H, HE Y Y, LIU F, et al. Quantitative measurement of influence of herbicides on food intake of Ummeliata insecticeps by the fluorescence labeling method[J]. Acta Entomologica Sinica, 2006, 49(4): 630−635 doi: 10.3321/j.issn:0454-6296.2006.04.015
    [70] 王洪全, 颜亨梅, 杨海明. 中国稻田蜘蛛生态与利用研究[J]. 中国农业科学, 1996, 29(5): 69−76

    WANG H Q, YAN H M, YANG H M. Studies on the ecology of spiders in paddy fields and utilization of spiders for biological control in China[J]. Scientia Agricutura Sinica, 1996, 29(5): 69−76
    [71] 张旭珠, 张鑫, 宋潇, 等. 植被边界带对相邻麦田地表步甲和蜘蛛分布及蚜虫发生的影响[J]. 生态学报, 2018, 38(23): 8442−8454

    ZHANG X Z, ZHANG X, SONG X, et al. Effects of vegetated field margins on the distribution of epigaeic carabid beetles and spiders and aphid development in adjacent wheat fields[J]. Acta Ecologica Sinica, 2018, 38(23): 8442−8454
    [72] 张俊喜, 成晓松, 高波, 等. 江苏稻田蜘蛛控虫技术研究与应用[J]. 农学学报, 2019, 9(4): 39−42 doi: 10.11923/j.issn.2095-4050.cjas18050022

    ZHANG J X, CHENG X S, GAO B, et al. Research and application of pest control by spider in Jiangsu paddy field[J]. Journal of Agriculture, 2019, 9(4): 39−42 doi: 10.11923/j.issn.2095-4050.cjas18050022
    [73] 成晓松, 张俊喜, 胡春林, 等. 稻田蜘蛛种群消长规律研究[J]. 安徽农学通报, 2011, 17(14): 195−197 doi: 10.3969/j.issn.1007-7731.2011.14.102

    CHENG X S, ZHANG J X, HU C L, et al. Study on growth and decline regularity of the rice paddy spider population[J]. Anhui Agricultural Science Bulletin, 2011, 17(14): 195−197 doi: 10.3969/j.issn.1007-7731.2011.14.102
    [74] 羊绍武, 张晓明, 郭海业, 等. 多年生水稻田主要害虫种类及种群动态[J]. 云南农业大学学报: 自然科学, 2019, 34(1): 1−8

    YANG S W, ZHANG X M, GUO H Y, et al. Species and population dynamics of main pests at perennial rice field[J]. Journal of Yunnan Agricultural University: Natural Science, 2019, 34(1): 1−8
    [75] 张俊喜, 胡春林, 成晓松, 等. 稻田蜘蛛的特性及利用[J]. 浙江农业科学, 2013, 54(1): 50−55 doi: 10.3969/j.issn.0528-9017.2013.01.018

    ZHANG J X, HU C L, CHENG X S, et al. Characteristics and utilization of spiders in rice fields[J]. Journal of Zhejiang Agricultural Sciences, 2013, 54(1): 50−55 doi: 10.3969/j.issn.0528-9017.2013.01.018
    [76] 姚凤銮, 尤民生. 多样化种植调控稻田天敌功能团在生境间的移动[J]. 植物保护学报, 2017, 44(6): 958−967

    YAO F L, YOU M S. Regulation of the movements of natural enemy guilds between different habitats in rice-based ecosystems by polycultural manipulation[J]. Journal of Plant Protection, 2017, 44(6): 958−967
    [77] 刘雨芳, 杨荷, 阳菲, 等. 生境异质度对稻田捕食性天敌及水稻害虫的生态调节有效性[J]. 昆虫学报, 2019, 62(7): 857−867

    LIU Y F, YANG H, YANG F, et al. Ecological regulation effectiveness of habitat heterogeneity on predatory natural enemies and rice pests in rice paddy fields[J]. Acta Entomologica Sinica, 2019, 62(7): 857−867
    [78] HE X Q, QIAO Y H, SIGSGAARD L, et al. The spider diversity and plant hopper control potential in the long-term organic paddy fields in sub-tropical area, China[J]. Agriculture, Ecosystems & Environment, 2020, 295: 106921
  • 加载中
图(4) / 表(3)
计量
  • 文章访问数:  430
  • HTML全文浏览量:  96
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-07
  • 录用日期:  2021-04-07
  • 网络出版日期:  2021-07-26
  • 刊出日期:  2021-09-06

目录

    /

    返回文章
    返回