留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北平原农田关键带硝态氮存储与淋失量研究

陈肖如 李晓欣 胡春胜 雷玉平 倪锐 马林

陈肖如, 李晓欣, 胡春胜, 雷玉平, 倪锐, 马林. 华北平原农田关键带硝态氮存储与淋失量研究[J]. 中国生态农业学报(中英文), 2021, 29(9): 1546−1557 doi: 10.13930/j.cnki.cjea.210087
引用本文: 陈肖如, 李晓欣, 胡春胜, 雷玉平, 倪锐, 马林. 华北平原农田关键带硝态氮存储与淋失量研究[J]. 中国生态农业学报(中英文), 2021, 29(9): 1546−1557 doi: 10.13930/j.cnki.cjea.210087
CHEN X R, LI X X, HU C S, LEI Y P, NI R, MA L. Nitrate storage and leaching in the critical zone of farmland in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1546−1557 doi: 10.13930/j.cnki.cjea.210087
Citation: CHEN X R, LI X X, HU C S, LEI Y P, NI R, MA L. Nitrate storage and leaching in the critical zone of farmland in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1546−1557 doi: 10.13930/j.cnki.cjea.210087

华北平原农田关键带硝态氮存储与淋失量研究

doi: 10.13930/j.cnki.cjea.210087
基金项目: 国家重点研发计划项目(2016YFD0800102, 2017YFD0800601)和国家自然科学基金面上项目(41530859)资助
详细信息
    作者简介:

    陈肖如, 主要研究方向为农田土壤氮循环。E-mail: 13051192093@163.com

    通讯作者:

    胡春胜, 主要从事农田生态系统碳氮水循环和土壤生态过程研究。E-mail: cshu@sjziam.ac.cn

  • 中图分类号: S19

Nitrate storage and leaching in the critical zone of farmland in the North China Plain

Funds: The study was supported by the National Key R & D Program of China (2016YFD0800102, 2017YFD0800601) and the National Natural Science Foundation of China (41530859)
More Information
  • 摘要: 更多证据表明, 储存在深层包气带中的硝态氮在全球氮循环中具有重要作用。本研究在华北平原农田不同包气带深度(2~50 m)分别采集土柱, 分析不同深度土层的硝态氮含量和分布; 从资料与文献收集到华北平原不同省区及其县域的42年(1978—2019年)氮肥投入与农田面积变化数据, 计算不同区域(地下水埋深区域和县域)的农田包气带硝态氮存储量。首次利用区县氮肥投入与对应区域包气带硝态氮存储量的比值, 即存储率(NR), 研究氮肥投入对包气带硝态氮存储的影响程度。结果表明: 1)在2~50 m的地下水埋深范围内, 随着包气带深度的增加, 华北平原农田(粮田与菜地)的单位面积硝态氮存储量也随之增加; 2)在2 m、3 m、6 m、10 m、16 m、25 m、40 m和50 m深包气带, 粮田硝态氮存储量分别占42年(1978—2019年)氮肥总投入量的14%、18%、26%、30%、33%、35%、38%和39%, 菜地硝态氮存储量分别占42年(1978—2019年)氮肥总投入量的15%、20%、28%、32%、34%、36%、40%和41%; 3)进入2 m以下地下水的粮田与菜地硝态氮淋失总量分别为675.65万t和199.56万t, 分别占粮田与菜地42年(1978—2019年)氮肥总投入的13%和14%。本研究表明, 华北平原农业区高氮肥投入导致大量的硝态氮淋失进入包气带-地下含水层系统, 厚包气带对硝态氮截留和存储具有重要作用, 在地下水埋深较浅区, 高氮肥投入提高了地下水硝酸盐污染的风险。
  • 图  1  华北平原研究区域范围及其包气带深度分布

    Figure  1.  Regional scope of the study area in the North China Plain and the distribution of vadose zone depths

    图  2  不同省份在华北平原耕地面积区域42年(1978—2019年)氮肥投入变化

    Figure  2.  Changes of N fertilizer inputs in cultivated land area of the North China Plain during 42 years (1978−2019)

    图  3  华北平原粮田(a)和菜地(b)不同区县42年(1978—2019年)氮肥总投入空间分布

    灰线为地下水埋深等值线, 数字为等值线数值(m)。The gray line is the contour line of groundwater depth and the number represents the value of the contour line (m).

    Figure  3.  Spatial distribution of total N fertilizer input of grain (a) and vegetable (a) fields in different counties of the North China Plain from 1978 to 2019

    图  4  华北平原粮田(a)与菜地(b)不同包气带区域的平均硝态氮存储量

    平均硝态氮存储量为8个不同包气带深度划分出的包气带区域的硝态氮存储总量, 除以对应区域面积计算得到。The average nitrate storage is calculated by the total amount of nitrate storage in vadose zones with various depths divided by the corresponding area of the zones.

    Figure  4.  Average nitrate storage of grain fields (a) and vegetable fields (b) in regions with different depths of vadose zones in the North China Plain

    图  5  华北平原0~16 m各土壤层粮田与菜地硝态氮累积量空间分布

    Figure  5.  Spatial distribution of nitrate accumulation in grain fields and vegetable fields in 0−16 m soil layer in the North China Plain

    图  6  华北平原粮田在不同地下水埋深(2 m、3 m、6 m、10 m、16 m、25 m、40 m、50 m)区域的氮肥投入与硝态氮存储量关系

    Figure  6.  Relationship between N fertilizer input and nitrate storage in grain fields with different depths of groundwater tables (2 m, 3 m, 6 m, 10 m, 16 m, 25 m, 40 m, 50 m) in the North China Plain

    图  7  华北平原菜地在不同地下水埋深(2 m、3 m、6 m、10 m、16 m、25 m、40 m、50 m)区域的氮肥投入与硝态氮存储量关系

    Figure  7.  Relationship between N fertilizer input and nitrate storage in vegetable fields with different depths of groundwater tables (2 m, 3 m, 6 m, 10 m, 16 m, 25 m, 40 m, 50 m) in the North China Plain

    图  8  华北平原粮田(a)与菜地(b)进入2 m埋深以下地下水的平均硝态氮林失量

    平均硝态氮淋失量为不同含水层区域硝态氮淋失总量除以对应区域面积(kg∙hm−2)。The average nitrate leaching amount is calculated by dividing the total amount of nitrate leaching in different aquifer areas by the corresponding area (kg∙hm−2).

    Figure  8.  Average nitrate leaching amount in grain fields (a) and vegetable fields (b) of the regions with groundwater table below 2 m of the North China Plain

    表  1  华北平原不同地下水埋深区域的硝态氮存储与氮肥投入比值(NR值为样本平均结果)

    Table  1.   Ratio of nitrate storage to N fertilizer input at different regions with different depths of groundwater tables in the North China Plain (NR value is the average result of samples)

    地下水埋深
    Groundwater table depth (m)
    县域个数
    Number of county
    硝态氮存储量与氮肥投入的比值
    Ratio of nitrate storage to nitrogen fertilizer input (NR)
    粮田 Grain field菜地 Vegetable field
    0~21360.140.15
    2~31150.180.20
    3~61320.260.28
    6~10640.300.32
    10~16610.330.34
    16~25390.350.36
    25~40130.380.40
    40~5040.390.41
    下载: 导出CSV

    表  2  华北平原农田硝态氮进入2 m埋深以下地下水的淋失量

    Table  2.   Amount of nitrate leaching from farmland into aquifer below the 2 m depth of groundwater table in the NCP

    地下水埋深
    Groundwater table depth (m)
    面积 Area (km2)NRiNRj硝态氮淋失量 Nitrate leaching (NL,10 kt)
    粮田 Grain field菜地 Vegetable field粮田 Grain field菜地 Vegetable field粮田 Grain field菜地 Vegetable field
    2~352128010.250.2644.6516.18
    3~631 18647530.210.21329.3897.52
    6~1039 33293000.130.13196.4354.26
    10~16896720780.090.0953.0614.60
    16~25931732030.060.0732.7210.67
    25~40602513090.040.0517.485.82
    40~5034866620.010.011.940.50
    总计 Total103 81122 160675.66199.55
      NR为硝态氮存储量与氮肥投入的比值, ij为地下水埋深, i>j。NR is the ratio of nitrate storage to nitrogen fertilizer input. i and j are the depths of groundwater table depth, and i is greater than j.
    下载: 导出CSV
  • [1] 李晓欣, 王仕琴, 陈肖如, 等. 北方区域尺度地下水-包气带硝酸盐分布与变化特征[J]. 中国生态农业学报(中英文), 2021, 29(1): 208−216

    LI X X, WANG S Q, CHEN X R, et al. Spatial distribution and changes of nitrate in the vadose zone and underground water in Northern China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 208−216
    [2] 巨晓棠, 张福锁. 中国北方土壤硝态氮的累积及其对环境的影响[J]. 生态环境, 2003, 12(1): 24−28

    JU X T, ZHANG F S. Nitrate accumulation and its implication to environment in North China[J]. Ecology and Environment, 2003, 12(1): 24−28
    [3] 侯萌瑶, 张丽, 王知文, 等. 中国主要农作物化肥用量估算[J]. 农业资源与环境学报, 2017, 34(4): 360−367

    HOU M Y, ZHANG L, WANG Z W, et al. Estimation of fertilizer usage from main crops in China[J]. Journal of Agricultural Resources and Environment, 2017, 34(4): 360−367
    [4] 牛新胜, 张翀, 巨晓棠. 华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制[J]. 中国生态农业学报(中英文), 2021, 29(1): 53−65

    NIU X S, ZHANG C, JU X T. Mechanism of nitrogen leaching in fluvo-aquic soil and deep vadose zone in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 53−65
    [5] 赵同科, 张成军, 杜连凤, 等. 环渤海七省(市)地下水硝酸盐含量调查[J]. 农业环境科学学报, 2007, 26(2): 779−783 doi: 10.3321/j.issn:1672-2043.2007.02.072

    ZHAO T K, ZHANG C J, DU L F, et al. Investigation on nitrate concentration in groundwater in seven provinces (city) surrounding the Bo-Hai sea[J]. Journal of Agro-Environment Science, 2007, 26(2): 779−783 doi: 10.3321/j.issn:1672-2043.2007.02.072
    [6] ZHANG W L, TIAN Z X, ZHANG N, et al. Nitrate pollution of groundwater in Northern China[J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223−231
    [7] 周忠发, 石亮星, 范宝祥, 等. 喀斯特关键带洞穴系统碳循环研究进展[J]. 环境科学与技术, 2020, 43(11): 200−207

    ZHOU Z F, SHI L X, FAN B X, et al. Karst cave system carbon cycle research progress in the key[J]. Environmental Science and Technology, 2020, 43(11): 200−207
    [8] WU H Y, SONG X D, LIU F, et al. Regolith property controls on nitrate accumulation in a typical vadose zone in subtropical China[J]. CATENA, 2020, 192: 104589 doi: 10.1016/j.catena.2020.104589
    [9] XIN J, LIU Y, CHEN F, et al. The missing nitrogen pieces: a critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system[J]. Water Research, 2019, 165: 114977 doi: 10.1016/j.watres.2019.114977
    [10] TURKELTAUB T, KURTZMAN D, DAHAN O. Real-time monitoring of nitrate transport in the deep vadose zone under a crop field— implications for groundwater protection[J]. Hydrology and Earth System Sciences, 2016, 20(8): 3099−3108 doi: 10.5194/hess-20-3099-2016
    [11] 寇长林, 巨晓棠, 张福锁. 三种集约化种植体系氮素平衡及其对地下水硝酸盐含量的影响[J]. 应用生态学报, 2005, 16(4): 660−667 doi: 10.3321/j.issn:1001-9332.2005.04.015

    KOU C L, JU X T, ZHANG F S. Nitrogen balance and its effects on nitrate-N concentration of groundwater in three intensive cropping systems of North China[J]. Chinese Journal of Applied Ecology, 2005, 16(4): 660−667 doi: 10.3321/j.issn:1001-9332.2005.04.015
    [12] 李久生, 杨风艳, 栗岩峰. 层状土壤质地对地下滴灌水氮分布的影响[J]. 农业工程学报, 2009, 25(7): 25−31 doi: 10.3969/j.issn.1002-6819.2009.07.005

    LI J S, YANG F Y, LI Y F. Water and nitrogen distribution under subsurface drip fertigation as affected by layered-textural soils[J]. Transactions of the Chinese Society of Agricultural Engineering, 2009, 25(7): 25−31 doi: 10.3969/j.issn.1002-6819.2009.07.005
    [13] 张庆忠, 陈欣, 沈善敏. 农田土壤硝酸盐积累与淋失研究进展[J]. 应用生态学报, 2002, 13(2): 233−238 doi: 10.3321/j.issn:1001-9332.2002.02.026

    ZHANG Q Z, CHEN X, SHEN S M. Advances in studies on accumulation and leaching of nitrate in farming soil[J]. Chinese Journal of Applied Ecology, 2002, 13(2): 233−238 doi: 10.3321/j.issn:1001-9332.2002.02.026
    [14] GAYDON D S, KHALIQ T, AHMAD M U D, et al. Tweaking Pakistani Punjab rice-wheat management to maximize productivity within nitrate leaching limits[J]. Field Crops Research, 2021, 260: 107964 doi: 10.1016/j.fcr.2020.107964
    [15] ZHANG J J, HE P, DING W C, et al. Identifying the critical nitrogen fertilizer rate for optimum yield and minimum nitrate leaching in a typical field radish cropping system in China[J]. Environmental Pollution, 2021, 268: 115004 doi: 10.1016/j.envpol.2020.115004
    [16] ASCOTT M J, GOODDY D C, WANG L, et al. Global patterns of nitrate storage in the vadose zone[J]. Nature Communications, 2017, 8(1): 1416 doi: 10.1038/s41467-017-01321-w
    [17] ASCOTT M J, WANG L, STUART M E, et al. Quantification of nitrate storage in the vadose (unsaturated) zone: a missing component of terrestrial N budgets[J]. Hydrological Processes, 2016, 30(12): 1903−1915 doi: 10.1002/hyp.10748
    [18] 孟凡乔, 王坤, 肖广敏, 等. 华北平原潮土区粮田氮淋失组控措施及效果分析[J]. 中国生态农业学报(中英文), 2021, 29(1): 141−153

    MENG F Q, WANG K, XIAO G M, et al. Nitrogen leaching mitigation in fluvo-aquic soil in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(1): 141−153
    [19] 李晓欣, 张菲菲, 马洪斌, 等. 华北平原地区农田硝态盐淋失研究进展[J]. 华北农学报, 2011, 26(S2): 131−139 doi: 10.7668/hbnxb.2011.S2.030

    LI X X, ZHANG F F, MA H B, et al. Nitrate leaching in North China Plain: a review[J]. Acta Agriculturae Boreali-Sinica, 2011, 26(S2): 131−139 doi: 10.7668/hbnxb.2011.S2.030
    [20] 国家气象科学数据中心. 中国地面气候标准月值数据集(1981—2010)[DB/OL]. 2012-08-16. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MMON_19812010.html

    National Data Center for Meteorological Sciences. Chinese surface climate standard monthly data set (1981—2010)[DB/OL]. 2012-08-16. http://data.cma.cn/data/cdcdetail/dataCode/SURF_CLI_CHN_MUL_MMON_19812010.html
    [21] 徐新良. 中国多时期土地利用土地覆被遥感监测数据集[DB/OL]. 2018. https://www.resdc.cn/DOI/doi.aspx?DOIid=54

    XU X L. Remote sensing monitoring dataset of land use and land cover in China[DB/OL]. 2018. https://www.resdc.cn/DOI/doi.aspx?DOIid=54
    [22] 刘钦普. 河南省化肥使用环境风险时空特征分析[J]. 生态经济, 2014, 30(10): 175−178 doi: 10.3969/j.issn.1671-4407.2014.10.038

    LIU Q P. A research on spatial-temporal features of environmental risk from chemical fertilization utilization in Henan Province[J]. Ecological Economy, 2014, 30(10): 175−178 doi: 10.3969/j.issn.1671-4407.2014.10.038
    [23] 中国农业部. 中国农业年鉴[M]. 北京: 中国农业出版社, 2017

    Ministry of Agriculture of China. China Agricultural Yearbook[M]. Beijing: China Agriculture Press, 2017
    [24] 中华人民共和国国家统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020

    National Bureau of Statistics of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020
    [25] BOTROS F E, ONSOY Y S, GINN T R, et al. Richards equation-based modeling to estimate flow and nitrate transport in a deep alluvial vadose zone[J]. Vadose Zone Journal, 2012, 11(4): vzj2011.0145 doi: 10.2136/vzj2011.0145
    [26] GAO J B, WANG S, LI Z Q, et al. High nitrate accumulation in the vadose zone after land-use change from croplands to orchards[J]. Environmental Science and Technology, doi: 10.1021/acs.est.0c06730.
    [27] TURKELTAUB T, ASCOTT M J, GOODDY D C, et al. Prediction of regional-scale groundwater recharge and nitrate storage in the vadose zone: a comparison between a global model and a regional model[J]. Hydrological Processes, 2020, 34(15): 3347−3357 doi: 10.1002/hyp.13834
    [28] MCMAHON P B, DENNEHY K F, BRUCE B W, et al. Storage and transit time of chemicals in thick unsaturated zones under rangeland and irrigated cropland, High Plains, United States[J]. Water Resources Research, 2006, 42(3): 288−295 doi: 10.1029/2005wr004417
    [29] CUI M, ZENG L H, QIN W, et al. Measures for reducing nitrate leaching in orchards: a review[J]. Environmental Pollution, 2020, 263: 114553 doi: 10.1016/j.envpol.2020.114553
    [30] 袁利娟, 庞忠和. 包气带硝酸盐分布的差异性及其形成机理: 以正定、栾城为例[J]. 水文地质工程地质, 2012, 39(1): 75−80

    YUAN L J, PANG Z H. Differences in nitrate distribution in the unsaturated zone and its formation mechanism: a case study of Zhengding and Luancheng[J]. Hydrogeology & Engineering Geology, 2012, 39(1): 75−80
    [31] WANG S Q, WEI S C, LIANG H Y, et al. Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain: a future groundwater quality threat[J]. Journal of Hydrology, 2019, 576: 28−40 doi: 10.1016/j.jhydrol.2019.06.012
    [32] 牛明芬, 张迪, 王少军, 等. 不同施肥量和种植年限对设施土壤硝酸盐累积的影响[M]//武汉大学. 环境污染与大众健康学术会议. 武汉: 武汉大学美国科研出版社, 2010: 4

    NIU M F, ZHANG D, WANG S J, et al. Effects of different organic manure rate and planting years on nitrate accumulation in greenhouse soil[M]//Wuhan University. Proceedings of the Conference on Environmental Pollution and Public Health. Wuhan: American Scientific Research Press, 2010: 4
    [33] 李晓欣, 胡春胜, 张玉铭, 等. 华北地区小麦-玉米种植制度下硝态氮淋失量研究[J]. 干旱地区农业研究, 2006, 24(6): 7−10, 28 doi: 10.3321/j.issn:1000-7601.2006.06.002

    LI X X, HU C S, ZHANG Y M, et al. Losses of nitrate-nitrogen from a wheat-corn rotation in North China[J]. Agricultural Research in the Arid Areas, 2006, 24(6): 7−10, 28 doi: 10.3321/j.issn:1000-7601.2006.06.002
    [34] 郭虎林, 韩玉国, 郭子繁. 北京地区典型果园NANI解析与消减对策[J]. 应用与环境生物学报, 2020, 26(2): 386−393

    GUO H L, HAN Y G, GUO Z F. Analysis and reduction of net anthropogenic nitrogen inputs (NANI) in a typical orchard in Beijing[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(2): 386−393
    [35] PADILLA F M, GALLARDO M, MANZANO-AGUGLIARO F. Global trends in nitrate leaching research in the 1960–2017 period[J]. Science of the Total Environment, 2018, 643: 400−413 doi: 10.1016/j.scitotenv.2018.06.215
    [36] ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51−59 doi: 10.1038/nature15743
  • 加载中
图(8) / 表(2)
计量
  • 文章访问数:  312
  • HTML全文浏览量:  71
  • PDF下载量:  57
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-16
  • 录用日期:  2021-04-28
  • 网络出版日期:  2021-07-19
  • 刊出日期:  2021-09-06

目录

    /

    返回文章
    返回