留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

华北平原多目标约束下冬小麦最优施氮量

代娜 史文娇 石晓丽

代娜, 史文娇, 石晓丽. 华北平原多目标约束下冬小麦最优施氮量[J]. 中国生态农业学报(中英文), 2021, 29(9): 1512−1523 doi: 10.13930/j.cnki.cjea.210107
引用本文: 代娜, 史文娇, 石晓丽. 华北平原多目标约束下冬小麦最优施氮量[J]. 中国生态农业学报(中英文), 2021, 29(9): 1512−1523 doi: 10.13930/j.cnki.cjea.210107
DAI N, SHI W J, SHI X L. Optimal nitrogen application rate for winter wheat under multi-objective constraints in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1512−1523 doi: 10.13930/j.cnki.cjea.210107
Citation: DAI N, SHI W J, SHI X L. Optimal nitrogen application rate for winter wheat under multi-objective constraints in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1512−1523 doi: 10.13930/j.cnki.cjea.210107

华北平原多目标约束下冬小麦最优施氮量

doi: 10.13930/j.cnki.cjea.210107
基金项目: 国家自然科学基金项目(41771111)、河北省自然科学基金(D2019205123, D2020205009)、中国科学院战略性先导科技专项(XDA23100202)、中国科学院青年创新促进会(会员号: 2018071)和河北师范大学科研基金(L052018Z09)资助
详细信息
    作者简介:

    代娜, 研究方向为气候变化与区域农业。E-mail: daina1569841381@163.com

    通讯作者:

    石晓丽, 研究方向为气候变化与区域农业。E-mail: shixiaoli_2004@163.com

  • 中图分类号: S365

Optimal nitrogen application rate for winter wheat under multi-objective constraints in the North China Plain

Funds: This study was supported by the National Natural Science Foundation of China (41771111), the Natural Science Foundation of Hebei Province (D2019205123, D2020205009), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23100202), the Youth Innovation Promotion Association, Chinese Academy of Sciences (2018071), and the Research Fund Project of Hebei Normal University (L052018Z09)
More Information
  • 摘要: 农田氮素管理不当导致水体污染、土壤结构破坏和全球变暖等环境问题。从经济与生态环境各方面探讨华北平原冬小麦的最优施氮量可为粮食生产及区域农业生态保护提供重要的科学参考。本文利用华北平原9个站点1981—2017年的逐日气象数据及冬小麦物候和产量观测资料, 借助CERES-Wheat模型, 基于5个约束指标(产量、氮肥偏生产力、氮素吸收、增产-节氮权衡和环境-经济效益)和施氮量的关系曲线, 揭示华北平原冬小麦在不同约束条件下的最优施氮量。结果表明: 华北平原各站点基于不同目标约束所得的最优施氮量有所不同, 其大小顺序为氮素吸收>产量>环境-经济效益>增产-节氮权衡>氮肥偏生产力, 且各地区最优施氮量的参考值也存在一定的空间差异。通过对粮食安全与生态友好的综合考量, 本研究认为增产-节氮权衡和环境-经济效益约束条件下的最优施氮量能够实现经济效益和生态效益的统一, 是较合理的区域施氮参考, 该条件下最优施氮量分别为173 kg∙hm−2和190 kg∙hm−2, 比当前华北平原农民实际施氮水平分别减少约47%和42%, 可以作为冬小麦种植施氮的区域参考值。该目标约束下最优施氮量的低值主要分布在Ⅱ区和Ⅳ区, 分别为150 kg∙hm−2和170 kg∙hm−2, Ⅰ区和Ⅲ区则相对较高, 最优施氮量分别为200 kg∙hm−2和225 kg∙hm−2, 原因可能在于长期施氮降低土壤有机碳含量, 进而影响土壤供氮能力。
  • 图  1  华北平原典型农业试验站分布图

    Figure  1.  Location of the agricultural experimental stations in the North China Plain (NCP)

    图  2  冬小麦开花期、成熟期和产量的CERES-Wheat模型模拟效果验证

    Figure  2.  Validation of CERES-Wheat model simulation of anthesis, maturity stages and yield of winter wheat

    图  3  华北平原各站点冬小麦产量和氮肥偏生产力随施氮量的变化

    Figure  3.  Changes in winter wheat yield and nitrogen partial factor productivity (PFPN) with N application rates in the NCP stations

    图  4  华北平原各站点冬小麦氮素吸收随施氮量的变化

    Figure  4.  Changes in N uptake with N application rates of winter wheat in the NCP stations

    图  5  华北平原各站点冬小麦氮损失和产量增长随施氮量的变化(氮损失、产量增长分别经过离差标准化)

    Figure  5.  Changes in N loss and yield increase with N application rates of winter wheat in the NCP stations (N loss and yield increase were obtained from deviation normalization)

    图  6  华北平原各站点冬小麦环境-经济效益随施氮量的变化

    Figure  6.  Changes in environmental-economic benefits with N application rates of winter wheat in the NCP stations

    图  7  华北平原各指标约束下冬小麦最优施氮量

    Yield: 产量; PFPN: 氮肥偏生产力; NUP: 氮素吸收; Y-N: 增产-节氮权衡; EV-EC: 环境-经济效益; Act: 农户实际施氮量。PFPN: nitrogen partial factor productivity; NUP: N uptake; Y-N: the balance of yield increase and nitrogen-saving; EV-EC: environmental-economic benefits; Act: actual nitrogen application of farmers.

    Figure  7.  Optimal N application rates under different constraints of winter wheat in the NCP

    图  8  华北平原冬小麦最优施氮量下各约束指标的基本情况

    Yield: 产量; PFPN: 氮肥偏生产力; NUP: 氮素吸收; Y-N: 增产-节氮权衡; EV-EC: 环境-经济效益; Act: 农户实际施氮量。每个指标后括号内数据为最优施氮量。PFPN: nitrogen partial factor productivity; NUP: N uptake; Y-N: the balance of yield increase and nitrogen-saving; EV-EC: environmental-economic benefits; Act: actual nitrogen application of farmers. The date in the bracket following the indicator is the optimal N application rate.

    Figure  8.  Conditions of each constraint indicator under the optimal N application rate of winter wheat in the NCP

    图  9  华北平原各站点冬小麦最优施氮量分布图

    Yield: 产量; PFPN: 氮肥偏生产力; NUP: 氮素吸收; Y-N: 增产-节氮权衡; EV-EC: 环境-经济效益; Act: 农户实际施氮量。PFPN: nitrogen partial factor productivity; NUP: N uptake; Y-N: the balance of yield increase and nitrogen-saving; EV-EC: environmental-economic benefits; Act: actual nitrogen application of farmers.

    Figure  9.  Optimal N application rates of winter wheat in the NCP stations

    表  1  氮肥施用过程排放物类型与污染处理成本[26-28]

    Table  1.   Types of emissions from the application of nitrogen fertilizer and pollution treatment costs[26-28]

    排放物类型 Emission type排放量计算方式 Formula model处理成本 Treatment cost (¥∙kg−1)
    氨气 NH3−4.95+0.17×施氮量[27-28]
    −4.95+0.17×N application rate[27-28]
    37.5
    氮氧化物 NOx模型输出 Model output29.6
    氧化亚氮 N2O模型输出 Model output83.7
    氮淋溶 N leaching模型输出 Model output9.3
    下载: 导出CSV
  • [1] PISHGAR-KOMLEH S H, AKRAM A, KEYHANI A, et al. Integration of life cycle assessment, artificial neural networks, and metaheuristic optimization algorithms for optimization of tomato-based cropping systems in Iran[J]. The International Journal of Life Cycle Assessment, 2020, 25(3): 620−632 doi: 10.1007/s11367-019-01707-6
    [2] MALHI S S, GRANT C A, JOHNSTON A M, et al. Nitrogen fertilization management for no-till cereal production in the Canadian Great Plains: a review[J]. Soil and Tillage Research, 2001, 60(3/4): 101−122
    [3] LI S X, WANG Z H, HU T T, et al. Chapter 3 nitrogen in dryland soils of China and its management[M]//Advances in Agronomy. Amsterdam: Elsevier, 2009: 123–181
    [4] 柏慧, 张秀, 初金鹏, 等. 氮肥水平对强筋小麦产量和氮素利用的影响[J]. 中国农学通报, 2020, 36(4): 7−14 doi: 10.11924/j.issn.1000-6850.casb18090100

    BAI H, ZHANG X, CHU J P, et al. Nitrogen fertilizer level: Effects on yield and nitrogen utilization of strong gluten wheat[J]. Chinese Agricultural Science Bulletin, 2020, 36(4): 7−14 doi: 10.11924/j.issn.1000-6850.casb18090100
    [5] ZHANG H, TAO F L, ZHOU G S. Potential yields, yield gaps, and optimal agronomic management practices for rice production systems in different regions of China[J]. Agricultural Systems, 2019, 171: 100−112 doi: 10.1016/j.agsy.2019.01.007
    [6] ZHAO Z G, QIN X, WANG E L, et al. Modelling to increase the eco-efficiency of a wheat-maize double cropping system[J]. Agriculture, Ecosystems & Environment, 2015, 210: 36−46
    [7] 康飞, 孟凡乔. 基于文献分析的北方冬麦田氨挥发特性[J]. 农业工程学报, 2020, 36(1): 228−234 doi: 10.11975/j.issn.1002-6819.2020.01.027

    KANG F, MENG F Q. Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 228−234 doi: 10.11975/j.issn.1002-6819.2020.01.027
    [8] TIAN Z, WANG J J, LIU S, et al. Application effects of coated urea and urease and nitrification inhibitors on ammonia and greenhouse gas emissions from a subtropical cotton field of the Mississippi delta region[J]. Science of the Total Environment, 2015, 533: 329−338 doi: 10.1016/j.scitotenv.2015.06.147
    [9] WU Y Y, GU B J, ERISMAN J W, et al. PM2.5 pollution is substantially affected by ammonia emissions in China[J]. Environmental Pollution, 2016, 218: 86−94 doi: 10.1016/j.envpol.2016.08.027
    [10] 马登科, 殷俐娜, 刘溢健, 等. 施氮量对黄土高原旱地冬小麦产量和水分利用效率影响的整合分析[J]. 中国农业科学, 2020, 53(3): 486−499 doi: 10.3864/j.issn.0578-1752.2020.03.003

    MA D K, YIN L N, LIU Y J, et al. A meta-analysis of the effects of nitrogen application rates on yield and water use efficiency of winter wheat in dryland of Loess Plateau[J]. Scientia Agricultura Sinica, 2020, 53(3): 486−499 doi: 10.3864/j.issn.0578-1752.2020.03.003
    [11] 刘建刚, 褚庆全, 王光耀, 等. 基于DSSAT模型的氮肥管理下华北地区冬小麦产量差的模拟[J]. 农业工程学报, 2013, 29(23): 124−129 doi: 10.3969/j.issn.1002-6819.2013.23.017

    LIU J G, CHU Q Q, WANG G Y, et al. Simulating yield gap of winter wheat in response to nitrogen management in North China Plain based on DSSAT model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(23): 124−129 doi: 10.3969/j.issn.1002-6819.2013.23.017
    [12] 钟茜, 巨晓棠, 张福锁. 华北平原冬小麦/夏玉米轮作体系对氮素环境承受力分析[J]. 植物营养与肥料学报, 2006, 12(3): 285−293 doi: 10.3321/j.issn:1008-505X.2006.03.001

    ZHONG Q, JU X T, ZHANG F S. Analysis of environmental endurance of winter wheat/summer maize rotation system to nitrogen in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2006, 12(3): 285−293 doi: 10.3321/j.issn:1008-505X.2006.03.001
    [13] KHOSHNEVISAN B, RAFIEE S, PAN J T, et al. A multi-criteria evolutionary-based algorithm as a regional scale decision support system to optimize nitrogen consumption rate: A case study in North China Plain[J]. Journal of Cleaner Production, 2020, 256: 120213 doi: 10.1016/j.jclepro.2020.120213
    [14] 吴强, 张永平, 董玉新, 等. 施氮量和灌水模式对小麦产量、品质和氮肥利用的影响[J]. 麦类作物学报, 2020, 40(3): 334−342 doi: 10.7606/j.issn.1009-1041.2020.03.10

    WU Q, ZHANG Y P, DONG Y X, et al. Effect of nitrogen application rates and irrigation modes on yield, nitrogen use efficiency and quality in wheat[J]. Journal of Triticeae Crops, 2020, 40(3): 334−342 doi: 10.7606/j.issn.1009-1041.2020.03.10
    [15] 沙之敏, 边秀举, 郑伟, 等. 最佳养分管理对华北冬小麦养分吸收和利用的影响[J]. 植物营养与肥料学报, 2010, 16(5): 1049−1055 doi: 10.11674/zwyf.2010.0502

    SHA Z M, BIAN X J, ZHENG W, et al. Effects of optimum nutrient management on nutrient uptake and utilization of winter wheat in North China Plain[J]. Plant Nutrition and Fertilizer Science, 2010, 16(5): 1049−1055 doi: 10.11674/zwyf.2010.0502
    [16] BAI H Z, TAO F L. Sustainable intensification options to improve yield potential and eco-efficiency for rice-wheat rotation system in China[J]. Field Crops Research, 2017, 211: 89−105 doi: 10.1016/j.fcr.2017.06.010
    [17] 陈天鑫, 王艳杰, 张燕, 等. 不同施氮量对冬小麦光合生理指标及产量的影响[J]. 作物杂志, 2020, (2): 88−96

    CHEN T X, WANG Y J, ZHANG Y, et al. Effects of different nitrogen rates on photosynthetic and physiological indexes and yield of winter wheat[J]. Crops, 2020, (2): 88−96
    [18] XIN Y, TAO F L. Optimizing genotype-environment-management interactions to enhance productivity and eco-efficiency for wheat-maize rotation in the North China Plain[J]. Science of the Total Environment, 2019, 654: 480−492 doi: 10.1016/j.scitotenv.2018.11.126
    [19] 刘建超, 何建强, 武文杰, 等. 水氮管理影响冬小麦品质的CERES-Wheat模型模拟[J]. 农业机械学报, 2018, 49(7): 271−278 doi: 10.6041/j.issn.1000-1298.2018.07.032

    LIU J C, HE J Q, WU W J, et al. Effect of irrigation and nitrogen fertilizer managements on winter wheat quality based on CERES-Wheat model[J]. Transactions of the Chinese Society for Agricultural Machinery, 2018, 49(7): 271−278 doi: 10.6041/j.issn.1000-1298.2018.07.032
    [20] 成林, 李彤霄, 刘荣花. 主要生育期气候变化对河南省冬小麦生长及产量的影响[J]. 中国生态农业学报, 2017, 25(6): 931−940

    CHENG L, LI T X, LIU R H. Effect of climate change on growth and yield of winter wheat in Henan Province[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 931−940
    [21] CUI Z L, ZHANG F S, CHEN X P, et al. On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test[J]. Field Crops Research, 2008, 105(1/2): 48−55
    [22] 任思洋, 张青松, 李婷玉, 等. 华北平原五省冬小麦产量和氮素管理的时空变异[J]. 中国农业科学, 2019, 52(24): 4527−4539 doi: 10.3864/j.issn.0578-1752.2019.24.008

    REN S Y, ZHANG Q S, LI T Y, et al. Spatiotemporal variation of winter wheat yield and nitrogen management in five provinces of North China Plain[J]. Scientia Agricultura Sinica, 2019, 52(24): 4527−4539 doi: 10.3864/j.issn.0578-1752.2019.24.008
    [23] ZHANG Y T, WANG H Y, LEI Q L, et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain[J]. Science of the Total Environment, 2018, 618: 1173−1183 doi: 10.1016/j.scitotenv.2017.09.183
    [24] 熊伟. CERES-Wheat模型在我国小麦区的应用效果及误差来源[J]. 应用气象学报, 2009, 20(1): 88−94 doi: 10.3969/j.issn.1001-7313.2009.01.011

    XIONG W. The performance of CERES-Wheat model in wheat planting areas and its uncertainties[J]. Journal of Applied Meteorological Science, 2009, 20(1): 88−94 doi: 10.3969/j.issn.1001-7313.2009.01.011
    [25] 张福锁, 王激清, 张卫峰, 等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报, 2008, 45(5): 915−924 doi: 10.3321/j.issn:0564-3929.2008.05.018

    ZHANG F S, WANG J Q, ZHANG W F, et al. Nutrient use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915−924 doi: 10.3321/j.issn:0564-3929.2008.05.018
    [26] XIA L L, TI C P, LI B L, et al. Greenhouse gas emissions and reactive nitrogen releases during the life-cycles of staple food production in China and their mitigation potential[J]. Science of the Total Environment, 2016, 556: 116−125 doi: 10.1016/j.scitotenv.2016.02.204
    [27] CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486−489 doi: 10.1038/nature13609
    [28] YAN X Y, AKIMOTO H, OHARA T. Estimation of nitrous oxide, nitric oxide and ammonia emissions from croplands in East, Southeast and South Asia[J]. Global Change Biology, 2003, 9(7): 1080−1096 doi: 10.1046/j.1365-2486.2003.00649.x
    [29] 刘巽浩, 陈阜. 中国农作制[M]. 北京: 中国农业出版社, 2005

    LIU X H, CHEN F. Farming Systems in China[M]. Beijing: China Agriculture Press, 2005
    [30] QIN W L, ZHANG X Y, CHEN S Y, et al. Crop rotation and N application rate affecting the performance of winter wheat under deficit irrigation[J]. Agricultural Water Management, 2018, 210: 330−339 doi: 10.1016/j.agwat.2018.08.026
    [31] 刘梦, 梁茜, 葛均筑, 等. 不同密度下施氮量对夏玉米产量和氮肥利用效率的影响[J]. 华北农学报, 2019, 34(6): 153−159 doi: 10.7668/hbnxb.20190333

    LIU M, LIANG Q, GE J Z, et al. Effects of nitrogen and density on summer maize yield and nitrogen use efficiency[J]. Acta Agriculturae Boreali-Sinica, 2019, 34(6): 153−159 doi: 10.7668/hbnxb.20190333
    [32] 李春喜, 刘晴, 邵云, 等. 有机物料还田和减施氮肥对小麦氮素利用及经济效益的影响[J]. 干旱地区农业研究, 2019, 37(6): 214−220 doi: 10.7606/j.issn.1000-7601.2019.06.31

    LI C X, LIU Q, SHAO Y, et al. Effects of organic materials returning and nitrogen fertilizer reduction on nitrogen utilization and economic benefits of wheat[J]. Agricultural Research in the Arid Areas, 2019, 37(6): 214−220 doi: 10.7606/j.issn.1000-7601.2019.06.31
    [33] 李珺, 刘双全, 仇少君, 等. 不同施氮量对典型黑土马铃薯产量、养分吸收和氮素利用率的影响[J]. 植物营养与肥料学报, 2020, 26(4): 1−8

    LI J, LIU S Q, QIU S J, et al. Effects of different nitrogen rates on potato yield and nitrogen use efficiency in a typical black soil[J]. Journal of Plant Nutrition and Fertilizer, 2020, 26(4): 1−8
    [34] 刘恩科, 梅旭荣, 龚道枝, 等. 不同生育时期干旱对冬小麦氮素吸收与利用的影响[J]. 植物生态学报, 2010, 34(5): 555−562 doi: 10.3773/j.issn.1005-264x.2010.05.009

    LIU E K, MEI X R, GONG D Z, et al. Effects of drought on N absorption and utilization in winter wheat at different developmental stages[J]. Chinese Journal of Plant Ecology, 2010, 34(5): 555−562 doi: 10.3773/j.issn.1005-264x.2010.05.009
    [35] LIU Z, YU N N, CAMBERATO J J, et al. Crop production kept stable and sustainable with the decrease of nitrogen rate in North China Plain: an economic and environmental assessment over 8 years[J]. Scientific Reports, 2019, 9(1): 19335 doi: 10.1038/s41598-019-55913-1
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  46
  • PDF下载量:  42
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-01
  • 录用日期:  2021-05-28
  • 网络出版日期:  2021-07-29
  • 刊出日期:  2021-09-06

目录

    /

    返回文章
    返回