留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强还原和淹水处理对地黄连作障碍的消减效应

古力 李烜桢 李明杰 余志坚 林梅桂 王建明 谢加唯 张重义

古力, 李烜桢, 李明杰, 余志坚, 林梅桂, 王建明, 谢加唯, 张重义. 强还原和淹水处理对地黄连作障碍的消减效应[J]. 中国生态农业学报(中英文), 2021, 29(8): 1305-1314. doi: 10.13930/j.cnki.cjea.210114
引用本文: 古力, 李烜桢, 李明杰, 余志坚, 林梅桂, 王建明, 谢加唯, 张重义. 强还原和淹水处理对地黄连作障碍的消减效应[J]. 中国生态农业学报(中英文), 2021, 29(8): 1305-1314. doi: 10.13930/j.cnki.cjea.210114
GU Li, LI Xuanzhen, LI Mingjie, YU Zhijian, LIN Meigui, WANG Jianming, XIE Jiawei, ZHANG Zhongyi. Alleviating effect of strong reduction and flooding treatment on continuous cropping obstacles in Rehmannia glutinosa[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1305-1314. doi: 10.13930/j.cnki.cjea.210114
Citation: GU Li, LI Xuanzhen, LI Mingjie, YU Zhijian, LIN Meigui, WANG Jianming, XIE Jiawei, ZHANG Zhongyi. Alleviating effect of strong reduction and flooding treatment on continuous cropping obstacles in Rehmannia glutinosa[J]. Chinese Journal of Eco-Agriculture, 2021, 29(8): 1305-1314. doi: 10.13930/j.cnki.cjea.210114

强还原和淹水处理对地黄连作障碍的消减效应

doi: 10.13930/j.cnki.cjea.210114
基金项目: 

国家自然科学基金项目 82073962

国家自然科学基金项目 82073965

国家重点研发计划课题 2017YFC1700705

福建省自然科学基金项目 2020J01531

福建农林大学杰出青年基金 Kxjq20010

详细信息
    作者简介:

    古力, 主要研究方向为中药资源可持续利用。E-mail: guli5101@163.com

    通讯作者:

    张重义, 主要研究方向为中药资源可持续利用。E-mail: hauzzy@163.com

  • 中图分类号: R282.2

Alleviating effect of strong reduction and flooding treatment on continuous cropping obstacles in Rehmannia glutinosa

Funds: 

the National Natural Science Foundation of China 82073962

the National Natural Science Foundation of China 82073965

the National Key Research and Development Program of China 2017YFC1700705

the Natural Science Foundation of Fujian Province 2020J01531

the Distinguished Youth Fund of Fujian Agriculture and Forestry University Kxjq20010

More Information
  • 摘要: 地黄是我国著名的大宗中药材,但是在其栽培过程中存在严重的连作障碍现象,至今尚未得到有效解决。为了开发地黄连作障碍消减技术,本文研究了强还原和淹水处理对连作地黄关键生长指标,连作土壤理化性质、细菌群落结构及其生物学功能的影响。结果表明,强还原和淹水处理提高了连作土壤中瘤胃球菌属和肠球菌属等厌氧异养型细菌的相对丰度,形成了富含Fe2+和有机酸等抑制病原菌的土壤环境;其中,强还原处理后土壤中Fe2+和有机酸含量比连作对照分别提高4.73倍和3.54倍,淹水处理后土壤中Fe2+和有机酸含量比连作对照分别提高1.65倍和1.12倍。同时,假单胞菌属等益生菌群落在处理后的土壤中迅速重建。然而,强还原和淹水处理对土壤理化性质和细菌群落结构的影响存在一定差异,二者对地黄连作障碍的消减效果也有所不同:添加秸秆等有机物的强还原处理后连作土壤的有机质含量、碱解氮、速效磷和速效钾含量均有所提高,而淹水处理效果不明显;淹水处理的细菌香农指数和Chao1指数均有所下降,强还原处理的细菌香农指数有所下降,而Chao1指数有所上升,且细菌群落组成的变化也有所不同。强还原和淹水处理均可有效提高连作地黄的存活率和产量,并且以强还原处理效果较优,其存活率和产量比连作对照分别提高1.94倍和4.04倍。因此,强还原和淹水处理能够改善连作土壤的理化性质及其微生物群落结构,达到消减地黄连作障碍的效果,有效提高连作地黄的存活率和产量。
  • 图  1  强还原和淹水处理对连作地黄存活率、块根鲜重、产量和梓醇含量的影响

    CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。图中不同小写字母表示不同处理在P < 0.05水平差异显著。

    Figure  1.  Effects of strong reduction and flooding on survival rate, root fresh weight, yield and catalpol content of the continuously cropped Rehmannia glutinosa

    CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.

    图  2  强还原和淹水处理对地黄连作土壤细菌群落多样性的影响

    CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。图中不同小写字母表示不同处理在P < 0.05水平差异显著。

    Figure  2.  Effects of strong reduction and flooding on bacterial community diversity of continuous cropping soil of Rehmannia glutinosa

    CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively. Different lowercase letters indicate significant differences among different treatments at P < 0.05 level.

    图  3  强还原和淹水处理下地黄连作土壤细菌群落的主成分分析及系统发育树构建

    CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。

    Figure  3.  Principal component analysis and phylogenetic tree construction of soil bacterial communities of continuous cropped Rehmannia glutinosa under strong reduction and flooding treatments

    CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively.

    图  4  强还原和淹水处理对地黄连作土壤细菌群落组成的影响

    CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。

    Figure  4.  Effects of strong reduction and flooding on the composition of bacterial community of continuous cropping soil of Rehmannia glutinosa

    CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively.

    图  5  强还原和淹水处理对地黄连作土壤细菌群落功能的影响

    CK、FD和SRA分别表示连作对照、连作地淹水处理和连作地强还原处理。

    Figure  5.  Effects of strong reduction and flooding on the function of bacterial community of continuous cropping soil of Rehmannia glutinosa

    CK, FD and SRA denote continuous cropping control, flooding of continuously cropping soil and strong reduction of continuously cropping soil, respectively.

    表  1  强还原和淹水处理对地黄连作土壤化学性质的影响

    Table  1.   Effects of strong reduction and flooding on chemical properties of continuous cropping soil of Rehmannia glutinosa

    指标Indicator 连作对照
    Continuous cropping
    淹水处理
    Flooding of continuously cropping soil
    强还原处理
    Strong reduction of continuously cropping soil
    有机质含量Organic matter content (g·kg–1) 20.33±1.84b 23.87±6.52ab 32.50±5.01a
    碱解氮含量Alkaline hydrolysis nitrogen content (g·kg–1) 0.25±0.04b 0.26±0.05b 0.39±0.04a
    速效磷含量Available phosphorus content (mg·kg–1) 23.93±6.66b 13.70±1.65c 27.60±4.62a
    速效钾含量Available potassium content (mg·kg–1) 152±16.50ab 134±3.46b 193±20.70a
    Fe2+含量Fe2+ content (cmol·kg–1) 0.32±0.05c 0.85±0.12b 1.83±0.23a
    有机酸含量Organic acid content (cmol·kg–1) 0.36±0.05c 0.76±0.21b 1.64±0.26a
    同行不同小写字母表示不同处理在P < 0.05水平差异显著。Different lowercase letters in the same line indicate significant differences among different treatments at P < 0.05 level.
    下载: 导出CSV
  • [1] ZHANG B, LI X Z, WANG F Q, et al. Assaying the potential autotoxins and microbial community associated with Rehmannia glutinosa replant problems based on its 'autotoxic circle'[J]. Plant and Soil, 2016, 407(1/2): 307-322 doi: 10.1007/s11104-016-2885-2
    [2] CHEN A G, GU L, LI M J, et al. Identification of Rehmannia glutinosa L. NB-ARC family proteins and their typical changes under consecutive monoculture stress[J]. Acta Physiologiae Plantarum, 2018, 40(5): 95 doi: 10.1007/s11738-018-2672-1
    [3] 张重义, 李明杰, 陈新建, 等. 地黄连作障碍机制的研究进展与消减策略[J]. 中国现代中药, 2013, 15(1): 38-44 doi: 10.3969/j.issn.1673-4890.2013.01.009

    ZHANG Z Y, LI M J, CHEN X J, et al. Research advancement and control strategy of consecutive monoculture problem of Rehmannia glutinosa L. [J]. Modern Chinese Medicine, 2013, 15(1): 38-44 doi: 10.3969/j.issn.1673-4890.2013.01.009
    [4] 陈爱国, 李明杰, 张宝, 等. 连作介导的药用植物及其根际微生态灾变机制研究展望[J]. 中国现代中药, 2016, 18(2): 239-245 https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201602026.htm

    CHEN A G, LI M J, ZHANG B, et al. Review on catastrophe mechanism of medicinal plant and its rhizosphere microecosystem mediated by consecutive monoculture[J]. Modern Chinese Medicine, 2016, 18(2): 239-245 https://www.cnki.com.cn/Article/CJFDTOTAL-YJXX201602026.htm
    [5] 郭兰萍, 周良云, 莫歌, 等. 中药生态农业——中药材GAP的未来[J]. 中国中药杂志, 2015, 40(17): 3360-3366 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201517009.htm

    GUO L P, ZHOU L Y, MO G, et al. Ecological agriculture: future of Good Agriculture Practice of Chinese materia medica[J]. China Journal of Chinese Materia Medica, 2015, 40(17): 3360-3366 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201517009.htm
    [6] 雷锋杰, 张爱华, 张秋菊, 等. 人参、西洋参化感作用研究进展[J]. 中国中药杂志, 2010, 35(17): 2221-2226 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201017000.htm

    LEI F J, ZHANG A H, ZHANG Q J, et al. Advances in research on allelopathy of ginseng and American ginseng[J]. China Journal of Chinese Materia Medica, 2010, 35(17): 2221-2226 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201017000.htm
    [7] 焦晓林, 杜静, 高微微. 西洋参根残体对自身生长的双重作用[J]. 生态学报, 2012, 32(10): 3128-3135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201210019.htm

    JIAO X L, DU J, GAO W W. Autotoxicity and promoting: dual effects of root litter on American ginseng growth[J]. Acta Ecologica Sinica, 2012, 32(10): 3128-3135 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201210019.htm
    [8] 孙雪婷, 李磊, 龙光强, 等. 三七连作障碍研究进展[J]. 生态学杂志, 2015, 34(3): 885-893 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201503039.htm

    SUN X T, LI L, LONG G Q, et al. The progress and prospect on consecutive monoculture problems of Panax notoginseng[J]. Chinese Journal of Ecology, 2015, 34(3): 885-893 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ201503039.htm
    [9] 杨莉, 任晶, 韩梅, 等. 人参根系分泌物中酸性物质的化感活性与互作效应[J]. 吉林农业大学学报, 2017, 39(5): 570-574 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201705011.htm

    YANG L, REN J, HAN M, et al. Allelopathy and interaction of acidic materials in ginseng root exudates[J]. Journal of Jilin Agricultural University, 2017, 39(5): 570-574 https://www.cnki.com.cn/Article/CJFDTOTAL-JLNY201705011.htm
    [10] XIN A Y, LI X Z, JIN H, et al. The accumulation of reactive oxygen species in root tips caused by autotoxic allelochemicals-A significant factor for replant problem of Angelica sinensis (Oliv. ) Diels[J]. Industrial Crops and Products, 2019, 138: 111432 doi: 10.1016/j.indcrop.2019.05.081
    [11] BULGARELLI D, ROTT M, SCHLAEPPI K, et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota[J]. Nature, 2012, 488(7409): 91-95 doi: 10.1038/nature11336
    [12] LAPIN D, VAN DEN ACKERVEKEN G. Susceptibility to plant disease: more than a failure of host immunity[J]. Trends in Plant Science, 2013, 18(10): 546-554 doi: 10.1016/j.tplants.2013.05.005
    [13] HAICHAR F E Z, SANTAELLA C, HEULIN T, et al. Root exudates mediated interactions belowground[J]. Soil Biology and Biochemistry, 2014, 77: 69-80 doi: 10.1016/j.soilbio.2014.06.017
    [14] CHEN A G, GU L, XU N, et al. NB-LRRs not responding consecutively to Fusarium oxysporum proliferation caused replant disease formation of Rehmannia glutinosa[J]. International Journal of Molecular Sciences, 2019, 20(13): E3203 doi: 10.3390/ijms20133203
    [15] SCHMIDT J E, BOWLES T M, GAUDIN A C M. Using ancient traits to convert soil health into crop yield: impact of selection on maize root and rhizosphere function[J]. Frontiers in Plant Science, 2016, 7: 373 http://www.ncbi.nlm.nih.gov/pubmed/27066028?utm_source=research-news&utm_medium=referral&utm_campaign=research-news
    [16] SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25-41 doi: 10.1016/j.tplants.2017.09.003
    [17] 蔡祖聪, 张金波, 黄新琦, 等. 强还原土壤灭菌防控作物土传病的应用研究[J]. 土壤学报, 2015, 52(3): 469-476 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503001.htm

    CAI Z C, ZHANG J B, HUANG X Q, et al. Application of reductive soil disinfestation to suppress soil-borne pathogens[J]. Acta Pedologica Sinica, 2015, 52(3): 469-476 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503001.htm
    [18] MOMMA N, KOBARA Y, UEMATSU S, et al. Development of biological soil disinfestations in Japan[J]. Applied Microbiology and Biotechnology, 2013, 97(9): 3801-3809 doi: 10.1007/s00253-013-4826-9
    [19] 李云龙, 王宝英, 常亚锋, 等. 土壤强还原处理对三七连作障碍因子及再植三七生长的影响[J]. 土壤学报, 2019, 56(3): 703-715 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903019.htm

    LI Y L, WANG B Y, CHANG Y F, et al. Effects of reductive soil disinfestation on obstacles and growth of replant seedlings in Sanqi ginseng mono-cropped soils[J]. Acta Pedologica Sinica, 2019, 56(3): 703-715 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201903019.htm
    [20] 顾志光, 马艳, 安霞, 等. 麦秸淹水处理对连作土壤性状和辣椒疫病田间防控效果的影响[J]. 农业环境科学学报, 2014, 33(9): 1762-1769 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201409015.htm

    GU Z G, MA Y, AN X, et al. Effects of wheat straw with flooding on soil properties and Phytophthora blight control in continuous chili pepper cropping field[J]. Journal of Agro-Environment Science, 2014, 33(9): 1762-1769 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201409015.htm
    [21] 耿建建, 赵艳, 王蓓蓓, 等. 稻秆淹水处理对高发病香蕉园土壤理化性状及病原菌的影响[J]. 江苏农业科学, 2017, 45(3): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201703024.htm

    GENG J J, ZHAO Y, WANG B B, et al. Effect of rice straw flooding on soil physical and chemical properties and pathogenic bacteria in high-incidence banana garden[J]. Jiangsu Agricultural Sciences, 2017, 45(3): 87-90 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNY201703024.htm
    [22] 王太霞, 李景原, 胡正海. 怀地黄营养器官中梓醇的积累动态[J]. 中草药, 2004, 35(2): 208-209 doi: 10.3321/j.issn:0253-2670.2004.02.038

    WANG T X, LI J Y, HU Z H. Accumulation trends of catalpol in vegetative organs of Rehmannia glutinosa var. huechingensis[J]. Chinese Traditional and Herbal Drugs, 2004, 35(2): 208-209 doi: 10.3321/j.issn:0253-2670.2004.02.038
    [23] 王鑫. 河南省特色农产品四大怀药的出口现状、存在问题与对策[J]. 江苏农业科学, 2013, 41(7): 400-402 doi: 10.3969/j.issn.1002-1302.2013.07.144

    WANG X. Status, existing problems and countermeasures of export of the four major Huai medicines of Henan Province[J]. Jiangsu Agricultural Sciences, 2013, 41(7): 400-402 doi: 10.3969/j.issn.1002-1302.2013.07.144
    [24] 李明杰, 冯法节, 张宝, 等. 多元组学背景下地黄连作障碍形成的分子机制研究进展[J]. 中国中药杂志, 2017, 42(3): 413-419 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201703002.htm

    LI M J, FENG F J, ZHANG B, et al. Advances on molecular mechanisms of Rehmannia glutinosa consecutive monoculture problem formation in multi-omics era[J]. China Journal of Chinese Materia Medica, 2017, 42(3): 413-419 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201703002.htm
    [25] LI M J, YANG Y H, FENG F J, et al. Differential proteomic analysis of replanted Rehmannia glutinosa roots by iTRAQ reveals molecular mechanisms for formation of replant disease[J]. BMC Plant Biology, 2017, 17(1): 1-21 doi: 10.1186/s12870-016-0951-9
    [26] XIE Z M, YANG C Y, CHEN A G, et al. Identification and expression analysis of leucine-rich repeat receptor-like kinase family reveals the roles of resistance proteins during formation of replant disease in Rehmannia glutinosa Libosch[J]. International Journal of Agriculture and Biology, 2019, 22(3): 487-496 http://www.sciencedirect.com/science/article/pii/S0147651318309989
    [27] GU L, WU Y F, LIN M G, et al. Identification of mapk cascade genes response to consecutive monoculture stress in Rehmannia glutinosa[J]. International Journal of Agriculture and Biology, 2020, 24: 591-602
    [28] 茹瑞红, 李烜桢, 黄晓书, 等. 食用菌菌渣缓解地黄连作障碍的研究[J]. 中国中药杂志, 2014, 39(16): 3036-3041 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201416008.htm

    RU R H, LI X Z, HUNAG X S, et al. Effect of substrate of edible mushroom on continuously cropping obstacle of Rehmannia glutinosa[J]. China Journal of Chinese Materia Medica, 2014, 39(16): 3036-3041 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZY201416008.htm
    [29] 胡展育, 游春梅, 张铁. 三七连作障碍的探讨[J]. 文山学院学报, 2011, 24(3): 6-11 https://www.cnki.com.cn/Article/CJFDTOTAL-WSSZ201103004.htm

    HU Z Y, YOU C M, ZHANG T. Discussing the obstacles caused by continuous notoginseng cropping[J]. Journal of Wenshan University, 2011, 24(3): 6-11 https://www.cnki.com.cn/Article/CJFDTOTAL-WSSZ201103004.htm
    [30] 古力, 牛苗苗, 郑红艳, 等. 连作地黄的植株形态生理效应研究[J]. 中药材, 2013, 36(5): 691-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201305003.htm

    GU L, NIU M M, ZHENG H Y, et al. Effect of continuous cropping of Rehmannia on its morphological and physiological characteristics[J]. Journal of Chinese Medicinal Materials, 2013, 36(5): 691-695 https://www.cnki.com.cn/Article/CJFDTOTAL-ZYCA201305003.htm
    [31] MOMMA N, KOBARA Y, MOMMA M. Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation[J]. Journal of General Plant Pathology, 2011, 77(6): 331-335 doi: 10.1007/s10327-011-0336-8
    [32] HUANG X Q, WEN T, ZHANG J B, et al. Toxic organic acids produced in biological soil disinfestation mainly caused the suppression of Fusarium oxysporum f. sp. cubense[J]. BioControl, 2015, 60(1): 113-124 doi: 10.1007/s10526-014-9623-6
    [33] 李振方, 杨燕秋, 吴林坤, 等. 地黄强致病型病原菌的分离及其专化型鉴定[J]. 中国生态农业学报, 2013, 21(11): 1426-1433 doi: 10.3724/SP.J.1011.2013.30313

    LI Z F, YANG Y Q, WU L K, et al. Isolation of highly pathogenic pathogens and identification of formae speciales of Rehmannia glutinosa L. [J]. Chinese Journal of Eco-Agriculture, 2013, 21(11): 1426-1433 doi: 10.3724/SP.J.1011.2013.30313
    [34] BAKKER M G, MANTER D K, SHEFLIN A M, et al. Harnessing the rhizosphere microbiome through plant breeding and agricultural management[J]. Plant and Soil, 2012, 360(1/2): 1-13 doi: 10.1007/s11104-012-1361-x
    [35] METCALF J L, XU Z Z, WEISS S, et al. Microbial community assembly and metabolic function during mammalian corpse decomposition[J]. Science, 2016, 351(6269): 158-162 doi: 10.1126/science.aad2646
    [36] OLANREWAJU O S, AYANGBENRO A S, GLICK B R, et al. Plant health: feedback effect of root exudates-rhizobiome interactions[J]. Applied Microbiology and Biotechnology, 2019, 103(3): 1155-1166 doi: 10.1007/s00253-018-9556-6
    [37] 金相灿, 崔哲, 王圣瑞. 连续淹水培养条件下沉积物和土壤的氮素矿化过程[J]. 土壤通报, 2006, 37(5): 909-915 doi: 10.3321/j.issn:0564-3945.2006.05.018

    JIN X C, CUI Z, WANG S R. Nitrogen mineralization processes of sediments and soil under continuously waterlogged incubation conditions[J]. Chinese Journal of Soil Science, 2006, 37(5): 909-915 doi: 10.3321/j.issn:0564-3945.2006.05.018
    [38] 杨敏芳, 朱利群, 韩新忠, 等. 耕作措施与秸秆还田对稻麦两熟制农田土壤养分、微生物生物量及酶活性的影响[J]. 水土保持学报, 2013, 27(2): 272-275, 281 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201302054.htm

    YANG M F, ZHU L Q, HAN X Z, et al. Effects of tillage and crop residues incorporation on soil nutrient, microbial biomass and enzyme activity under rice-wheat rotation[J]. Journal of Soil and Water Conservation, 2013, 27(2): 272-275, 281 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201302054.htm
    [39] MOWLICK S, INOUE T, TAKEHARA T, et al. Changes and recovery of soil bacterial communities influenced by biological soil disinfestation as compared with chloropicrin-treatment[J]. AMB Express, 2013, 3(1): 1-12 doi: 10.1186/2191-0855-3-1
    [40] LATHAM M J, WOLIN M J. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium[J]. Applied and Environmental Microbiology, 1977, 34(3): 297-301 doi: 10.1128/aem.34.3.297-301.1977
    [41] HOLDEMAN L V, MOORE W E C. New genus, Coprococcus, twelve new species, and emended descriptions of four previously described species of bacteria from human feces[J]. International Journal of Systematic Bacteriology, 1974, 24(2): 260-277 doi: 10.1099/00207713-24-2-260
    [42] BERGSMA-VLAMI M, PRINS M E, RAAIJMAKERS J M. Influence of plant species on population dynamics, genotypic diversity and antibiotic production in the rhizosphere by indigenous Pseudomonas spp[J]. FEMS Microbiology Ecology, 2005, 52(1): 59-69 doi: 10.1016/j.femsec.2004.10.007
  • 加载中
图(5) / 表(1)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  25
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 录用日期:  2021-05-08
  • 刊出日期:  2021-08-01

目录

    /

    返回文章
    返回