留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氮肥深施对太湖地区稻田氨挥发影响

王书伟 林静慧 吴正贵 陈吉 潘云俊 盛雪雯

王书伟, 林静慧, 吴正贵, 陈吉, 潘云俊, 盛雪雯. 氮肥深施对太湖地区稻田氨挥发影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1−11 doi: 10.13930/j.cnki.cjea.210119
引用本文: 王书伟, 林静慧, 吴正贵, 陈吉, 潘云俊, 盛雪雯. 氮肥深施对太湖地区稻田氨挥发影响[J]. 中国生态农业学报(中英文), 2021, 29(11): 1−11 doi: 10.13930/j.cnki.cjea.210119
WANG S W, LIN J H, WU Z G, CHEN J, PAN Y J, SHENG X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1−11 doi: 10.13930/j.cnki.cjea.210119
Citation: WANG S W, LIN J H, WU Z G, CHEN J, PAN Y J, SHENG X W. The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1−11 doi: 10.13930/j.cnki.cjea.210119

氮肥深施对太湖地区稻田氨挥发影响

doi: 10.13930/j.cnki.cjea.210119
基金项目: 国家重点研发计划项目(2018YFC0213300)、国家自然科学基金项目(41807104)、苏州市农业科技创新项目(SNG2018099和SNG2018097)和常熟市农业科技创新项目(CN202004-3)资助
详细信息
    通讯作者:

    王书伟,主要从事土壤氮素转化过程及其生态环境效应研究。E-mail: swwang@issas.ac.cn

  • 中图分类号: S143.1

The effects of nitrogen fertilizer deep placement on the ammonia volatilization from paddy fields in the Taihu Lake region of China

Funds: This study was supported by the National Key R&D Program of China (2018YFC0213300), the National Natural Science Foundation of China (41807104), Suzhou Agricultural Science and Technology Innovation Project (SNG2018099, SNG2018097) and Changshu Agricultural Science and Technology Innovation Project (CN202004-3)
More Information
  • 摘要: NH3挥发是稻田氮素损失的重要途径之一, 基于基肥期尿素氮肥深施、追肥期用缓释肥替代尿素和配施脲酶抑制剂对太湖地区水稻生长季NH3挥发影响少有报道。为此, 本研究共设置了7个原位试验处理: 1)空白处理, 不施氮肥(CK); 2)当地常规氮肥表施处理, 施氮量300 kg∙hm−2 (SN300); 3)减氮10%, 氮肥表施处理, 施氮量为270 kg∙hm−2 (SN270); 4)减氮10%+基肥氮深施+追肥表施尿素处理(DN270); 5)减氮10%+基肥氮深施+追肥表施尿素+脲酶抑制剂(DN270+UI); 6)减氮10%+基肥氮深施+追肥表施缓释肥(DN270+SR); 7)减氮10%+基肥深施+追肥表施缓释肥+脲酶抑制剂(DN270+SR+UI)。与常规尿素表施SN300处理NH3累积排放量相比, 采用基肥深施可降低78.2%~85.2%的基肥期NH3排放量, 基肥减氮深施且追肥期配施脲酶抑制剂(DN270+UI处理)可降低30.4%的分蘖肥期NH3排放量和25.3%的穗肥期NH3排放量, 基肥减氮深施且水稻追肥期用缓释肥替代尿素(DN270+SR处理)可降低36.4%的分蘖肥期NH3排放量和28.1%的穗肥期NH3排放量。整个水稻生长季NH3累积排放量大小为SN300>SN270>DN270>DN270+UI>DN270+SR>DN270+SR+UI, 其中DN270+SR+UI处理下NH3排放量最小, 与SN300处理相比, 可显著降低50.9%的NH3累积排放量(P<0.05)。除CK外, 各处理间水稻产量差异不显著, 单位水稻产量NH3排放强度以DN270+SR+UI处理下最小, 与SN300处理相比, 可显著降低52.5%单位水稻产量氨排放强度(P<0.05)。综合考虑经济生态环境效益, 在南方典型稻田中采用基肥期尿素深施可有效地降低氨挥发量, 是一种值得推广的稻田氨减排模式, 在追肥期用缓释肥替代尿素同时配施脲酶抑制剂可进一步提高NH3减排效果。
  • 图  1  2020年水稻生长期平均气温和降雨量(a)和土壤表层(0~10 cm)体积含水量及平均土壤温度(b)

    Figure  1.  Daily precipitation and temperature (a) and soil temperature and soil volume water content of soil layers of 0−10 cm (b) in rice growing seasons of 2020

    图  2  不同施肥处理下水稻生长季氨挥发通量

    图中黑色箭头为施肥日期。CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1。

    Figure  2.  Dynamics of NH3 volatilization fluxes during the rice growing seasons of 2020 under different fertilization treatments

    The down arrow indicates the N application event. The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI were shown in the table 1.

    图  3  不同施肥处理下水稻NH3排放系数(A)和单位水稻产量NH3排放强度(B)

    CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1; 不同小写字母表示不同处理间差异达 P<0.05显著水平。

    Figure  3.  NH3 emission factors (A) and yield-scale NH3 emission intensities (B) of rice under different fertilization treatments

    The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI are shown in the table 1. Different lowercase letters indicate significant differences at P<0.05 level among treatments.

    图  4  不同施肥处理下水稻生长期间田面水pH和NH4+-N、NO3-N、可溶性有机碳浓度动态变化(CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1)

    图中黑色箭头为施肥日期

    Figure  4.  Dynamics of pH and concentrations of NH4+-N, NO3-N, and dissolved organic carbon (DOC) of surfact water of paddy field in different sampling days under different fertilization treatments (The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI are shown in the table 1)

    The down arrow indicates the N application event

    表  1  不同处理水稻生长期氮肥类型和施肥量

    Table  1.   Types and rate of nitrogen fertilizer application during rice growing season

    处理
    Treatment
    肥料类型和施肥量 Fertilizer type and rate [kg(N)∙hm−2]
    基肥
    Basal fertilization
    分蘖肥
    Tillering topdressing
    穗肥
    Heading topdressing
    不施氮肥 Control (CK)
    当地常规氮肥表施
    Local conventional nitrogen fertilizer broadcasting application (SN300)
    尿素
    Urea 180 kg(N)∙hm−2
    尿素
    Urea 60 kg(N)∙hm−2
    尿素
    Urea 60 kg(N)∙hm−2
    减氮10%+氮肥表施
    10% nitrogen reduction and nitrogen fertilizer broadcasting application (SN270)
    尿素
    Urea 162 kg(N)∙hm−2
    尿素
    Urea 54 kg(N)∙hm−2
    尿素
    Urea 54 kg(N)∙hm−2
    减氮10%+基肥氮深施+氮肥追肥表施
    10% nitrogen reduction + basal nitrogen fertilizer deep placement + nitrogen fertilizer broadcasting of topdressing at tiller and heading stages (DN270)
    尿素
    Urea 162 kg(N)∙hm−2
    尿素
    Urea 54 kg(N)∙hm−2
    尿素
    Urea 54 kg(N) hm−2
    减氮10%+基肥氮深施+氮肥追肥表施+脲酶抑制剂
    10% nitrogen reduction + basal nitrogen fertilizer deep placement + nitrogen fertilizer broadcasting of topdressing at tiller and heading stages with urease inhibitor (DN270+UI)
    尿素
    Urea 162 kg(N)∙hm−2
    尿素+ n-丁基硫代磷酰三胺
    Urea + NBPT 54 kg(N)∙hm−2
    尿素+ n-丁基硫代磷酰三胺
    Urea + NBPT 54 kg(N)∙hm−2
    减氮10%+基肥氮深施+追肥表施缓释肥
    10% nitrogen reduction + basal nitrogen fertilizer deep placemen + slow-release nitrogen fertilizer broadcasting of topdressing at tiller and heading stages (DN270+SR)
    尿素
    Urea 162 kg(N)∙hm−2
    缓释尿素
    Slow-release urea
    54 kg(N)·hm−2
    缓释尿素
    Slow-release urea
    54 kg(N)·hm−2
    减氮10%+基肥氮深施+追肥表施缓释肥+脲酶抑制剂
    10% nitrogen reduction + basal fertilizer urea deep placement + slow-release nitrogen fertilizer broadcasting of topdressing at tiller and heading stages with urease inhibitor (DN270+SR+UI)
    尿素
    Urea 162 kg(N) hm−2
    缓释尿素+ n-丁基硫代磷酰三胺
    Slow-release urea + NBPT
    54 kg(N)·hm−2
    缓释尿素+ n-丁硫代磷酰三胺
    Slow-release urea + NBPT
    54 kg(N)·hm−2
    下载: 导出CSV

    表  2  不同施肥处理下水稻收获期表层土壤(0~20 cm)理化性质

    Table  2.   Physical and chemical properties of the topsoil (0−20 cm) under different fertilization treatments at rice harvest in 2020

    处理
    Treatment
    pH (H2O)有机碳
    Soil organic carbon (g∙kg−1)
    全氮
    Total nitrogen (g∙kg−1)
    碳氮比
    C/N
    铵态氮
    NH${}_{4}^{+}\text{-}$N (mg∙kg−1)
    硝态氮
    NO3 N (mg∙kg−1)
    可溶性有机碳
    DOC (mg∙kg−1)
    CK6.27±0.17a22.75±2.25a2.58±0.09a8.79±0.55a1.19±0.50a2.22±0.40ab439.0±246.9a
    SN3006.26±0.02a22.75±0.83a2.53±0.23a9.03±0.51a1.33±0.78a3.19±1.60b374.5±180.3a
    SN2706.18±0.03a23.71±1.24a2.63±0.09a9.02±0.40a1.51±0.75a2.13±0.19ab360.7±81.6a
    DN2706.28±0.25a22.24±1.11a2.59±0.07a8.60±0.39a1.14±0.58a1.97±0.48ab301.9±5.3a
    DN270+UI6.23±0.12a23.74±1.66a2.61±0.06a9.11±0.58a0.84±0.23a2.17±0.34ab277.4±35.1a
    DN270+SR6.33±0.35a23.01±2.87a2.62±0.16a8.77±0.60a1.30±0.98a1.56±0.53a299.2±25.5a
    DN270+SR+UI6.33±0.15a24.93±2.33a2.75±0.13a9.06±0.48a1.34±0.50a1.28±0.15a307.2±21.0a
      表中同列数据不同小写字母表示同一年份不同处理间差异达P<0.05显著水平。CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1。Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments. The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI are shown in the table 1.
    下载: 导出CSV

    表  3  不同施肥处理下水稻产量、氮肥利用率和NH3挥发通量

    Table  3.   Grain yields, nitrogen use efficiency and NH3 volatilization fluxes of rice under different fertilization treatments

    处理 TreatmentCKSN300SN270DN270DN270+UIDN270+SRDN270+SR+UI
    产量 Yield (t∙hm−2)8.1±1.0a10.4±0.1b10.7±0.9b10.3±0.8b10.0±0.5b10.4±0.5b10.7±0.5b
    作物籽粒吸氮量 Rice grain N uptake [kg(N)∙hm−2]63.5±8.1a96.4±0.9b100.1±6.8b107.1±4.7bc114.4±0.4c131.0±7.8dc118.2±12.4c
    氮素农学利用率 N agronomic use efficiency (kg∙kg−1)7.59±0.43a9.62±3.47a8.38±3.12a7.08±2.03a8.73±1.79a9.55±1.78a
    籽粒氮吸收利用率
    Grain N use efficiency (%)
    11.0±0.3a13.6±2.5a16.2±1.7ab18.9±0.1b25.0±2.9bc20.3±4.6b
    氨挥发通量
    Ammonia volatilization flux
    [kg(N)∙hm−2∙d−1]
    0.066±0.007a0.780±0.009e0.619±0.015d0.479±0.018c0.467±0.037c0.434±0.033bc0.382±0.060b
      表中同列数据不同小写字母表示同一年份不同处理间差异达P<0.05显著水平。CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1。Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments. The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI are shown in the table 1.
    下载: 导出CSV

    表  4  不同施肥处理下水稻不同施肥期NH3累积排放量及减排率

    Table  4.   Cumulative NH3 emissions and reduction rates in different fertilizer application periods of rice under different fertilization treatments

    处理
    Treatment
    基肥
    Basal fertilization
    分蘖肥
    Tillering topdressing
    穗肥
    Heading topdressing
    水稻生长季
    Rice growing season
    NH3累积
    损失量
    Cumulative NH3
    emission
    [kg(N)∙hm−2]
    NH3
    减排率1)
    Reduction rate of
    NH3 emission (%)
    NH3累积
    损失量
    Cumulative NH3 emission
    [kg(N)∙hm−2]
    NH3
    减排率
    Reduction rate of NH3 emission (%)
    NH3累积
    损失量
    Cumulative NH3 emission
    [kg(N)∙hm−2]
    NH3
    减排率
    Reduction rate of NH3 emission (%)
    NH3累积
    损失量
    Cumulative NH3 emission
    [kg(N)∙hm−2]
    NH3
    减排率
    Reduction rate of NH3 emission (%)
    CK1.79±0.31a2.82±0.58a4.24±0.22a8.85±0.90a
    SN30023.82±1.18d41.88±5.87d39.54±6.74d105.24±1.20e
    SN27019.88±2.14c16.531.85±5.34c23.931.88±3.69c19.483.61±2.03d20.6
    DN2705.20±0.86b78.230.04±2.21c28.329.47±0.62bc25.564.71±2.48c38.5
    DN270+UI4.35±0.80b81.729.15±4.52c30.429.55±1.96bc25.363.05±5.02c40.1
    DN270+SR3.53±0.39b85.226.62±2.79bc36.428.43±1.91bc28.158.57±4.51cb44.3
    DN270+SR+
    UI
    4.36±1.30b81.722.32±4.13b46.724.96±5.22b36.951.63±8.10b50.9
      1)不同施肥期SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理NH3减排率为与SN300处理相比较的结果。表中同列数据不同小写字母表示不同处理间差异达P<0.05显著水平。CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1。The reduction rate of NH3 emission of SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI in different fertilization periods is compared with that of SN300. Different lowercase letters in the same column indicate significant differences at P<0.05 level among treatments. The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI were shown in the table 1.
    下载: 导出CSV

    表  5  不同施肥处理下水稻生长期间NH3排放通量与田面水NO3-N、NH4+-N、pH和可溶性有机碳(DOC)相关性分析

    Table  5.   Correlations between NH3 flux from rice paddy fields and pH and concentraions of NO3-N, NH4+-N, and dissolved organic carbon (DOC) of surface water in rice growing season under different fertilization treatments

    处理 Treatment样本数
    Sample number
    NH4+-NNO3-NpHDOC
    CK600.246–0.074–0.0980.105
    SN30060 0.812** 0.012 0.294** 0.654**
    SN27060 0.842** 0.110 0.434** 0.625**
    DN27060 0.759** 0.018 0.446** 0.565**
    DN270+UI60 0.646** 0.006 0.445** 0.694**
    DN270+SR60 0.514**–0.082 0.285* 0.642**
    DN270+SR+UI60 0.389**–0.044 0.345** 0.641**
    All420 0.737** 0.077 0.367** 0.636**
      “**”和“*”分别表示在P<0.01和P<0.05水平显著相关。CK、SN300、SN270、DN270、DN270+UI、DN270+SR和DN270+SR+UI处理措施见表1。“**” and “*” indicate significant correlation at P<0.01 and P<0.05 levels, respectively. The treatments of CK, SN300, SN270, DN270, DN270+UI, DN270+SR and DN270+SR+UI are shown in the table 1.
    下载: 导出CSV
  • [1] KANG Y N, LIU M X, SONG Y, et al. High-resolution ammonia emissions inventories in China from 1980 to 2012[J]. Atmospheric Chemistry and Physics, 2016, 16(4): 2043−2058 doi: 10.5194/acp-16-2043-2016
    [2] 王书伟, 廖千家骅, 胡玉婷, 等. 我国NH3-N排放量及空间分布变化初步研究[J]. 农业环境科学学报, 2009, 28(3): 619−626 doi: 10.3321/j.issn:1672-2043.2009.03.037

    WANG S W, LIAO Q J H, HU Y T, et al. A preliminary inventory of NH3-N emission and its temporal and spatial distribution of China[J]. Journal of Agro-Environment Science, 2009, 28(3): 619−626 doi: 10.3321/j.issn:1672-2043.2009.03.037
    [3] PENG S B, TANG Q Y, ZOU Y B. Current status and challenges of rice production in China[J]. Plant Production Science, 2009, 12(1): 3−8 doi: 10.1626/pps.12.3
    [4] FILLERY I R P, VLEK P L G. Reappraisal of the significance of ammonia volatilization as an N loss mechanism in flooded rice fields[M]//DETTA S K, PATRICK W H. Nitrogen Economy of Flooded Rice Soils. Developments in Plant and Soil Sciences. Dordreche: Springer Martinus Nijhoff Publishers, 1986: DOI: 10.1007/978-94-009-4428-2_4.
    [5] WANG S W, SHAN J, XIA Y Q, et al. Different effects of biochar and a nitrification inhibitor application on paddy soil denitrification: a field experiment over two consecutive rice-growing seasons[J]. Science of the Total Environment, 2017, 593/594: 347−356 doi: 10.1016/j.scitotenv.2017.03.159
    [6] ZHAO X, XIE Y X, XIONG Z Q, et al. Nitrogen fate and environmental consequence in paddy soil under rice-wheat rotation in the Taihu Lake Region, China[J]. Plant and Soil, 2009, 319(1/2): 225−234
    [7] JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. PNAS, 2009, 106(9): 3041−3046 doi: 10.1073/pnas.0813417106
    [8] 王书伟, 颜晓元, 单军, 等. 利用膜进样质谱法测定不同氮肥用量下反硝化氮素损失[J]. 土壤, 2018, 50(4): 664−673

    WANG S W, YAN X Y, SHAN J, et al. Quantitative determination of N loss through denitrification under different N fertilizer application rates by membrane inlet mass spectrometry(MIMS)[J]. Soils, 2018, 50(4): 664−673
    [9] BEHERA S N, SHARMA M, ANEJA V P, et al. Ammonia in the atmosphere: a review on emission sources, atmospheric chemistry and deposition on terrestrial bodies[J]. Environmental Science and Pollution Research, 2013, 20(11): 8092−8131 doi: 10.1007/s11356-013-2051-9
    [10] FANG M, CHAN C K, YAO X H. Managing air quality in a rapidly developing nation: China[J]. Atmospheric Environment, 2009, 43(1): 79−86 doi: 10.1016/j.atmosenv.2008.09.064
    [11] WANG G H, ZHANG R Y, GOMEZ M E, et al. Persistent sulfate formation from London Fog to Chinese haze[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(48): 13630−13635 doi: 10.1073/pnas.1616540113
    [12] WU Y Y, GU B J, ERISMAN J W, et al. PM2.5 pollution is substantially affected by ammonia emissions in China[J]. Environmental Pollution, 2016, 218: 86−94 doi: 10.1016/j.envpol.2016.08.027
    [13] LIU T Q, FAN D J, ZHANG X X, et al. Deep placement of nitrogen fertilizers reduces ammonia volatilization and increases nitrogen utilization efficiency in no-tillage paddy fields in central China[J]. Field Crops Research, 2015, 184: 80−90 doi: 10.1016/j.fcr.2015.09.011
    [14] YANG Y, LI N, NI X Y, et al. Combining deep flooding and slow-release urea to reduce ammonia emission from rice fields[J]. Journal of Cleaner Production, 2020, 244: 118745 doi: 10.1016/j.jclepro.2019.118745
    [15] YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [16] 侯朋福, 薛利祥, 俞映倞, 等. 缓控释肥侧深施对稻田氨挥发排放的控制效果[J]. 环境科学, 2017, 38(12): 5326−5332

    HOU P F, XUE L X, YU Y L, et al. Control effect of side deep fertilization with slow-release fertilizer on ammonia volatilization from paddy fields[J]. Environmental Science, 2017, 38(12): 5326−5332
    [17] 彭玉净, 田玉华, 尹斌. 添加脲酶抑制剂NBPT对麦秆还田稻田氨挥发的影响[J]. 中国生态农业学报, 2012, 20(1): 19−23 doi: 10.3724/SP.J.1011.2012.00019

    PENG Y J, TIAN Y H, YIN B. Effects of NBPT urease inhibitor on ammonia volatilization in paddy fields with wheat straw application[J]. Chinese Journal of Eco-Agriculture, 2012, 20(1): 19−23 doi: 10.3724/SP.J.1011.2012.00019
    [18] 周平遥, 张震, 王华, 等. 不同深施肥方式对稻田氨挥发及水稻产量的影响[J]. 农业环境科学学报, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441

    ZHOU P Y, ZHANG Z, WANG H, et al. Effects of deep fertilization methods on ammonia volatilization and rice yield in paddy fields[J]. Journal of Agro-Environment Science, 2020, 39(11): 2683−2691 doi: 10.11654/jaes.2020-0441
    [19] 邓美华, 尹斌, 张绍林, 等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005

    DENG M H, YIN B, ZHANG S L, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005
    [20] CHEN A Q, LEI B K, HU W L, et al. Characteristics of ammonia volatilization on rice grown under different nitrogen application rates and its quantitative predictions in Erhai Lake Watershed, China[J]. Nutrient Cycling in Agroecosystems, 2015, 101(1): 139−152 doi: 10.1007/s10705-014-9660-7
    [21] LI P F, LU J W, WANG Y, et al. Nitrogen losses, use efficiency, and productivity of early rice under controlled-release urea[J]. Agriculture, Ecosystems & Environment, 2018, 251: 78−87
    [22] TIAN G M, CAO J L, CAI Z C et al. Ammonia volatilization from winter wheat field top dressed with urea[J]. Pedosphere, 1998, 8(4): 331−336
    [23] ZHAO M, TIAN Y H, MA Y C, et al. Mitigating gaseous nitrogen emissions intensity from a Chinese rice cropping system through an improved management practice aimed to close the yield gap[J]. Agriculture, Ecosystems & Environment, 2015, 203: 36−45
    [24] 赵淼, 田玉华, 张敏, 等. 改善农学管理措施减少太湖稻麦轮作NH3和NO排放[J]. 土壤, 2015, 47(5): 836−841

    ZHAO M, TIAN Y H, ZHANG M, et al. Improving agronomic practices to reduce ammonia and nitric oxide emissions from rice-wheat rotation field in Tai Lake Region, China[J]. Soils, 2015, 47(5): 836−841
    [25] 田光明, 蔡祖聪, 曹金留, 等. 镇江丘陵区稻田化肥氮的氨挥发及其影响因素[J]. 土壤学报, 2001, 38(3): 324−332 doi: 10.3321/j.issn:0564-3929.2001.03.012

    TIAN G M, CAI Z C, CAO J L, et al. Ammonia volatilization from paddy field and its affecting factors in Zhenjiang hilly region[J]. Acta Pedologica Sinica, 2001, 38(3): 324−332 doi: 10.3321/j.issn:0564-3929.2001.03.012
    [26] 胡安永, 孙星, 刘勤, 等. 太湖地区不同轮作方式对稻田氨挥发和水稻产量的影响[J]. 水土保持学报, 2013, 27(6): 275−279 doi: 10.3969/j.issn.1009-2242.2013.06.053

    HU A Y, SUN X, LIU Q, et al. Influence of different rotations on ammonia volatilization and rice yields of paddy fields in Taihu Lake Region[J]. Journal of Soil and Water Conservation, 2013, 27(6): 275−279 doi: 10.3969/j.issn.1009-2242.2013.06.053
    [27] MOHANTY S K, SINGH U, BALASUBRAMANIAN V, et al. Nitrogen deep-placement technologies for productivity, profitability, and environmental quality of rainfed lowland rice systems[J]. Nutrient Cycling in Agroecosystems, 1998, 53(1): 43−57 doi: 10.1023/A:1009731922431
    [28] XU J Z, LIAO L X, TAN J Y, et al. Ammonia volatilization in gemmiparous and early seedling stages from direct seeding rice fields with different nitrogen management strategies: a pots experiment[J]. Soil and Tillage Research, 2013, 126: 169−176 doi: 10.1016/j.still.2012.07.005
    [29] HUDA A, GAIHRE Y K, ISLAM M R, et al. Floodwater ammonium, nitrogen use efficiency and rice yields with fertilizer deep placement and alternate wetting and drying under triple rice cropping systems[J]. Nutrient Cycling in Agroecosystems, 2016, 104(1): 53−66 doi: 10.1007/s10705-015-9758-6
    [30] FILLERY I R P, SIMPSON J R, DE DATTA S K. Influence of field environment and fertilizer management on ammonia loss from flooded rice[J]. Soil Science Society of America Journal, 1984, 48(4): 914−920 doi: 10.2136/sssaj1984.03615995004800040043x
    [31] GUO C, REN T, LI P F, et al. Producing more grain yield of rice with less ammonia volatilization and greenhouse gases emission using slow/controlled-release urea[J]. Environmental Science and Pollution Research, 2019, 26(3): 2569−2579 doi: 10.1007/s11356-018-3792-2
    [32] HUANG S, LV W, BLOSZIES S, et al. Effects of fertilizer management practices on yield-scaled ammonia emissions from croplands in China: a meta-analysis[J]. Field Crops Research, 2016, 192: 118−125 doi: 10.1016/j.fcr.2016.04.023
    [33] 胡瞒瞒, 董文旭, 王文岩, 等. 华北平原氮肥周年深施对冬小麦-夏玉米轮作体系土壤氨挥发的影响[J]. 中国生态农业学报(中英文), 2020, 28(12): 1880−1889

    HU M M, DONG W X, WANG W Y, et al. The effects of deep application of nitrogen fertilization on ammonia volatilization in a winter wheat/summer maize rotation system in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2020, 28(12): 1880−1889
    [34] ZHANG X M, WU Y Y, LIU X J, et al. Ammonia emissions may be substantially underestimated in China[J]. Environmental Science & Technology, 2017, 51(21): 12089−12096
    [35] TI C P, XIA L L, CHANG S X, et al. Potential for mitigating global agricultural ammonia emission: a meta-analysis[J]. Environmental Pollution, 2019, 245: 141−148 doi: 10.1016/j.envpol.2018.10.124
    [36] STOKSTAD E. Ammonia pollution from farming may exact hefty health costs[J]. Science, 2014, 343(6168): 238 doi: 10.1126/science.343.6168.238
    [37] XIA L L, LAM S K, CHEN D L, et al. Can knowledge-based N management produce more staple grain with lower greenhouse gas emission and reactive nitrogen pollution? A meta-analysis[J]. Global Change Biology, 2017, 23(5): 1917−1925 doi: 10.1111/gcb.13455
    [38] ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Ammonia volatilization and nitrogen retention: how deep to incorporate urea?[J]. Journal of Environmental Quality, 2013, 42(6): 1635−1642 doi: 10.2134/jeq2013.05.0192
  • 加载中
图(4) / 表(5)
计量
  • 文章访问数:  72
  • HTML全文浏览量:  14
  • PDF下载量:  29
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-26
  • 录用日期:  2021-05-28
  • 网络出版日期:  2021-06-22

目录

    /

    返回文章
    返回