留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同水氮管理对梨园土壤氨挥发的影响

邢寒冰 董文旭 庞桂斌 胡春胜

邢寒冰, 董文旭, 庞桂斌, 胡春胜. 不同水氮管理对梨园土壤氨挥发的影响[J]. 中国生态农业学报(中英文), 2021, 29(12): 2013−2023 doi: 10.13930/j.cnki.cjea.210133
引用本文: 邢寒冰, 董文旭, 庞桂斌, 胡春胜. 不同水氮管理对梨园土壤氨挥发的影响[J]. 中国生态农业学报(中英文), 2021, 29(12): 2013−2023 doi: 10.13930/j.cnki.cjea.210133
XING H B, DONG W X, PANG G B, HU C S. Effects of different water and nitrogen management on ammonia volatilization in pear orchard soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2013−2023 doi: 10.13930/j.cnki.cjea.210133
Citation: XING H B, DONG W X, PANG G B, HU C S. Effects of different water and nitrogen management on ammonia volatilization in pear orchard soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2013−2023 doi: 10.13930/j.cnki.cjea.210133

不同水氮管理对梨园土壤氨挥发的影响

doi: 10.13930/j.cnki.cjea.210133
基金项目: 国家重点研发计划项目(2018YFC0213300)资助
详细信息
    作者简介:

    邢寒冰, 主要研究方向为农田节水灌溉。E-mail: 17862903330@139.com

    通讯作者:

    董文旭, 主要研究方向为农田碳氮循环及环境效应的研究。E-mail: dongwx@sjziam.ac.cn

  • 中图分类号: S143.1

Effects of different water and nitrogen management on ammonia volatilization in pear orchard soil

Funds: This study was supported by the National Key R&D Program of China (2018YFC0213300)
More Information
  • 摘要: 根际注射施肥在果树种植上应用广泛, 但目前注射施肥及配套灌溉管理对果园氨挥发的影响尚不明确。本文于2019年3—9月在河北省晋州市果园示范基地进行, 利用动态箱法分析了梨树追肥时期不同水氮管理下土壤氨挥发速率和损失量的变化规律。试验设置5个处理: 不施肥(CK)、氮肥表面撒施+常规灌溉(BW1)、注射施肥+常规灌溉(IW1)、氮肥表面撒施+节水灌溉(BW2)、注射施肥+节水灌溉(IW2)。结果表明, 各处理各时期氨挥发基本在施肥后1 d达到峰值, 在5~10 d后结束。BW1、IW1、BW2、IW2氨挥发损失量差异均达显著水平(P<0.05), 分别为24.05 kg·hm−2、8.43 kg·hm−2、31.94 kg·hm−2和14.06 kg·hm−2 ; 与传统管理(BW1)相比注射施肥处理(IW1和IW2)减排率分别达64.95%与41.54%。撒施处理氨挥发受灌溉量影响较大, 根际注射施肥可以显著降低氨挥发的排放, 且受灌溉量影响较小。相关分析表明, 氨挥发与土壤铵态氮含量和pH呈正相关, 与硝态氮含量呈负相关, 且与铵态氮和硝态氮的相关性均达到极显著水平(P<0.01); 土壤水分与铵态氮呈正相关且达极显著水平(P<0.01)。与传统管理方式相比, 根际注射施肥与节水灌溉结合是减少果园氨挥发的有效途径之一。
  • 图  1  不同施肥处理下梨园土壤不同施肥时期氨挥发通量变化(6、8、9月分别为开花期、前膨果期、后膨果期氨挥发通量变化情况; CK、BW1、IW1、BW2、IW2含义见表2)

    Figure  1.  Variations of ammonia volatilization fluxes in pear orchard soil under different fertilization treatments (June, August and September show the changes of ammonia volatilization fluxes in flowering period, pre- and post-expansion period. The meanings of CK, BW1, IW1, BW2 and IW2 are shown in the table 2)

    图  2  不同施肥处理下梨园土壤不同施肥时期氨挥发累积量变化(6、8、9月分别为开花期、前膨果期、后膨果期; CK、BW1、IW1、BW2、IW2含义见表2)

    Figure  2.  Variations of volatile accumulation of ammonia in pear orchard soil under different fertilization treatments (June, August and September show the changes of ammonia volatilization fluxes in flowering period, pre- and post-expansion period. The meanings of CK, BW1, IW1, BW2 and IW2 are shown in the table 2)

    图  3  不同施肥处理下梨园表层土壤不同施肥时期施肥后 NH4+-N和NO3-N含量及pH的变化(6、8、9月分别为开花期、前膨果期、后膨果期; CK、BW1、IW1、BW2和IW2含义见表2)

    Figure  3.  Changes in NH4+-N and NO3-N contents and pH of surface soil under different fertilization treatments at different periods (June, August and September show flowering period, pre- and post-expansion periods. The meanings of CK, BW1, IW1, BW2 and IW2 are shown in the table 2)

    图  4  氨挥发期间土壤温度、土壤水分及空气湿度变化(图a、b、c分别为土壤温度、土壤水分及空气湿度;6、8、9月分别为开花期、前膨果期、后膨果期; W1为常规灌溉, W2灌水量为常规灌溉的70%。)

    Figure  4.  Changes of soil temperature, soil moisture and air humidity during ammonia volatilization (figure a, b, c show soil temperature, soil moisture and air humidity; June, August and September show flowering period, pre- and post-expansion period. W1 means conventional irrigation; W2 means 70% conventional irrigation. )

    表  1  试验区土壤基本理化性质

    Table  1.   Basic physical and chemical properties of soil in test area

    深度
    Depth
    (cm)
    pH容重
    Bulk density
    (g∙cm−3)
    有机质含量
    Organic matter content
    (g∙kg−1)
    NO3-N
    (mg∙kg−1)
    NH4+-N
    (mg∙kg−1)
    0~408.51.4716.734.42.6
    40~907.81.457.821.60.7
    90~1807.71.435.429.10.9
    下载: 导出CSV

    表  2  不同处理追肥时期的施肥和灌水方案

    Table  2.   Schemes of irrigation and fertilization during topdressing periods of different treatments

    处理
    Treatment
    水肥管理方式
    Irrigation and fertilization methods
    施氮量 Nitrogen application (kg∙hm−2)灌溉总量
    Total irrigation
    (m3∙hm−2)
    开花期
    Flowering
    period
    前膨果期
    Pre-expansion
    period
    后膨果
    Post-expansion
    period
    总量
    Total
    CK 不施肥+常规灌溉
    No fertilization+conventional irrigation
    0 0 0 0 3200
    BW1 复合肥撒施+常规灌溉
    Compound fertilizer broadcasting+conventional irrigation
    168 96 270 792 3200
    IW1 液体肥注射深施+常规灌溉
    Deep injection of liquid fertilizer+conventional irrigation
    168 96 270 792 3200
    BW2 复合肥撒施+70%灌溉
    Compound fertilizer broadcasting+70% conventional irrigation
    168 96 270 792 2240
    IW2 液体肥注射深施+70%灌溉
    Deep injection of liquid fertilizer+70% conventional irrigation
    168 96 270 792 2240
    下载: 导出CSV

    表  3  不同时期不同施肥处理下梨园土壤氨挥发总累积量及损失率

    Table  3.   Total ammonia volatile accumulations and loss rates of pear orchard soil under different fertilization treatments at different periods

    施肥时期
    Fertilization period
    指标
    Index
    CKBW1IW1BW2IW2
    开花期
    Flowering period
    累积氨挥发量
    Accumulation ammonia volatilization (kg·hm−2)
    0.50±0.09c 2.42±0.06b 0.10±0.09a 3.81±1.51b 0.22±0.05c
    损失率 Loss rate (%) 1.44±0.05b 0.06±0.01c 2.77±1.03a 0.13±0.01c
    前膨果期
    Pre-expansion period
    累积挥发量
    Accumulation ammonia volatilization (kg·hm−2)
    0.40±0.01c 4.86±0.19b 1.69±0.17a 6.03±2.35c 1.23±0.13b
    损失率 Loss rate (%) 5.06±0.27b 1.76±0.12b 6.28±1.89b 1.28±0.11b
    后膨果期
    Post-expansion period
    累积氨挥发量
    Accumulation ammonia volatilization (kg·hm−2)
    2.44±0.06b 16.77±2.64a 6.64±0.45b 29.30±5.06b 12.61±3.04b
    损失率 Loss rate (%) 6.21±0.41b 2.46±0.27b 10.85±3.81b 4.67±2.14b
    总挥发损失量 Total volatilization (kg·hm−2) 3.34±0.08c 24.05±3.17a 8.43±1.02b 39.14±5.09b 14.06±3.12b
    总减排率 Total emission reduction rate (%) 64.95 −62.77 41.54
      不同小写字母表示处理间在P<0.05水平差异显著。CK、BW1、IW1、BW2和IW2含义见表2。Different lowercase letters indicate significant differences among treatments at P<0.05 level. The meanings of CK, BW1, IW1, BW2 and IW2 are shown in the table 2.
    下载: 导出CSV

    表  4  不同施肥处理下梨园土壤氨挥发与各个因素的相关性分析

    Table  4.   Correlation analysis of ammonia volatility under different fertilization treatments and factors

    处理 TreatmentNH4+NO3pH土壤温度 Soil temperature空气湿度 Air humidity土壤水分 Soil moisture
    BW10.531**−0.668**0.3790.144−0.2500
    IW10.639**−0.447**0.2500.224−0.2080.226
    BW20.871**−0.474**0.0190.278−0.1930.469*
    IW20.409−0.251 0.2420.213−0.1810.276
      *、**分别表示线性相关系数达显著(P<0.05)和极显著(P<0.01)水平。*, ** represent significant correlation of the linear coefficient at P<0.05 and P<0.01 level, respectively.
    下载: 导出CSV
  • [1] 康金花, 黄子蔚. 滴灌随水施肥对土壤有效氮动态的影响[J]. 干旱区研究, 2005, 22(2): 270−273

    KANG J H, HUANG Z W. Effect of fertilization through drip irrigation systems on available nitrogen dynamics in the different soillayers[J]. Arid Zone Research, 2005, 22(2): 270−273
    [2] 胡春胜, 张玉铭, 秦树平, 等. 华北平原农田生态系统氮素过程及其环境效应研究[J]. 中国生态农业学报, 2018, 26(10): 1501−1514

    HU C S, ZHANG Y M, QIN S P, et al. Nitrogen processes and related environmental effects onagro-ecosystem in the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1501−1514
    [3] BOUWMAN A F, BOUMANS L J M, BATJES N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J]. Global Biogeochemical Cycles, 2002, 16(2): 1−14
    [4] 钱晓雍, 郭小品, 林立, 等. 国内外农业源NH3排放影响PM2.5形成的研究方法探讨[J]. 农业环境科学学报, 2013, 32(10): 1908−1914 doi: 10.11654/jaes.2013.10.002

    QIAN X Y, GUO X P, LIN L, et al. Research methods for agriculturally emitte dammonia effects on formation of fine particulate matter (PM2.5): a review[J]. Journal of Agro-Environment Science, 2013, 32(10): 1908−1914 doi: 10.11654/jaes.2013.10.002
    [5] ERISMAN J W, SCHAAP M. The need for ammonia abatement with respect to secondary PM reductions in Europe[J]. Environmental Pollution, 2004, 129(1): 159−163 doi: 10.1016/j.envpol.2003.08.042
    [6] GALLOWAY J N, DENTENER F J, CAPONE D G, et al. Nitrogen cycles: past, present, and future[J]. Biogeochemistry, 2004, 70(2): 153−226 doi: 10.1007/s10533-004-0370-0
    [7] 许艳玲, 薛文博, 雷宇, 等. 中国氨减排对控制PM2.5污染的敏感性研究[J]. 中国环境科学, 2017, 37(7): 2482−2491 doi: 10.3969/j.issn.1000-6923.2017.07.009

    XU Y L, XUE W B, LEI Y, et al. Sensitivity analysis of PM2.5 pollution to ammonia emission control in China[J]. China Environmental Science, 2017, 37(7): 2482−2491 doi: 10.3969/j.issn.1000-6923.2017.07.009
    [8] 肖强, 李丽霞, 李鸿雁, 等. 改性尿素追施对冬小麦和夏玉米季氮素挥发和淋溶的影响[J]. 水土保持学报, 2020, 34(4): 270−279

    XIAO Q, LI L X, LI H Y, et al. Effects of modified urea topdressing on nitrogen volatilization and leaching in winter wheat and summer maize[J]. Journal of Soil and Water Conservation, 2020, 34(4): 270−279
    [9] RATTANAMANEE A, NIAMSUP H, SRISOMBAT L O, et al. Role of chitosan on some physical properties and the urea controlled release of the silk fibroin/gelatin hydrogel[J]. Journal of Polymers and the Environment, 2015, 23(3): 334−340 doi: 10.1007/s10924-014-0703-6
    [10] 李彩霞, 周新国, 强小嫚, 等. 不同水分处理下液体地膜覆盖玉米田土壤环境与产量效应[J]. 玉米科学, 2010, 18(3): 108−112

    LI C X, ZHOU X G, QIANG X M, et al. Effects of liquid film mulching on soil moisture, temperature and yield of summer maize field under different water conditions[J]. Journal of Maize Sciences, 2010, 18(3): 108−112
    [11] 李哲, 屈忠义, 任中生, 等. 河套灌区滴灌施肥对土壤氨挥发及玉米氮肥利用率的影响[J]. 灌溉排水学报, 2018, 37(11): 37−42

    LI Z, QU Z Y, REN Z S, et al. Nitrogen use efficiency and ammonia oxidation of corn field with drip irrigation in Hetao Irrigation District[J]. Journal of Irrigation and Drainage, 2018, 37(11): 37−42
    [12] 张翀, 李雪倩, 苏芳, 等. 施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J]. 农业环境科学学报, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024

    ZHANG C, LI X Q, SU F, et al. Effects of different fertilization and measurement methods on ammonia volatilization of summer maize in purple soil[J]. Journal of Agro-Environment Science, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024
    [13] 李霞. 浅谈果树种植结构的调整与优化[J]. 种子科技, 2020, 38(24): 85−86 doi: 10.3969/j.issn.1005-2690.2020.24.041

    LI X. Adjustment and optimization of fruit tree planting structure[J]. Seed Science & Technology, 2020, 38(24): 85−86 doi: 10.3969/j.issn.1005-2690.2020.24.041
    [14] 丁阔. 库尔勒香梨树体-土壤体系氮素循环特征研究[D]. 乌鲁木齐: 新疆农业大学, 2016

    DING K. Research on the characteristics of nitrogen cycling in Korla fragrant pear tree-soil system[D]. Urumqi: Xinjiang Agricultural University, 2016
    [15] 章伟. 渭北旱塬苹果及葡萄水肥一体化技术研究[D]. 杨凌: 西北农林科技大学, 2016

    ZHANG W. Application of fertigation in apple and grape orchard in Weibei arid plateau[D]. Yangling: Northwest A & F University, 2016
    [16] 吴小宾, 彭福田, 崔秀敏, 等. 施肥枪施肥对桃树氮素吸收分配及产量品质的影响[J]. 植物营养与肥料学报, 2011, 17(3): 680−687 doi: 10.11674/zwyf.2011.0361

    WU X B, PENG F T, CUI X M, et al. Effects of fertilization with a fertilizer applicator on nitrogen absorption and distribution, and fruit yield and quality of peach[J]. Plant Nutrition and Fertilizer Science, 2011, 17(3): 680−687 doi: 10.11674/zwyf.2011.0361
    [17] 吕丽霞, 张立新, 高梅, 等. 根际注射施肥对渭北苹果园土壤理化特性、土壤酶、果实产量及品质的影响[J]. 果树学报, 2012, 29(5): 782−788

    LYU L X, ZHANG L X, GAO M , et al. Effect of fertilization with injection to the rhizosphere on soil physical and chemical properties, soil enzyme activities and yield and quality of apple in Weibei highland[J]. Journal of Fruit Science, 2012, 29(5): 782−788
    [18] 张林森, 李雪薇, 王晓琳, 等. 根际注射施肥对黄土高原苹果氮素吸收利用及产量和品质的影响[J]. 植物营养与肥料学报, 2015, 21(2): 421−430 doi: 10.11674/zwyf.2015.0217

    ZHANG L S, LI X W, WANG X L, et al. Effects of fertilization with injection to the rhizosphere on nitrogen absorption and utilization, fruit yield and quality of apple in the Loess Plateau[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(2): 421−430 doi: 10.11674/zwyf.2015.0217
    [19] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定−通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014

    WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014
    [20] 王文岩, 董文旭, 陈素英, 等. 连续施用控释肥对小麦/玉米农田氮素平衡与利用率的影响[J]. 农业工程学报, 2016, 32(S2): 135−141

    WANG W Y, DONG W X, CHEN S Y, et al. Effect of continuously appling controlled-release fertilizers on nitrogen balance and utilization in winter wheat-summer maize cropping system[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(S2): 135−141
    [21] ENGEL R, LIANG D L, WALLANDER R, et al. Influence of urea fertilizer placement on nitrous oxide production from a silt loam soil[J]. Journal of Environmental Quality, 2010, 39(1): 115−125 doi: 10.2134/jeq2009.0130
    [22] 孙瑞峰, 马娟娟, 郭向红, 等. 蓄水坑灌下追肥时期对果园土壤氨挥发的影响[J]. 节水灌溉, 2019, (10): 1−5 doi: 10.3969/j.issn.1007-4929.2019.10.001

    SUN R F, MA J J, GUO X H, et al. Effects of topdressing period on ammonia volatilization in orchard soil under water storage pit irrigation[J]. Water Saving Irrigation, 2019, (10): 1−5 doi: 10.3969/j.issn.1007-4929.2019.10.001
    [23] 董文旭, 吴电明, 胡春胜, 等. 华北山前平原农田氨挥发速率与调控研究[J]. 中国生态农业学报, 2011, 19(5): 1115−1121

    DONG W X, WU D M, HU C S, et al. Ammonia volatilization and control mechanisms in the piedmont of North China Plain[J]. Chinese Journal of Eco-Agriculture, 2011, 19(5): 1115−1121
    [24] 朱志军. 渭北苹果园施肥制度对氨挥发和温室气体排放的影响[D]. 杨凌: 西北农林科技大学, 2019

    ZHU Z J. Effects of fertilization system on ammonia volatilization and greenhouse gas emission in Weibei apple orchard[D]. Yangling: Northwest A & F University, 2019
    [25] YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [26] 卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149−162

    LU L L, WU G Y. Research progress on influencing factors of ammonia emission in farmland[J]. Journal of Agricultural University of China, 2019, 24(1): 149−162
    [27] ABASCAL S A . Nitrogen loss by ammonia volatilization in cultivation of olive orchards fertilized with compost[J]. Eurasian Soil Science, 2019, 52(10): 1207−1213 doi: 10.1134/S1064229319100028
    [28] SANZ-COBENA A, MISSELBROOK T H, HERNAIZ P, et al. Impact of rainfall to the effectiveness of pig slurry shallow injection method for NH3 mitigation in a Mediterranean soil[J]. Atmospheric Environment, 2019, 216(1): 116913
    [29] ZHOU J, LI B, XIA L, et al. Organic-substitute strategies reduced carbon and reactive nitrogen footprints and gained net ecosystem economic benefit for intensive vegetable production[J]. Journal of Cleaner Production, 2019, 225: 984−994 doi: 10.1016/j.jclepro.2019.03.191
    [30] 李硕, 王选, 张西群, 等. 猪场肥水施用对玉米-小麦农田氨排放、氮素利用与表观平衡的影响[J]. 中国生态农业学报(中英文), 2019, 27(10): 1502−1514

    LI S, WANG X, ZHANG X Q, et al. Effects of swine slurry application on ammonia emission, nitrogen utilization and apparent balance of a winter wheat-summer maize rotation system[J]. Chinese Journal of Eco-Agriculture, 2019, 27(10): 1502−1514
    [31] RECIO J, VALLEJO A, LE-NOË J, et al. The effect of nitrification inhibitors on NH3 and N2O emissions in highly N fertilized irrigated Mediterranean cropping systems[J]. Science of the Total Environment, 2018, 636: 427−436 doi: 10.1016/j.scitotenv.2018.04.294
    [32] ROCHETTE P, ANGERS D A, CHANTIGNY M H, et al. Ammonia volatilization and nitrogen retention: how deep to incorporate urea?[J]. Journal of Environmental Quality, 2013, 42(6): 1635−1642 doi: 10.2134/jeq2013.05.0192
    [33] 吴萍萍, 刘金剑, 杨秀霞, 等. 不同施肥制度对红壤地区双季稻田氨挥发的影响[J]. 中国水稻科学, 2009, 23(1): 85−93 doi: 10.3969/j.issn.1001-7216.2009.01.013

    WU P P, LIU J J, YANG X X, et al. Effects of different fertilization systems on ammonia volatilization from double-rice cropping field in red soil region[J]. Chinese Journal of Rice Science, 2009, 23(1): 85−93 doi: 10.3969/j.issn.1001-7216.2009.01.013
    [34] 黄思怡, 田昌, 谢桂先, 等. 控释尿素减少双季稻田氨挥发的主要机理和适宜用量[J]. 植物营养与肥料学报, 2019, 25(12): 2102−2112 doi: 10.11674/zwyf.19297

    HUANG S Y, TIAN C, XIE G X, et al. Mechanism and suitable application dosage of controlled-release urea effectively reducing ammonia volatilization in double-cropping paddy fields[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(12): 2102−2112 doi: 10.11674/zwyf.19297
    [35] 徐婷婷, 宋鹏慧, 闫暮春, 等. 改性尿素施用对氨挥发量及无机氮变化的影响[J]. 中国土壤与肥料, 2013, (5): 29−33 doi: 10.11838/sfsc.20130506

    XU T T, SONG P H, YAN M C, et al. Effect of modified urea on ammonia volatilization and soil in organic nitrogen[J]. Soil and Fertilizer Sciences in China, 2013, (5): 29−33 doi: 10.11838/sfsc.20130506
    [36] MOHAMMED-NOUR A, AL-SEWAILEM M, EL-NAGGAR A H. The influence of alkalization and temperature on ammonia recovery from cow manure and the chemical properties of the effluents[J]. Sustainability, 2019, 11(8): 2441 doi: 10.3390/su11082441
    [37] 山楠, 毕晓庆, 杜连凤, 等. 基施氮肥对麦田冬前氨挥发损失的影响[J]. 中国土壤与肥料, 2013, (6): 47−51 doi: 10.11838/sfsc.20130610

    SHAN N, BI X Q, DU L F, et al. Effect of basal nitrogen fertilization on corn field ammonia volatilization loss ahead of winter in-site conditions[J]. Soil and Fertilizer Sciences in China, 2013, (6): 47−51 doi: 10.11838/sfsc.20130610
    [38] 周丽平, 杨俐苹, 白由路, 等. 不同氮肥缓释化处理对夏玉米田间氨挥发和氮素利用的影响[J]. 植物营养与肥料学报, 2016, 22(6): 1449−1457 doi: 10.11674/zwyf.16039

    ZHOU L P, YANG L P, BAI Y L, et al. Comparison of several slow-released nitrogen fertilizers in ammonia volatilization and nitrogen utilization in summer maize field[J]. Journal of Plant Nutrition and Fertilizers, 2016, 22(6): 1449−1457 doi: 10.11674/zwyf.16039
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  271
  • HTML全文浏览量:  88
  • PDF下载量:  59
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-09
  • 录用日期:  2021-05-28
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2021-12-07

目录

    /

    返回文章
    返回