留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米零价铁(nZVI)对蚯蚓-微生物-土壤生态系统的毒性效应研究

刘嫦娥 岳敏慧 谭辉林 张悦 张维兰 肖艳兰 潘瑛 段昌群

刘嫦娥, 岳敏慧, 谭辉林, 张悦, 张维兰, 肖艳兰, 潘瑛, 段昌群. 纳米零价铁(nZVI)对蚯蚓-微生物-土壤生态系统的毒性效应研究[J]. 中国生态农业学报(中英文), 2021, 29(10): 1722−1732 doi: 10.13930/j.cnki.cjea.210156
引用本文: 刘嫦娥, 岳敏慧, 谭辉林, 张悦, 张维兰, 肖艳兰, 潘瑛, 段昌群. 纳米零价铁(nZVI)对蚯蚓-微生物-土壤生态系统的毒性效应研究[J]. 中国生态农业学报(中英文), 2021, 29(10): 1722−1732 doi: 10.13930/j.cnki.cjea.210156
LIU C E, YUE M H, TAN H L, ZHANG Y, ZHANG W L, XIAO Y L, PAN Y, DUAN C Q. Effects of nano-zero-valent iron (nZVI) on earthworm-bacteria-soil systems[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1722−1732 doi: 10.13930/j.cnki.cjea.210156
Citation: LIU C E, YUE M H, TAN H L, ZHANG Y, ZHANG W L, XIAO Y L, PAN Y, DUAN C Q. Effects of nano-zero-valent iron (nZVI) on earthworm-bacteria-soil systems[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1722−1732 doi: 10.13930/j.cnki.cjea.210156

纳米零价铁(nZVI)对蚯蚓-微生物-土壤生态系统的毒性效应研究

doi: 10.13930/j.cnki.cjea.210156
基金项目: 国家自然科学基金项目(U2002208)、云南省科技计划重点研发项目(2019BC001, 2018DG005)和云南大学大学生创新创业项目(202004169)资助
详细信息
    作者简介:

    刘嫦娥, 主要从事污染与恢复生态学研究。E-mail: change@ynu.edu.cn

    通讯作者:

    段昌群,主要研究方向为污染与恢复生态学。E-mail: chqduan@ynu.edu.cn

  • 中图分类号: X503

Effects of nano-zero-valent iron (nZVI) on earthworm-bacteria-soil systems

Funds: The study was supported by the National Natural Science Foundation of China (U2002208), the Key Research and Development Project of Yunnan Province (2019BC001, 2018DG005) and the Students Innovations Project of Yunnan University (202004169)
More Information
  • 摘要: 为解决土壤重金属污染问题,纳米零价铁(nZVI)被广泛应用且备受关注, 而nZVI对土壤无脊椎动物、土壤质量、微生物群落等的潜在影响缺乏系统的研究。本文以赤子爱胜蚓(Eisenia foetida) [蚯蚓密度为0、10条∙kg−1(土)]为研究对象, 探讨不同浓度nZVI (nZVI土壤质量为0、0.05%、0.25%和0.50%) 暴露15 d、30 d和45 d后,蚯蚓-微生物-土壤生态系统的响应, 为评价nZVI的环境安全性提供参考。结果表明, 暴露45 d后, nZVI对蚯蚓存活率和生物量无显著影响, 0.50% nZVI处理的蚯蚓存活率和体内MDA含量与15 d相比分别降低27.66%和0.86 nmol∙g−1; 而蚯蚓生物量和CAT活性分别增加1.20倍和2.62倍。门或属水平下, nZVI对土壤微生物相对丰度、多样性指数和丰度指数无显著影响; 与无添加nZVI处理相比,蚯蚓介导下 0.50% nZVI处理土壤中大团聚体(>250 μm)所占比例、团聚体平均重量直径和速效磷含量分别显著升高15.69%、12.59%和21.20%。蚯蚓介导下nZVI处理中土壤大团聚体所占比例、团聚体平均重量直径显著高于无蚯蚓投加的nZVI处理, 可见, nZVI胁迫下蚯蚓活动极显著提高土壤团聚体结构的稳定性(P<0.01)。本研究发现长期暴露nZVI对土壤微生物群落特征无显著影响, 但可以促进蚯蚓的生长, 从而进一步提高了土壤营养元素的生物有效性, 为nZVI应用于污染修复与治理的环境安全性评估提供了科学依据。
  • 图  1  不同添加量纳米零价铁(nZVI)对蚯蚓存活率(a)和生物量减少量(b)的影响

    不同大写字母表示同一处理不同时间在P<0.05水平差异显著, 不同小写字母表示同一时间不同处理在P <0.05水平差异显著。Different captial letters mean significant differences of a given nZVI treatment measured at different times at P<0.05 level. Different lowercase letters mean significant differences among nZVI treatments at same given obervation time at P<0.05 level.

    Figure  1.  Effect of nano-zero-valent iron (nZVI) on survival rate (a) and biomass reduction (b) of earthworm

    图  2  纳米零价铁(nZVI)对蚯蚓SOD活性(a)、CAT活性(b)、丙二醛(MDA)含量(c)和脯氨酸含量(d)的影响

    不同大写字母表示同一处理不同时间在P<0.05水平差异显著, 不同小写字母表示同一时间不同处理间在P<0.05水平差异显著。

    Figure  2.  Effects of nano-zero-valent iron (nZVI) on SOD activity (a), CAT activity (b), MDA content (c) and proline content (d) of earthworm

    Different capital letters mean significant differences of a given nZVI treatment measured at different times at P<0.05 level. Different lowercase letters mean significant differences among nZVI treatments at same given obervation time at P<0.05 level.

    图  3  纳米零价铁(nZVI)对土壤细菌相对丰度的影响

    Figure  3.  Effects of nano-zero-valent iron (nZVI) on relative abundance of soil bacteria

    图  4  不同添加量纳米零价铁(nZVI) 和蚯蚓对土壤团聚体尺寸分布(A)和团聚体平均重量直径(MWD)(B)的影响

    不同小写字母代表不同处理间差异显著(P<0.05)。Different lowercase letters mean significant differences among different treatments at P<0.05 level.

    Figure  4.  Effect of nano-zero-valent iron (nZVI) and earthworm on aggregate size distribution (A) and aggregate mean weight diameter (MWD, B) of soil

    表  1  纳米零价铁(nZVI)暴露45 d后蚯蚓指标间的相关分析(R值)

    Table  1.   Correlation analysis of earthworm indicators after 45 days of exposure to nano-zero-valent iron (nZVI) (R value)

    指标
    Index
    存活率
    Survival rate
    生物量减少量
    Reduction of biomass
    CAT活性
    CAT activity
    SOD活性
    SOD activity
    MDA含量
    MDA content
    脯氨酸含量
    Proline content
    存活率 Survival rate1
    生物量减少量 Reduction of biomass−0.642**1
    CAT活性 CAT activity−0.1920.2451
    SOD活性 SOD activity0.017−0.102−0.0801
    MDA含量 MDA content0.059−0.084−0.143−0.0321
    氨酸含量 Proline content0.198−0.266−0.161−0.303−0.0291
       ** 表示在 P<0.01(双尾)显著相关。** indicates significant correlation at P<0.01 (double tails).
    下载: 导出CSV

    表  2  不同添加量纳米零价铁(nZVI)和蚯蚓对土壤细菌丰度和多样性的影响

    Table  2.   Effects of nano-zero-valent iron (nZVI) on abundance and diversity of soil bacteria (16S rRNA gene) (97% similarity level)

    蚯蚓 EarthwormnZVI添加量 nZVI rate (%)香农指数 Shannon辛普森指数 SimpsonChaoAce
    无 No09.4873±0.3169a0.9798±0.0010a2915.06±545.16a2940.93±570.35a
    0.059.4325±0.2324a0.9797±0.0007a2885.51±323.55a2916.06±337.59a
    0.259.4387±0.3604a0.9796±0.0012a2771.03±523.41a2783.71±561.79a
    0.509.5352±0.2096a0.9799±0.0006a3056.69±301.52a3090.94±320.31a
    有 Exist09.5499±0.0525a0.9800±0.0002a3157.40±104.32a3204.63±107.87a
    0.059.5771±0.0521a0.9801±0.0002a3197.37±65.50a3242.72±64.76a
    0.259.5796±0.0706a0.9801±0.0001a3113.03±91.71a3156.79±97.9a
    0.509.5639±0.0606a0.9800±2.3E-05a3056.62±154.26a3089.67±152.81a
      “a”表示不同处理无显著差异(P>0.05)。“a” represents no significant difference among different treatments at P>0.05 level.
    下载: 导出CSV

    表  3  纳米零价铁(nZVI)胁迫下蚯蚓活动对土壤化学性质的影响

    Table  3.   Effects of earthworm activities on soil chemical properties under nano-zero-valent iron (nZVI) stress

    蚯蚓
    Earthworm
    nZVI添加量
    nZVI rate (%)
    有机质
    Organic matter
    (g∙kg−1)
    全磷
    Total phosphorus
    (g∙kg−1)
    全氮
    Total nitrogen
    (g∙kg−1)
    碱解氮
    Alkali-hydrolyzable
    nitrogen (mg∙kg−1)
    速效磷
    Available phosphorus
    (mg∙kg−1)
    无 No0114.78±16.59a1.15±0.30ab3.55±0.2abc395.68±48.23a446.22±13.41c
    0.05120.64±13.44a1.24±0.52ab3.51±0.37abc346.56±45.55ab472.28±9.02bc
    0.25108.27±29.05ab1.45±0.36a3.70±0.45ab368.71±62.44a452.50±30.30bc
    0.50109.13±9.93ab1.32±0.15ab3.93±0.57a292.28±51.95b448.62±33.61c
    有 Exist0103.76±11.52ab1.28±0.12ab3.16±0.22c392.92±38.11a491.53±23.85b
    0.05114.70±9.33a0.98±0.40b3.39±0.17bc352.70±42.26ab470.14±43.62bc
    0.25109.44±6.1ab1.21±0.38ab3.29±0.19bc365.46±54.99ab490.86±24.15b
    0.5088.29±25.41b1.19±0.07ab3.28±0.2bc336.54±98.1ab540.84±50.45a
      同列不同小写字母表示不同处理(蚯蚓+nZVI添加量)间差异显著(P<0.05)。
    Different lowercase letters in the same column represent significant differences among different treatments of nZVI and earthworm at P<0.05 level.
    下载: 导出CSV

    表  4  纳米零价铁(nZVI)胁迫下蚯蚓活动对土壤质量的双因素方差分析

    Table  4.   Two factor analysis of variance of earthworm activity on soil quality under nano-zero-valent iron (nZVI) stress (P values)

    指标 IndexnZVI (N)df蚯蚓 Earthworm (E)dfE × Ndf
    大团聚体质量比 Mass ratio of macroaggregates6.998**342.990**11.353*2
    小团聚体质量比 Mass ratio of microaggregates 4.750**312.468***30.221ns2
    黏土质量比 Mass ratio of clay0.091ns10.214ns11.711ns1
    有机质含量 Organic matter 2.512ns33.499ns10.893ns3
    全氮含量 Total nitrogen1.182ns317.075***11.282ns3
    全磷含量 Total phosphorus0.907ns31.689ns10.959ns3
    碱解氮含量 Alkali-hydrolyzable nitrogen3.999**30.440ns10.453ns3
    速效磷含量 Available phosphorus1.710ns321.911***14.341**3
    平均重量直径 Average weight diameter3.693ns124.911***10.001ns1
      ns: P>0.05; *: P ≤0.05; **: P≤0.01; ***: P≤0.001.
    下载: 导出CSV
  • [1] VILARDI G, DI PALMA L. Kinetic study of nitrate removal from aqueous solutions using copper-coated iron nanoparticles[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(3): 359−365 doi: 10.1007/s00128-016-1865-9
    [2] EL-TEMSAH Y S, JONER E J. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to Collembola and ostracods[J]. Chemosphere, 2013, 92(1): 131−137 doi: 10.1016/j.chemosphere.2013.02.039
    [3] LI Z T, WANG L, WU J Z, et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses[J]. Environmental Pollution, 2020, 260: 114098 doi: 10.1016/j.envpol.2020.114098
    [4] KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825 doi: 10.1897/08-090.1
    [5] LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application[J]. Journal of Hazardous Materials, 2017, 322: 163−171 doi: 10.1016/j.jhazmat.2016.01.032
    [6] LEE C, KIM J Y, LEE W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13): 4927−4933
    [7] CHEN P J, SU C H, TSENG C Y, et al. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish[J]. Marine Pollution Bulletin, 2011, 63(5/6/7/8/9/10/11/12): 339−346
    [8] KELLER A A, GARNER K, MILLER R J, et al. Toxicity of nano-zero valent iron to freshwater and marine organisms[J]. PLoS One, 2012, 7(8): e43983 doi: 10.1371/journal.pone.0043983
    [9] CHEN X, YAO X Y, YU C N, et al. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles[J]. Environmental Science and Pollution Research, 2014, 21(7): 5201−5210 doi: 10.1007/s11356-013-2089-8
    [10] HUANG D L, HU Z X, PENG Z W, et al. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating[J]. Journal of Environmental Management, 2018, 210: 191−200
    [11] PHILLIPS H R, GUERRA C A, BARTZ M L C, et al. Global distribution of earthworm diversity[EB/OL]. 2019. https://www.researchgate.net/publication/334304076_Global_distribution_of_earthworm_diversity
    [12] KEMPER W D, ROSENAU R C. Aggregate Stability and Size Distribution[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy, 2018: 425–442
    [13] LIANG J, XIA X Q, YUAN L, et al. The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209)[J]. Environmental Pollution, 2018, 237: 784−791 doi: 10.1016/j.envpol.2017.10.130
    [14] LIANG J, XIA X Q, ZHANG W, et al. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system[J]. Environmental Science and Pollution Research, 2017, 24(3): 2507−2514 doi: 10.1007/s11356-016-8001-6
    [15] LUKKARI T, HAIMI J. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species[J]. Ecotoxicology and Environmental Safety, 2005, 62(1): 35−41 doi: 10.1016/j.ecoenv.2004.11.012
    [16] EL-TEMSAH Y S, JONER E J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil[J]. Chemosphere, 2012, 89(1): 76−82 doi: 10.1016/j.chemosphere.2012.04.020
    [17] YIRSAW B D, MEGHARAJ M, CHEN Z L, et al. Environmental application and ecological significance of nano-zero valent iron[J]. Journal of Environmental Sciences, 2016, 44: 88−98 doi: 10.1016/j.jes.2015.07.016
    [18] YIRSAW B D, MAYILSWAMI S, MEGHARAJ M, et al. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types[J]. Environmental Science and Pollution Research, 2016, 23(10): 9822−9831 doi: 10.1007/s11356-016-6193-4
    [19] KıZıLKAYA R. The role of different organic wastes on zinc bioaccumulation by earthworm Lumbricus terrestris L. (Oligochaeta) in successive Zn added soil[J]. Ecological Engineering, 2005, 25(4): 322−331 doi: 10.1016/j.ecoleng.2005.06.006
    [20] GANGULY P, BREEN A, PILLAI S C. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances[J]. ACS Biomaterials Science & Engineering, 2018, 4(7): 2237−2275
    [21] KWAK J I, AN Y J. Ecotoxicological effects of nanomaterials on earthworms: a review[J]. Human and Ecological Risk Assessment: an International Journal, 2015, 21(6): 1566−1575
    [22] LIU C G, DUAN C Q, MENG X H, et al. Ecotoxicological effects of nanomaterials on earthworms: a review[J]. Human and Ecological Risk Assessment: an International Journal, 2015, 21(6): 115410
    [23] FAJARDO C, COSTA G, NANDE M, et al. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact[J]. Science of the Total Environment, 2019, 656: 421−432 doi: 10.1016/j.scitotenv.2018.11.323
    [24] JIAO W Z, SONG Y, ZHANG D S, et al. Nanoscale zero-valent iron modified with carboxymethyl cellulose in an impinging stream-rotating packed bed for the removal of lead (Ⅱ)[J]. Advanced Powder Technology, 2019, 30(10): 2251−2261 doi: 10.1016/j.apt.2019.07.005
    [25] WU S L, VOSÁTKA M, VOGEL-MIKUS K, et al. Nano zero-valent iron mediated metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science & Technology, 2018, 52(14): 7640−7651
    [26] BAI H C, LUO M, WEI S Q, et al. The vital function of humic acid with different molecular weight in controlling Cd and Pb bioavailability and toxicity to earthworm (Eisenia fetida) in soil[J]. Environmental Pollution, 2020, 261: 114222 doi: 10.1016/j.envpol.2020.114222
    [27] BEAUMELLE L, VILE D, LAMY I, et al. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils[J]. Science of the Total Environment, 2016, 569/570: 961−972 doi: 10.1016/j.scitotenv.2016.06.023
    [28] LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications[J]. Environmental Pollution, 2020, 264: 114728 doi: 10.1016/j.envpol.2020.114728
    [29] MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2045−2053
    [30] 朱玲. 蚯蚓对土壤生物学性质、活性有机碳组分和土壤团聚体稳定性的影响[D]. 南京: 南京农业大学, 2006

    ZHU L. Earthworm effects soil biological properties, active organic carbon and stabilization of soil aggregates[D]. Nanjing: Nanjing Agricultural University, 2006
    [31] 崔莹莹, 吴家龙, 张池, 等. 不同生态类型蚯蚓对赤红壤和红壤团聚体分布和稳定性的影响[J]. 华南农业大学学报, 2020, 41(1): 83−90 doi: 10.7671/j.issn.1001-411X.201903034

    CUI Y Y, WU J L, ZHANG C, et al. Impacts of different ecological types of earthworm on aggregate distribution and stability in typical latosolic red and red soils[J]. Journal of South China Agricultural University, 2020, 41(1): 83−90 doi: 10.7671/j.issn.1001-411X.201903034
    [32] SHIPITALO M J, PROTZ R. Chemistry and micromorphology of aggregation in earthworm casts[J]. Geoderma, 1989, 45(3/4): 357−374
    [33] AL-MALIKI S, SCULLION J. Interactions between earthworms and residues of differing quality affecting aggregate stability and microbial dynamics[J]. Applied Soil Ecology, 2013, 64: 56−62 doi: 10.1016/j.apsoil.2012.10.008
    [34] BEDANO J C, VAQUERO F, DOMÍNGUEZ A, et al. Earthworms contribute to ecosystem process in no-till systems with high crop rotation intensity in Argentina[J]. Acta Oecologica, 2019, 98: 14−24 doi: 10.1016/j.actao.2019.05.003
    [35] PENG D H, WU B, TAN H, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil[J]. Chemosphere, 2019, 228: 44−53 doi: 10.1016/j.chemosphere.2019.04.106
    [36] BYERS A K, CONDRON L, O’CALLAGHAN M, et al. Soil microbial community restructuring and functional changes in ancient kauri (Agathis australis) forests impacted by the invasive pathogen Phytophthora agathidicida[J]. Soil Biology and Biochemistry, 2020, 150: 108016 doi: 10.1016/j.soilbio.2020.108016
    [37] GONG X, JIANG Y Y, ZHENG Y, et al. Earthworms differentially modify the microbiome of arable soils varying in residue management[J]. Soil Biology and Biochemistry, 2018, 121: 120−129 doi: 10.1016/j.soilbio.2018.03.011
    [38] FROUZ J, KRIŠTŮFEK V, LIVEČKOVÁ M, et al. Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites[J]. Folia Microbiologica, 2011, 56(1): 36−43 doi: 10.1007/s12223-011-0011-7
    [39] XUE W J, HUANG D L, ZENG G M, et al. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review[J]. Chemosphere, 2018, 210: 1145−1156 doi: 10.1016/j.chemosphere.2018.07.118
    [40] ŠEVCŮ A, EL-TEMSAH Y S, FILIP J, et al. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms[J]. Environmental Science and Pollution Research, 2017, 24(26): 21191−21202 doi: 10.1007/s11356-017-9699-5
    [41] FANG J, SHAN X Q, WEN B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution, 2009, 157(4): 1101−1109 doi: 10.1016/j.envpol.2008.11.006
    [42] WANG Y G, LI Y S, KIM H, et al. Transport and retention of fullerene nanoparticles in natural soils[J]. Journal of Environmental Quality, 2010, 39(6): 1925−1933 doi: 10.2134/jeq2009.0411
    [43] NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5): 372−386 doi: 10.1007/s10646-008-0214-0
  • 加载中
图(4) / 表(4)
计量
  • 文章访问数:  24
  • HTML全文浏览量:  7
  • PDF下载量:  12
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-15
  • 录用日期:  2021-05-08
  • 网络出版日期:  2021-06-22
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回