留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同类型水稻品种产量形成对微纳米气泡响应的差异

钱银飞 陈金 邵彩虹 关贤交 邱才飞 陈先茂 梁喜欢 谢江 邓国强 彭春瑞

钱银飞, 陈金, 邵彩虹, 关贤交, 邱才飞, 陈先茂, 梁喜欢, 谢江, 邓国强, 彭春瑞. 不同类型水稻品种产量形成对微纳米气泡响应的差异[J]. 中国生态农业学报(中英文), 2021, 29(11): 1893−1901 doi: 10.13930/j.cnki.cjea.210194
引用本文: 钱银飞, 陈金, 邵彩虹, 关贤交, 邱才飞, 陈先茂, 梁喜欢, 谢江, 邓国强, 彭春瑞. 不同类型水稻品种产量形成对微纳米气泡响应的差异[J]. 中国生态农业学报(中英文), 2021, 29(11): 1893−1901 doi: 10.13930/j.cnki.cjea.210194
QIAN Y F, CHEN J, SHAO C H, GUAN X J, QIU C F, CHEN X M, LIANG X H, XIE J, DENG G Q, PENG C R. Effect of micro-nano bubbles on the yield of different rice types[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1893−1901 doi: 10.13930/j.cnki.cjea.210194
Citation: QIAN Y F, CHEN J, SHAO C H, GUAN X J, QIU C F, CHEN X M, LIANG X H, XIE J, DENG G Q, PENG C R. Effect of micro-nano bubbles on the yield of different rice types[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1893−1901 doi: 10.13930/j.cnki.cjea.210194

不同类型水稻品种产量形成对微纳米气泡响应的差异

doi: 10.13930/j.cnki.cjea.210194
基金项目: 国家重点研发计划课题(2016YFD0801101, 2018YFD0800503)资助
详细信息
    作者简介:

    钱银飞, 主要研究方向为作物栽培和农业生态。E-mail: qyftfs@163.com

    通讯作者:

    彭春瑞, 主要研究方向为作物栽培和农业生态。E-mail: pcrtfs@163.com

  • 中图分类号: S314

Effect of micro-nano bubbles on the yield of different rice types

Funds: This study was supported by the National Key Research and Development Project of China (2016YFD0801101, 2018YFD0800503)
More Information
  • 摘要: 为评估微纳米气泡对不同类型水稻品种生长发育及产量形成的影响差异, 以及这种差异所带来的微纳米气泡应用策略的启示, 以江西主推的超级稻品种‘五丰优T025’和常规稻品种‘赣晚籼37’为试验材料, 于2019—2020年开展了盆栽试验, 研究微纳米气泡(MNB)与普通水(对照, CK)灌溉对超级稻和常规稻生长发育及产量构成的影响。结果表明: 1) MNB灌溉显著增加了土壤溶液中溶解氧浓度、水稻根系体积和干重, 提高了α-NA氧化量、根系总吸收表面积和根系活跃吸收表面积、叶片的叶绿素含量和净光合速率, 促进了生物产量的积累和经济系数的提高, 增加了水稻的穗长、着粒密度、一二级枝梗和主轴数及其着生其上的粒数和结实率, 最终提高了籽粒产量。2) 与CK相比, MNB灌溉提高常规稻产量8.46%~17.9%, 超级稻产量11.32%~22.09%, 以超级稻增幅较大。3) MNB灌溉主要增加了常规稻的穗数(6.67%~16.67%)和超级稻的穗粒数(3.23%~7.2%)和结实率(1.14%~6.57%)。4) MNB灌溉提高常规稻穗数原因主要是在水稻生育前期促进了水稻分蘖的发生, 使得常规稻具有最大分蘖数; 而提高超级稻穗粒数和结实率的主要原因在于提高了水稻生育中后期叶片的光合作用, 减缓了叶片的衰老, 提高了分蘖成穗率和光合物质的积累, 提高了二次枝梗和主轴上的籽粒数量及结实率, 提高了经济系数。可见, 通过微纳米气泡可进一步提升常规稻和超级稻的产量。常规稻可在分蘖期之前适当增加微纳米气泡供给以增加穗数增产, 而超级稻可在抽穗后增加微纳米气泡的供给以提高穗粒数和结实率而增产。
  • 图  1  微纳米气泡灌溉(MNB)和普通水灌溉(CK)下水稻移栽后的土壤溶液溶解氧浓度(DO)的变化

    Figure  1.  Changes of dissolved oxygen (DO) concentration in soil solution under the irrigations of micro-nano bubble water (MNB) and running water (CK) after rice transplanting

    图  2  不同类型水稻品种籽粒产量对微纳米气泡灌溉的响应

    IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同大、小写字母表示同一品种两个处理间在P<0.01和P<0.05水平差异显著。

    Figure  2.  Effect of micro-nano bubble water irrigation on the grain yield of inbred rice and super rice

    IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different capital and lowercase letters mean significant differences between two treatments of the same rice variety at P<0.01 and P<0.05 probability levels, respectively.

    图  3  2020年不同类型水稻品种最高分蘖数和成穗率对微纳米气泡灌溉的响应

    IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一品种两个处理间在P<0.05水平差异显著。

    Figure  3.  Effect of micro-nano bubble water irrigation on the tiller characteristics of inbred rice and super rice in 2020

    IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 probability levels.

    图  4  2020年不同类型水稻品种的生物量(A)和经济系数(B)对微纳米气泡灌溉的响应

    IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间在P<0.05水平差异显著。

    Figure  4.  Effect of micro-nano bubble water irrigation on biomass (A) and harvest index (B) of inbred rice and super rice in 2020

    IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 probability levels.

    图  5  2020年微纳米气泡灌溉下不同类型水稻品种不同生育期最上部完全展开叶SPAD (A)和净光合速率(B)

    IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉; ES: 拔节期; BS: 孕穗期; FHS: 齐穗期; MS: 乳熟期; YS: 黄熟期。不同小写字母表示同一品种不同处理间P<0.05水平差异显著。

    Figure  5.  SPAD (A) and net photosynthetic rate (Pn, B) of the top fully expanded leaves of inbred rice and super rices under micro-nano bubble water irrigation and running water irrigation in 2020

    IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation; ES: elongation stage; BS: booting stage; FHS: full heading stage; MS: milky stage; YS: yellow stage. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level.

    表  1  不同类型水稻品种籽粒产量构成因素对微纳米气泡灌溉的响应

    Table  1.   Effect of the micro-nano bubble water irrigation on the yield components of inbred rice and super rice

    年份
    Year
    处理
    Treatment
    每盆穗数
    Panicles per pot
    穗粒数
    Spikelets per panicle
    结实率
    Seed-setting rate (%)
    千粒重
    1000-grain weight (g)
    2019IR-CK19.5±0.2b136.6±5.3a85.44±0.32b27.14±0.04a
    IR-MNB20.8±0.3a138.3±4.8a86.85±0.21a27.11±0.06a
    SR-CK24.3±0.3a176.5±3.2b82.43±0.25b23.52±0.13a
    SR-MNB24.8±0.4a189.2±5.7a83.37±0.36a23.58±0.33a
    2020IR-CK19.2±0.72b130.3±6.49a78.44±3.18a27.24±0.16a
    IR-MNB22.4±1.28a132.4±5.02a79.26±2.08a27.15±0.04a
    SR-CK19.8±0.36b176.8±5.88b79.45±1.63b22.81±0.75a
    SR-MNB22.1±0.88a182.6±6.8a84.64±4.07a22.74±0.53a
      IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间P<0.05水平差异显著。IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level.
    下载: 导出CSV

    表  2  2020年微纳米气泡灌溉下不同类型水稻品种穗部性状

    Table  2.   Effect of the micro-nano bubble water irrigation on panicle traits of inbred rice and super rice in 2020

    处理
    Treatment
    穗长
    Panicle
    length
    (cm)
    一次枝梗
    Primary branch
    二次枝梗
    Secondary branch
    主轴 Cob着粒密度
    Grains per
    panicle length
    (grains·cm−1)
    枝梗数
    Branches
    number
    粒数
    Grains
    number
    结实率
    Seed-setting
    rate (%)
    枝梗数
    Branches
    number
    粒数
    Grains
    number
    结实率
    Seed-setting
    rate (%)
    粒数
    Grains
    number
    结实率
    Seed-setting
    rate (%)
    IR-CK18.6±0.32a14.1±0.06a65.9±1.12a89.2±0.04a20.9±0.67a59.0±2.12a66.5±1.23a5.4±0.32a76.6±0.05b7.0±0.45a
    IR-MNB18.7±0.28a14.2±0.13a67.0±0.68a89.7±0.12a21.4±0.46a60.0±1.86a67.5±1.11a5.4±0.21a78.6±0.14a7.1±0.67a
    SR-CK23.8±0.31b16.2±0.23a81.8±1.21a89.5±0.06a32.5±0.43a89.6±1.34a70.5±2.11b5.1±0.09b75.6±0.11b7.4±0.34b
    SR-MNB24.3±0.43a16.4±0.21a82.6±2.12a90.5±0.08a33.3±0.78a93.9±2.65a79.6±2.15a5.7±0.32a81.5±0.18a7.5±0.82a
      IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间P<0.05水平差异显著。IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level.
    下载: 导出CSV

    表  3  2020年微纳米气泡灌溉下不同类型水稻品种齐穗期水稻根系特征

    Table  3.   Effect of the micro-nano bubble water irrigation on root traits of inbred rice and super rice in 2020

    处理
    Treatment
    干重
    Dry matter weight
    (g·pot−1)
    根体积
    Root volume
    (cm3·pot−1)
    α-NA氧化量
    α-NA oxidation
    (µg·h−1·g−1)
    总吸收表面积
    Total absorption area
    (m2·pot−1)
    活跃吸收表面积
    Active absorption area
    (m2·pot−1)
    活跃吸收表面积比
    Active area ratio
    (%)
    IR-CK6.32±0.74a78.64±5.53b64.73±2.51b46.24±2.32a25.62±2.14b55.41±2.15b
    IR-MNB7.34±2.62a102.37±10.42a73.21±4.42a49.32±2.66a32.43±3.09a65.75±3.01a
    SR-CK7.12±0.42a87.26±3.41b58.38±2.26b48.24±1.65a24.68±2.24b51.16±2.08b
    SR-MNB8.54±1.72a121.78±12.22a65.49±2.45a50.62±3.55a30.14±2.05a59.54±2.75a
      IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间在P<0.05水平差异显著。IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level.
    下载: 导出CSV
  • [1] 朱德峰, 程式华, 张玉屏, 等. 全球水稻生产现状与制约因素分析[J]. 中国农业科学, 2010, 43(3): 474−479 doi: 10.3864/j.issn.0578-1752.2010.03.005

    ZHU D F, CHENG S H, ZHANG Y P, et al. Analysis of status and constraints of rice production in the world[J]. Scientia Agricultura Sinica, 2010, 43(3): 474−479 doi: 10.3864/j.issn.0578-1752.2010.03.005
    [2] 周晚来, 易永健, 屠乃美, 等. 根际增氧对水稻根系形态和生理影响的研究进展[J]. 中国生态农业学报, 2018, 26(3): 367−376

    ZHOU W L, YI Y J, TU N M, et al. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367−376
    [3] LI Y L, ZHANG Y L, HU J, et al. Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition[J]. Biology and Fertility of Soils, 2007, 43(4): 417−425 doi: 10.1007/s00374-006-0119-0
    [4] BHATTARAI S P, SU N H, MIDMORE D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments[J]. Advances in Agronomy, 2005, 88: 313−377
    [5] 雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2): 297−308

    LEI H J, HU S G, PAN H W, et al. Advancement in research on soil aeration and oxygation[J]. Acta Pedologica Sinica, 2017, 54(2): 297−308
    [6] LIN X Q, ZHU D F, LIN X J. Effects of water management and organic fertilization with SRI crop practices on hybrid rice performance and rhizosphere dynamics[J]. Paddy and Water Environment, 2011, 9(1): 33−39 doi: 10.1007/s10333-010-0238-y
    [7] 黄庆裕. 水稻垄作栽培的关键技术及其效应分析[J]. 广西农业科学, 1995, 26(4): 151−152

    HUANG Q Y. Key technologies and effects of rice for ridge cultivation[J]. Guangxi Agricultural Science, 1995, 26(4): 151−152
    [8] 褚光, 展明飞, 朱宽宇, 等. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(7): 1026−1036

    CHU G, ZHAN M F, ZHU K Y, et al. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026−1036
    [9] 周云鹏, 徐飞鹏, 刘秀娟, 等. 微纳米气泡加氧灌溉对水培蔬菜生长与品质的影响[J]. 灌溉排水学报, 2016, 35(8): 98−100, 104

    ZHOU Y P, XU F P, LIU X J, et al. Influence of micro bubble oxygen irrigation on vegetable growth and quality effect[J]. Journal of Irrigation and Drainage, 2016, 35(8): 98−100, 104
    [10] ZHOU Y P, ZHOU B, XU F P, et al. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation[J]. Agricultural Water Management, 2019, 223: 105713 doi: 10.1016/j.agwat.2019.105713
    [11] LIU Y X, ZHOU Y P, WANG T Z, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835−843 doi: 10.1016/j.jclepro.2019.02.208
    [12] 才硕. 微纳米气泡增氧灌溉技术在水稻灌区节水减排中的应用研究[J]. 节水灌溉, 2016, (9): 117−120, 128 doi: 10.3969/j.issn.1007-4929.2016.09.026

    CAI S. Application research of micro-nano bubble aerated irrigation technique in water conservation and wastewater discharge from rice irrigation area[J]. Water Saving Irrigation, 2016, (9): 117−120, 128 doi: 10.3969/j.issn.1007-4929.2016.09.026
    [13] 才硕, 时红, 潘晓华, 等. 微纳米气泡增氧灌溉对双季稻需水特性及产量的影响[J]. 节水灌溉, 2017, (2): 12−15 doi: 10.3969/j.issn.1007-4929.2017.02.004

    CAI S, SHI H, PAN X H, et al. Effects of micro-nano bubble aerated irrigation on water requirement characters and yield of double season rice[J]. Water Saving Irrigation, 2017, (2): 12−15 doi: 10.3969/j.issn.1007-4929.2017.02.004
    [14] 李奕林. 水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 2012, 32(7): 2066−2074 doi: 10.5846/stxb201111111712

    LI Y L. Relationship among rice root aerechyma, root radial oxygen loss and rhizosphere nitrification[J]. Acta Ecologica Sinica, 2012, 32(7): 2066−2074 doi: 10.5846/stxb201111111712
    [15] 乔富廉. 植物生理学试验分析测定技术[M]. 北京: 中国农业科学技术出版社, 2002

    QIAO F L. Analysis and Determination of Test Technology of Plant Physiology[M]. Beijing: Chinese Agricultural Science and Technology Press, 2002
    [16] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175−1180 doi: 10.1016/j.chemosphere.2011.05.054
    [17] 薛晓莉, 张慧娟, 杨文华, 等. 微纳米气泡技术及其在农业领域的应用[J]. 农村科技, 2017, (8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033

    XUE X L, ZHANG H J, YANG W H, et al. Micro-nano bubbles and its application in agriculture[J]. Rural Science & Technology, 2017, (8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033
    [18] 张慧娟, 薛晓莉, 林少航, 等. 微纳米气泡发生技术及其在水培增氧上的应用[J]. 蔬菜, 2019, (1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014

    ZHANG H J, XUE X L, LIN S H, et al. Micro-nano bubble generating technology and its application in hydroponics with aeration[J]. Vegetables, 2019, (1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014
    [19] 张育斌, 魏正英, 朱新国, 等. 基于微纳米气泡增氧灌溉技术与设备分析[J]. 浙江水利科技, 2019, 47(6): 1−5

    ZHANG Y B, WEI Z Y, ZHU X G, et al. Analysis of aerated irrigation technology and device based on micro-nano bubble[J]. Zhejiang Hydrotechnics, 2019, 47(6): 1−5
    [20] 王文泉, 张福锁. 高等植物厌氧适应的生理及分子机制[J]. 植物生理学通讯, 2001, 37(1): 63−70

    WANG W Q, ZHANG F S. The physiological and molecular mechanism of adaptation to anaerobiosis in higher plants[J]. Plant Physiology Communications, 2001, 37(1): 63−70
    [21] ALMEIDA A M, VRIEZEN W H, VAN DER STRAETEN D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice[J]. Russian Journal of Plant Physiology, 2003, 50(6): 743−751 doi: 10.1023/B:RUPP.0000003272.65496.04
    [22] PARK Y, KIM H, KIM J, et al. Measurement of liquid-vapor phase distribution on nano- and microstructured boiling surfaces[J]. International Journal of Multiphase Flow, 2016, 81: 67−76 doi: 10.1016/j.ijmultiphaseflow.2016.01.007
    [23] 朱练峰, 刘学, 禹盛苗, 等. 增氧灌溉对水稻生理特性和后期衰老的影响[J]. 中国水稻科学, 2010, 24(3): 257−263 doi: 10.3969/j.issn.1001-7216.2010.03.008

    ZHU L F, LIU X, YU S M, et al. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice[J]. Chinese Journal of Rice Science, 2010, 24(3): 257−263 doi: 10.3969/j.issn.1001-7216.2010.03.008
    [24] 刘学. 不同氧供给处理对水稻生育特性与产量形成的影响[D]. 北京: 中国农业科学院, 2009

    LIU X. Effects of different oxygen supply on growth characteristics and yield formation of rice (Oryza sativa L)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009
    [25] 张立成. 不同加氧处理对超级稻生长、生理及产量的影响研究[D]. 长沙: 湖南农业大学, 2015

    ZHANG L C. Study on effect of different oxygen treatment to growth, physiology and yield of super rice[D]. Changsha: Hunan Agricultural University, 2015
    [26] SANG H H, JIAO X Y, WANG S F, et al. Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice[J]. Plant, Soil and Environment, 2018, 64(7): 297−302 doi: 10.17221/240/2018-PSE
  • 加载中
图(5) / 表(3)
计量
  • 文章访问数:  218
  • HTML全文浏览量:  126
  • PDF下载量:  34
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-31
  • 录用日期:  2021-06-28
  • 网络出版日期:  2021-08-12
  • 刊出日期:  2021-11-10

目录

    /

    返回文章
    返回