-
摘要: 为评估微纳米气泡对不同类型水稻品种生长发育及产量形成的影响差异, 以及这种差异所带来的微纳米气泡应用策略的启示, 以江西主推的超级稻品种‘五丰优T025’和常规稻品种‘赣晚籼37’为试验材料, 于2019—2020年开展了盆栽试验, 研究微纳米气泡(MNB)与普通水(对照, CK)灌溉对超级稻和常规稻生长发育及产量构成的影响。结果表明: 1) MNB灌溉显著增加了土壤溶液中溶解氧浓度、水稻根系体积和干重, 提高了α-NA氧化量、根系总吸收表面积和根系活跃吸收表面积、叶片的叶绿素含量和净光合速率, 促进了生物产量的积累和经济系数的提高, 增加了水稻的穗长、着粒密度、一二级枝梗和主轴数及其着生其上的粒数和结实率, 最终提高了籽粒产量。2) 与CK相比, MNB灌溉提高常规稻产量8.46%~17.9%, 超级稻产量11.32%~22.09%, 以超级稻增幅较大。3) MNB灌溉主要增加了常规稻的穗数(6.67%~16.67%)和超级稻的穗粒数(3.23%~7.2%)和结实率(1.14%~6.57%)。4) MNB灌溉提高常规稻穗数原因主要是在水稻生育前期促进了水稻分蘖的发生, 使得常规稻具有最大分蘖数; 而提高超级稻穗粒数和结实率的主要原因在于提高了水稻生育中后期叶片的光合作用, 减缓了叶片的衰老, 提高了分蘖成穗率和光合物质的积累, 提高了二次枝梗和主轴上的籽粒数量及结实率, 提高了经济系数。可见, 通过微纳米气泡可进一步提升常规稻和超级稻的产量。常规稻可在分蘖期之前适当增加微纳米气泡供给以增加穗数增产, 而超级稻可在抽穗后增加微纳米气泡的供给以提高穗粒数和结实率而增产。Abstract: Increasing the rhizosphere oxygen in the rice paddy can influence the paddy field environment and improve the physiology, metabolism, and grain yield of rice. The traditional methods of mechanically or chemically aerating subsurface irrigation could produce large air bubbles, which can escape from the soil along the pores adjacent to the roots. Aerating irrigation efficiency improvement is an issue not yet to be resolved. One way is to use water rich in micro-nano bubbles (MNB). MNB are small air bubbles that cannot escape from the soil easily, thereby, supplying more oxygen. Different rice types vary in their ability to absorb and utilize oxygen. A pot experiment was carried out in which the experimental group was treated with MNB water and the control group with running water as check (CK) during 2019−2020 to determine the effect of MNB and CK on the growth and yield of two paddy rice varieties (inbred rice ‘Ganwanxian 37’ and super rice ‘Wufengyou T025’). The results showed that 1) MNB increased the dissolved oxygen concentration of soil solution, increased the number and volume of rice roots, enhanced α-NA oxidation, improved the total and active absorption area of root, promoted the SPAD and net photosynthetic rate (Pn) value of leaves, increased the biomass accumulation, raised the harvest index, improved the rice panicle characteristics such as length and number of grains per panicle, enhanced the number of primary and secondary branches and also the main spike-stalk, seed-setting rate on the primary and secondary branches and on spike-stalk, and enhanced the grain yield. 2) Compared to CK, MNB enhanced the yield of inbred rice by 8.46%–17.9% and super rice by 11.32%–22.09%, with the super rice showing higher grain yield than the inbred rice. 3) In case of inbred rice, MNB mainly increased the panicles (6.67%–16.67%), whereas in super rice it increased the spikelets per panicle (3.23%–7.2%) and the seed-setting rate (1.14%–6.57%). 4) The MNB enhanced the panicles number of inbred rice by promoting the tiller occurrence in the early growing period. The MNB enhanced the number of spikelets per panicle and the seed-setting rate in the super rice by increasing the rate of photosynthesis of leaves (improved the SPAD and Pn value). It also slowed down the leaf senescence, improved the bearing rate of tillers, biomass accumulation, increased the number and seed-setting rate in the secondary branches and the main spike-stalk, and it improved the harvest index. It was, thus, evident that MNB could improve the yield of both types of rice. In inbred rice, supplying MNB before the tillering stage increases the yield by increasing panicles number. In super rice, MNB supply after the earing stage increases the yield by producing more spikelets per panicle and through higher seed-setting rate.
-
Key words:
- Micro-nano bubbles /
- Super rice /
- Inbred rice /
- Growth and development /
- Yield
-
图 2 不同类型水稻品种籽粒产量对微纳米气泡灌溉的响应
IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同大、小写字母表示同一品种两个处理间在P<0.01和P<0.05水平差异显著。
Figure 2. Effect of micro-nano bubble water irrigation on the grain yield of inbred rice and super rice
IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different capital and lowercase letters mean significant differences between two treatments of the same rice variety at P<0.01 and P<0.05 probability levels, respectively.
图 3 2020年不同类型水稻品种最高分蘖数和成穗率对微纳米气泡灌溉的响应
IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一品种两个处理间在P<0.05水平差异显著。
Figure 3. Effect of micro-nano bubble water irrigation on the tiller characteristics of inbred rice and super rice in 2020
IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 probability levels.
图 4 2020年不同类型水稻品种的生物量(A)和经济系数(B)对微纳米气泡灌溉的响应
IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间在P<0.05水平差异显著。
Figure 4. Effect of micro-nano bubble water irrigation on biomass (A) and harvest index (B) of inbred rice and super rice in 2020
IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 probability levels.
图 5 2020年微纳米气泡灌溉下不同类型水稻品种不同生育期最上部完全展开叶SPAD (A)和净光合速率(B)
IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉; ES: 拔节期; BS: 孕穗期; FHS: 齐穗期; MS: 乳熟期; YS: 黄熟期。不同小写字母表示同一品种不同处理间P<0.05水平差异显著。
Figure 5. SPAD (A) and net photosynthetic rate (Pn, B) of the top fully expanded leaves of inbred rice and super rices under micro-nano bubble water irrigation and running water irrigation in 2020
IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation; ES: elongation stage; BS: booting stage; FHS: full heading stage; MS: milky stage; YS: yellow stage. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level.
表 1 不同类型水稻品种籽粒产量构成因素对微纳米气泡灌溉的响应
Table 1. Effect of the micro-nano bubble water irrigation on the yield components of inbred rice and super rice
年份
Year处理
Treatment每盆穗数
Panicles per pot穗粒数
Spikelets per panicle结实率
Seed-setting rate (%)千粒重
1000-grain weight (g)2019 IR-CK 19.5±0.2b 136.6±5.3a 85.44±0.32b 27.14±0.04a IR-MNB 20.8±0.3a 138.3±4.8a 86.85±0.21a 27.11±0.06a SR-CK 24.3±0.3a 176.5±3.2b 82.43±0.25b 23.52±0.13a SR-MNB 24.8±0.4a 189.2±5.7a 83.37±0.36a 23.58±0.33a 2020 IR-CK 19.2±0.72b 130.3±6.49a 78.44±3.18a 27.24±0.16a IR-MNB 22.4±1.28a 132.4±5.02a 79.26±2.08a 27.15±0.04a SR-CK 19.8±0.36b 176.8±5.88b 79.45±1.63b 22.81±0.75a SR-MNB 22.1±0.88a 182.6±6.8a 84.64±4.07a 22.74±0.53a IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间P<0.05水平差异显著。IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level. 表 2 2020年微纳米气泡灌溉下不同类型水稻品种穗部性状
Table 2. Effect of the micro-nano bubble water irrigation on panicle traits of inbred rice and super rice in 2020
处理
Treatment穗长
Panicle
length
(cm)一次枝梗
Primary branch二次枝梗
Secondary branch主轴 Cob 着粒密度
Grains per
panicle length
(grains·cm−1)枝梗数
Branches
number粒数
Grains
number结实率
Seed-setting
rate (%)枝梗数
Branches
number粒数
Grains
number结实率
Seed-setting
rate (%)粒数
Grains
number结实率
Seed-setting
rate (%)IR-CK 18.6±0.32a 14.1±0.06a 65.9±1.12a 89.2±0.04a 20.9±0.67a 59.0±2.12a 66.5±1.23a 5.4±0.32a 76.6±0.05b 7.0±0.45a IR-MNB 18.7±0.28a 14.2±0.13a 67.0±0.68a 89.7±0.12a 21.4±0.46a 60.0±1.86a 67.5±1.11a 5.4±0.21a 78.6±0.14a 7.1±0.67a SR-CK 23.8±0.31b 16.2±0.23a 81.8±1.21a 89.5±0.06a 32.5±0.43a 89.6±1.34a 70.5±2.11b 5.1±0.09b 75.6±0.11b 7.4±0.34b SR-MNB 24.3±0.43a 16.4±0.21a 82.6±2.12a 90.5±0.08a 33.3±0.78a 93.9±2.65a 79.6±2.15a 5.7±0.32a 81.5±0.18a 7.5±0.82a IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间P<0.05水平差异显著。IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level. 表 3 2020年微纳米气泡灌溉下不同类型水稻品种齐穗期水稻根系特征
Table 3. Effect of the micro-nano bubble water irrigation on root traits of inbred rice and super rice in 2020
处理
Treatment干重
Dry matter weight
(g·pot−1)根体积
Root volume
(cm3·pot−1)α-NA氧化量
α-NA oxidation
(µg·h−1·g−1)总吸收表面积
Total absorption area
(m2·pot−1)活跃吸收表面积
Active absorption area
(m2·pot−1)活跃吸收表面积比
Active area ratio
(%)IR-CK 6.32±0.74a 78.64±5.53b 64.73±2.51b 46.24±2.32a 25.62±2.14b 55.41±2.15b IR-MNB 7.34±2.62a 102.37±10.42a 73.21±4.42a 49.32±2.66a 32.43±3.09a 65.75±3.01a SR-CK 7.12±0.42a 87.26±3.41b 58.38±2.26b 48.24±1.65a 24.68±2.24b 51.16±2.08b SR-MNB 8.54±1.72a 121.78±12.22a 65.49±2.45a 50.62±3.55a 30.14±2.05a 59.54±2.75a IR: 常规稻; SR: 超级稻; CK: 普通水灌溉; MNB: 微纳米气泡灌溉。不同小写字母表示同一水稻品种两个处理间在P<0.05水平差异显著。IR: inbred rice; SR: super rice; CK: running water irrigation; MNB: micro-nano bubble water irrigation. Different lowercase letters mean significant differences between two treatments of the same rice variety at P<0.05 level. -
[1] 朱德峰, 程式华, 张玉屏, 等. 全球水稻生产现状与制约因素分析[J]. 中国农业科学, 2010, 43(3): 474−479 doi: 10.3864/j.issn.0578-1752.2010.03.005ZHU D F, CHENG S H, ZHANG Y P, et al. Analysis of status and constraints of rice production in the world[J]. Scientia Agricultura Sinica, 2010, 43(3): 474−479 doi: 10.3864/j.issn.0578-1752.2010.03.005 [2] 周晚来, 易永健, 屠乃美, 等. 根际增氧对水稻根系形态和生理影响的研究进展[J]. 中国生态农业学报, 2018, 26(3): 367−376ZHOU W L, YI Y J, TU N M, et al. Research progresses in the effects of rhizosphere oxygen-increasing on rice root morphology and physiology[J]. Chinese Journal of Eco-Agriculture, 2018, 26(3): 367−376 [3] LI Y L, ZHANG Y L, HU J, et al. Contribution of nitrification happened in rhizospheric soil growing with different rice cultivars to N nutrition[J]. Biology and Fertility of Soils, 2007, 43(4): 417−425 doi: 10.1007/s00374-006-0119-0 [4] BHATTARAI S P, SU N H, MIDMORE D J. Oxygation unlocks yield potentials of crops in oxygen-limited soil environments[J]. Advances in Agronomy, 2005, 88: 313−377 [5] 雷宏军, 胡世国, 潘红卫, 等. 土壤通气性与加氧灌溉研究进展[J]. 土壤学报, 2017, 54(2): 297−308LEI H J, HU S G, PAN H W, et al. Advancement in research on soil aeration and oxygation[J]. Acta Pedologica Sinica, 2017, 54(2): 297−308 [6] LIN X Q, ZHU D F, LIN X J. Effects of water management and organic fertilization with SRI crop practices on hybrid rice performance and rhizosphere dynamics[J]. Paddy and Water Environment, 2011, 9(1): 33−39 doi: 10.1007/s10333-010-0238-y [7] 黄庆裕. 水稻垄作栽培的关键技术及其效应分析[J]. 广西农业科学, 1995, 26(4): 151−152HUANG Q Y. Key technologies and effects of rice for ridge cultivation[J]. Guangxi Agricultural Science, 1995, 26(4): 151−152 [8] 褚光, 展明飞, 朱宽宇, 等. 干湿交替灌溉对水稻产量与水分利用效率的影响[J]. 作物学报, 2016, 42(7): 1026−1036CHU G, ZHAN M F, ZHU K Y, et al. Effects of alternate wetting and drying irrigation on yield and water use efficiency of rice[J]. Acta Agronomica Sinica, 2016, 42(7): 1026−1036 [9] 周云鹏, 徐飞鹏, 刘秀娟, 等. 微纳米气泡加氧灌溉对水培蔬菜生长与品质的影响[J]. 灌溉排水学报, 2016, 35(8): 98−100, 104ZHOU Y P, XU F P, LIU X J, et al. Influence of micro bubble oxygen irrigation on vegetable growth and quality effect[J]. Journal of Irrigation and Drainage, 2016, 35(8): 98−100, 104 [10] ZHOU Y P, ZHOU B, XU F P, et al. Appropriate dissolved oxygen concentration and application stage of micro-nano bubble water oxygation in greenhouse crop plantation[J]. Agricultural Water Management, 2019, 223: 105713 doi: 10.1016/j.agwat.2019.105713 [11] LIU Y X, ZHOU Y P, WANG T Z, et al. Micro-nano bubble water oxygation: Synergistically improving irrigation water use efficiency, crop yield and quality[J]. Journal of Cleaner Production, 2019, 222: 835−843 doi: 10.1016/j.jclepro.2019.02.208 [12] 才硕. 微纳米气泡增氧灌溉技术在水稻灌区节水减排中的应用研究[J]. 节水灌溉, 2016, (9): 117−120, 128 doi: 10.3969/j.issn.1007-4929.2016.09.026CAI S. Application research of micro-nano bubble aerated irrigation technique in water conservation and wastewater discharge from rice irrigation area[J]. Water Saving Irrigation, 2016, (9): 117−120, 128 doi: 10.3969/j.issn.1007-4929.2016.09.026 [13] 才硕, 时红, 潘晓华, 等. 微纳米气泡增氧灌溉对双季稻需水特性及产量的影响[J]. 节水灌溉, 2017, (2): 12−15 doi: 10.3969/j.issn.1007-4929.2017.02.004CAI S, SHI H, PAN X H, et al. Effects of micro-nano bubble aerated irrigation on water requirement characters and yield of double season rice[J]. Water Saving Irrigation, 2017, (2): 12−15 doi: 10.3969/j.issn.1007-4929.2017.02.004 [14] 李奕林. 水稻根系通气组织与根系泌氧及根际硝化作用的关系[J]. 生态学报, 2012, 32(7): 2066−2074 doi: 10.5846/stxb201111111712LI Y L. Relationship among rice root aerechyma, root radial oxygen loss and rhizosphere nitrification[J]. Acta Ecologica Sinica, 2012, 32(7): 2066−2074 doi: 10.5846/stxb201111111712 [15] 乔富廉. 植物生理学试验分析测定技术[M]. 北京: 中国农业科学技术出版社, 2002QIAO F L. Analysis and Determination of Test Technology of Plant Physiology[M]. Beijing: Chinese Agricultural Science and Technology Press, 2002 [16] AGARWAL A, NG W J, LIU Y. Principle and applications of microbubble and nanobubble technology for water treatment[J]. Chemosphere, 2011, 84(9): 1175−1180 doi: 10.1016/j.chemosphere.2011.05.054 [17] 薛晓莉, 张慧娟, 杨文华, 等. 微纳米气泡技术及其在农业领域的应用[J]. 农村科技, 2017, (8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033XUE X L, ZHANG H J, YANG W H, et al. Micro-nano bubbles and its application in agriculture[J]. Rural Science & Technology, 2017, (8): 65−68 doi: 10.3969/j.issn.1002-6193.2017.08.033 [18] 张慧娟, 薛晓莉, 林少航, 等. 微纳米气泡发生技术及其在水培增氧上的应用[J]. 蔬菜, 2019, (1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014ZHANG H J, XUE X L, LIN S H, et al. Micro-nano bubble generating technology and its application in hydroponics with aeration[J]. Vegetables, 2019, (1): 59−65 doi: 10.3969/j.issn.1001-8336.2019.01.014 [19] 张育斌, 魏正英, 朱新国, 等. 基于微纳米气泡增氧灌溉技术与设备分析[J]. 浙江水利科技, 2019, 47(6): 1−5ZHANG Y B, WEI Z Y, ZHU X G, et al. Analysis of aerated irrigation technology and device based on micro-nano bubble[J]. Zhejiang Hydrotechnics, 2019, 47(6): 1−5 [20] 王文泉, 张福锁. 高等植物厌氧适应的生理及分子机制[J]. 植物生理学通讯, 2001, 37(1): 63−70WANG W Q, ZHANG F S. The physiological and molecular mechanism of adaptation to anaerobiosis in higher plants[J]. Plant Physiology Communications, 2001, 37(1): 63−70 [21] ALMEIDA A M, VRIEZEN W H, VAN DER STRAETEN D. Molecular and physiological mechanisms of flooding avoidance and tolerance in rice[J]. Russian Journal of Plant Physiology, 2003, 50(6): 743−751 doi: 10.1023/B:RUPP.0000003272.65496.04 [22] PARK Y, KIM H, KIM J, et al. Measurement of liquid-vapor phase distribution on nano- and microstructured boiling surfaces[J]. International Journal of Multiphase Flow, 2016, 81: 67−76 doi: 10.1016/j.ijmultiphaseflow.2016.01.007 [23] 朱练峰, 刘学, 禹盛苗, 等. 增氧灌溉对水稻生理特性和后期衰老的影响[J]. 中国水稻科学, 2010, 24(3): 257−263 doi: 10.3969/j.issn.1001-7216.2010.03.008ZHU L F, LIU X, YU S M, et al. Effects of aerated irrigation on physiological characteristics and senescence at late growth stage of rice[J]. Chinese Journal of Rice Science, 2010, 24(3): 257−263 doi: 10.3969/j.issn.1001-7216.2010.03.008 [24] 刘学. 不同氧供给处理对水稻生育特性与产量形成的影响[D]. 北京: 中国农业科学院, 2009LIU X. Effects of different oxygen supply on growth characteristics and yield formation of rice (Oryza sativa L)[D]. Beijing: Chinese Academy of Agricultural Sciences, 2009 [25] 张立成. 不同加氧处理对超级稻生长、生理及产量的影响研究[D]. 长沙: 湖南农业大学, 2015ZHANG L C. Study on effect of different oxygen treatment to growth, physiology and yield of super rice[D]. Changsha: Hunan Agricultural University, 2015 [26] SANG H H, JIAO X Y, WANG S F, et al. Effects of micro-nano bubble aerated irrigation and nitrogen fertilizer level on tillering, nitrogen uptake and utilization of early rice[J]. Plant, Soil and Environment, 2018, 64(7): 297−302 doi: 10.17221/240/2018-PSE -