留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

直灌咸水与施氮磷对滨海重盐碱地柽柳生长及养分分布的影响

邱发根 杨莉琳 刘敏 朱向梅 陈淑伶

邱发根, 杨莉琳, 刘敏, 朱向梅, 陈淑伶. 直灌咸水与施氮磷对滨海重盐碱地柽柳生长及养分分布的影响[J]. 中国生态农业学报(中英文), 2021, 29(10): 1712−1721 doi: 10.13930/j.cnki.cjea.210209
引用本文: 邱发根, 杨莉琳, 刘敏, 朱向梅, 陈淑伶. 直灌咸水与施氮磷对滨海重盐碱地柽柳生长及养分分布的影响[J]. 中国生态农业学报(中英文), 2021, 29(10): 1712−1721 doi: 10.13930/j.cnki.cjea.210209
QIU F G, YANG L L, LIU M, ZHU X M, CHEN S L. Impact of saline irrigation and application of N and P on growth and nutrient distribution of Tamarix chinensis planted in coastal saline-alkali soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1712−1721 doi: 10.13930/j.cnki.cjea.210209
Citation: QIU F G, YANG L L, LIU M, ZHU X M, CHEN S L. Impact of saline irrigation and application of N and P on growth and nutrient distribution of Tamarix chinensis planted in coastal saline-alkali soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1712−1721 doi: 10.13930/j.cnki.cjea.210209

直灌咸水与施氮磷对滨海重盐碱地柽柳生长及养分分布的影响

doi: 10.13930/j.cnki.cjea.210209
基金项目: 国家自然科学基金项目(31270521)、贵州省教育厅创新群体重大研究项目(黔教合KY字[2016]053号)、贵州省科技计划项目(黔科合基础[2019]1312)、铜仁学院博士基金项目(trxyDH1525)和农业生态创新团队(CXTD[2020-10])资助
详细信息
    作者简介:

    邱发根, 主要研究方向为园林植物与环境生态。E-mail: 524291065@qq.com

    通讯作者:

    杨莉琳, 主要研究方向为土壤养分循环与环境生态。E-mail: yangllin@sjziam.ac.cn

  • 中图分类号: S153; S147.2; Q945.78

Impact of saline irrigation and application of N and P on growth and nutrient distribution of Tamarix chinensis planted in coastal saline-alkali soil

Funds: This study was supported by the National Natural Science Foundation of China (31270521), the Major Research Project of Innovation Group for Guizhou Education Department (Qian Education No. [2016] 053), the Science and Technology Project of Guizhou Province (Qian Scienc No. [2019] 1312), the Doctoral Fund Project for Tongren University (trxyDH1525), and the Agro-ecological Innovation Research Group (CXTD[2020-10]).
More Information
  • 摘要: 柽柳是滨海重盐碱地改良与景观绿化和固碳(C)的重要树种, 春季灌溉咸水被认为是快速缓解柽柳干旱与盐胁迫的有效措施。针对滨海重盐碱地土壤缺氮(N)、贫磷(P)、干旱与盐胁迫的突出问题, 以促进柽柳固碳排盐、快速生长、改良盐碱地为目标, 围绕利用当地咸水资源缓解春季干旱与返盐双重危害的核心问题开展研究。在华北低平原区的滨海重盐碱地布设了为期4年的咸水灌溉与施肥的2因素定位试验。试验设不灌水和灌溉地下咸水(盐分为8.02~9.34 g·L−1, W)条件下的不施肥(CK、WCK), 单施氮(N、WN)和施氮磷(NP、WNP)共6个处理。研究结果表明: 柽柳的生长与蘖枝萌发主要发生在春—夏季, 长高、增粗与分蘖同期但不同步, 株高的生长速率呈斜坡状下降, 分蘖速率呈先升后降的趋势, 6月达最高峰; 柽柳基茎增粗的速率先快后慢。首次灌溉咸水极显著地降低柽柳植株含水率、植株鲜重与叶干重, 但不影响茎干重; 连续3年灌溉咸水抑制柽柳长高与增粗, 降低茎杆与叶片的N含量, 但叶片P含量平均提高11.8%, 柽柳的分蘖率显著提高。灌溉咸水条件下施氮磷肥(WNP)能减缓春—夏季(5—6月)柽柳长高与增粗速率的下降, 加速蘖枝萌发, 提高叶片N、K含量, 促进Ca2+和Mg2+由茎杆向叶片转移, 改变Ca2+、Mg2+离子在茎叶的分布。灌溉咸水条件下WNP处理可通过加速分蘖、促进养分吸收和盐基离子运输来缓解连续灌咸水抑制柽柳生长的负面影响。研究结果可为重盐碱地柽柳的合理灌溉咸水和科学施肥提供依据。
  • 图  1  咸水灌溉与施肥处理下柽柳株高(A)、茎粗(B)、冠幅(C)和分蘖(D)的生长动态

    CK: 不灌咸水不施肥; N: 不灌咸水施N; NP: 不灌咸水施NP; WCK: 灌咸水不施肥; WN: 灌咸水施N; WNP: 灌咸水施NP。CK: neither irrigation nor fertilization; N: N fertilization without irrigation; NP: N and P fertilization without irrigation; WCK: saline irrigation without fertilization; WN: saline irrigation with N fertilization; WNP: saline irrigation with N and P fertilization.

    Figure  1.  Dynamics of plant height (A), stem diameter (B), crown breadth (C), tillering number (D) of Tamarix chinensis under different treatments of fertilization and irrigation of saline water

    图  2  咸水灌溉与施肥处理对柽柳株高(A)、茎粗(B)、冠幅(C)、分蘖(D)增长速率的影响

    CK: 不灌咸水不施肥; N: 不灌咸水施N; NP: 不灌咸水施NP; WCK: 灌咸水不施肥; WN: 灌咸水施N; WNP: 灌咸水施NP。CK: neither irrigation nor fertilization; N: N fertilization without irrigation; NP: N and P fertilization without irrigation; WCK: saline irrigation without fertilization; WN: saline irrigation with N fertilization; WNP: saline irrigation with N and P fertilization.

    Figure  2.  Growing speeds of plant height (A), stem diameter (B), crown breadth (C), tillering number (D) of Tamarix chinensis under different treatments of fertilization and irrigation of saline water

    表  1  第1年咸水灌溉与施肥处理对柽柳植株生物学性状的影响(单株)

    Table  1.   Effect of different treatments of fertilization and saline irrigation on biological characteristics of Tamarix chinensis (per plant) in the first year

    日期(月-日)
    Date (month-day)
    处理
    Treatment
    株高
    Plant height
    (cm)
    茎粗
    Stem diameter
    (cm)
    蘖数
    Tiller
    number
    鲜重
    Fresh weight
    (g)
    干重
    Dry weight
    (g)
    叶干重
    Leaf dry weight
    (g)
    茎干重
    Stem dry weight
    (g)
    含水率
    Water content
    (%)
    07-03 CK 125.5±2.56B 0.80±0.02 8.6±0.22a 284.5±29.60b 117.1±14.79B 143.6±1.53B
    N 133.8±6.53AB 0.86±0.05 10.2±0.59a 419.2±44.19ab 163.6±6.13AB 155.2±2.88A
    NP 147.1±4.63A 0.89±0.07 10.8±1.31a 507.9±47.39a 198.6±20.97A 154.1±1.47A
    WCK 120.8±7.75b 0.74±0.07b 9.1±0.68a 272.9±26.81b 114.3±13.39B 137.8±0.95B
    WN 137.0±6.20ab 0.93±0.02a 9.4±1.18a 384.0±39.37ab 163.5±10.71AB 126.5±1.90C
    WNP 143.1±1.91a 0.94±0.02a 11.6±0.91a 478.0±36.58a 192.4±15.18A 148.6±1.18A
    2因素方差分析差异来源 Two-factorial analysis of variance
    W ns ns ns ns ns ***
    F * * * ** ** ***
    W×F ns ns ns ns ** ***
    09-15 CK 125.7±2.17B 0.89±0.03B 4.3±0.44b 275.2±30.88b 130.3±14.24B 55.5±6.54b 74.8±8.98b 110.7±4.10a
    N 140.5±5.22AB 1.15±0.04A 6.1±0.59a 466.8±40.09a 223.4±17.41A 87.1±7.25ab 136.2±10.89a 108.3±2.65a
    NP 151.3±3.72A 1.18±0.05A 7.2±0.76a 575.1±44.28a 269.3±21.53A 107.6±7.23a 161.7±15.52a 114.1±4.02a
    WCK 123.1±5.75B 0.86±0.04B 4.8±0.38b 244.8±37.16b 126.5±18.21B 47.5±7.50b 78.9±11.14b 92.0±2.53b
    WN 140.3±5.11AB 1.10±0.04A 6.6±0.62a 429.1±30.26a 213.5±14.15A 76.8±6.26a 136.7±9.13a 100.6±1.88a
    WNP 149.8±4.99A 1.17±0.04A 7.1±0.82a 517.3±34.20a 257.5±16.96A 95.1±8.34a 162.3±12.69a 101.2±3.18a
    2因素方差分析差异来源 Two-factorial analysis of variance
    W ns ns ns * ns * ** **
    F ** ** * *** *** *** *** ns
    W×F ns ns ns ns ns ns ns ns
      CK: 不灌咸水不施肥; N: 不灌咸水施N; NP: 不灌咸水施NP; WCK: 灌咸水不施肥; WN: 灌咸水施N; WNP: 灌咸水施NP; W: 灌水处理; F: 施肥处理; W×F: 二者的交互效应; 表中数据为平均值±SE (n=3)。同列同一日期2个水处理组内的不同小写和大写字母分别表示不同施肥处理间在P<0.05和P<0.01水平差异显著。*、**和***分别表示在P<0.05、P<0.01和P<0.001水平差异显著; ns表示差异不显著。CK: neither irrigation nor fertilization; N: N fertilization without irrigation; NP: N and P fertilization without irrigation; WCK: saline irrigation without fertilization; WN: saline irrigation with N fertilization; WNP: saline irrigation with N and P fertilization; W: saline irrigation; F: fertilization; W×F: interaction of the two factors. Values are means±SE (n=3). Different lowercase letters and uppercase letters in the same column and in same date indicate significant differences at P<0.05 and P<0.01 level, respectively, among different treatments. *, ** and *** indicate significant differences at P<0.05, P<0.01, and P<0.001 levels, respectively. “ns” indicates no significant differences.
    下载: 导出CSV

    表  2  咸水灌溉与施肥处理对柽柳茎叶养分和碳含量的影响

    Table  2.   Nutrients and C contents of stem and leaf of Tamarix chinensis under different treatments fertilization and irrigation of saline water g∙kg−1 

    部位 Organ处理 TreatmentNPKC
    茎杆 Stem CK 5.0±0.02C 2.6±0.10 7.3±0.38 431.0±4.01
    N 7.2±0.08A 2.4±0.21 8.3±0.60 429.8±1.72
    NP 6.1±0.27B 2.4±0.20 7.5±0.39 426.7±0.66
    WCK 4.9±0.07b 2.5±0.12 7.2±0.16 429.4±5.15
    WN 5.5±0.24a 2.2±0.32 7.4±0.15 411.3±3.11
    WNP 5.4±0.07a 2.3±0.07 7.8±0.30 431.1±9.10
    2因素方差分析差异来源 Two-factorial analysis of variance
    W ** ns ns ns
    F *** ns ns #
    W×F * ns ns #
    叶片 Leaf CK 19.9±0.22b 3.7±0.14 10.31±0.46 382.6±6.11
    N 23.5±0.82a 3.9±0.15 10.74±0.40 384.2±5.49
    NP 23.0±1.20ab 3.6±0.06 9.99±0.46 382.2±4.49
    WCK 20.1±0.27b 4.2±0.06 9.70±0.33b 380.8±2.79
    WN 20.9±0.49ab 4.1±0.08 10.90±0.24a 375.6±8.65
    WNP 21.9±0.31a 4.2±0.14 10.40±0.20ab 374.2±6.88
    2因素方差分析差异来源 Two-factorial analysis of variance
    W * ** ns ns
    F * ns # ns
    W×F * ns * ns
      CK: 不灌咸水不施肥; N: 不灌咸水施N; NP: 不灌咸水施NP; WCK: 灌咸水不施肥; WN: 灌咸水施N; WNP: 灌咸水施NP; W: 灌咸水处理; F: 施肥处理; W×F: 二者的交互效应; 表中数据为平均值±SE (n=3)。同一部位同列不同水处理组内的不同小写和大写字母分别表示不同处理在P<0.05和P<0.01水平差异显著。#、*、**和***分别表示在P<0.1、P<0.05、P<0.01和P<0.001水平差异显著; ns表示差异不显著。CK: neither irrigation nor fertilization; N: N fertilization without irrigation; NP: N and P fertilization without irrigation; WCK: saline irrigation without fertilization; WN: saline irrigation with N fertilization; WNP: saline irrigation with N and P fertilization; W: saline irrigation; F: fertilization; W×F: interaction of the two factors. Values are means±SE (n=3). Different lowercase letters and uppercase letters respectively, in the same column and of the same organ indicate significant differences at P<0.05 and P<0.01 levels, respectively, among different treatments. #, *, ** and *** indicate significant differences at P<0.1, P<0.05, P<0.01, and P<0.001 levels, respectively; “ns” indicates no significant differences.
    下载: 导出CSV

    表  3  咸水灌溉与施肥处理对柽柳茎杆盐基离子含量及离子比的影响

    Table  3.   Effect of fertilization and irrigation of saline water on stem ions contents and ions ratios of Tamarix chinensis

    部位
    Organ
    处理
    Treatment
    Na+
    (mg∙g−1)
    Ca2+
    (mg∙g−1)
    Mg2+
    (mg∙g−1)
    K/NaNa/CaCa/MgK/Ca
    茎杆 Stem CK 3.75±0.17 1.65±0.03a 1.23±0.03b 1.95 2.27 1.34 4.42
    N 4.14±0.19 1.66±0.08a 1.53±0.13a 2.00 2.49 1.08 5.00
    NP 3.51±0.20 1.51±0.08a 1.37±0.07ab 2.14 2.32 1.10 4.97
    WCK 3.45±0.12 1.20±0.05b 0.98±0.11b 2.09 2.88 1.22 6.00
    WN 3.74±0.24 1.59±0.10a 1.20±0.07a 1.98 2.35 1.33 4.65
    WNP 3.86±0.26 1.52±0.21ab 1.09±0.08ab 2.02 2.54 1.39 5.13
    2因素方差分析差异来源 Two-factorial analysis of variance
    W ns * **
    F ns ns *
    W×F ns ns ns
    叶片
    Leaf
    CK 9.20±0.72B 13.26±0.62b 5.18±0.06 1.12 0.69 2.56 0.78
    N 11.61±1.09A 14.04±0.47ab 5.34±0.11 0.93 0.83 2.63 0.76
    NP 12.22±2.34A 15.34±0.10a 5.64±0.09 0.82 0.80 2.72 0.65
    WCK 9.58±0.32B 15.71±0.34b 5.19±0.02b 1.01 0.61 3.03 0.62
    WN 11.75±1.41A 16.89±6.64ab 6.13±0.31ab 1.01 0.64 2.76 0.65
    WNP 11.54±1.23A 18.04±1.10a 6.37±0.26a 0.90 0.64 2.83 0.58
    2因素方差分析差异来源 Two-factorial analysis of variance
    W ns *** **
    F ** ** **
    W×F # ns ns
      CK: 不灌咸水不施肥; N: 不灌咸水施N; NP: 不灌咸水施NP; WCK: 灌咸水不施肥; WN: 灌咸水施N; WNP: 灌咸水施NP; W: 灌咸水处理; F: 施肥处理; W×F: 二者的交互效应; 表中数据为平均值±SE (n=3)。同一部位同列不同水处理组内的不同小写和大写字母分别表示不同处理在P<0.05和P<0.01水平差异显著。#、*、**和***分别表示在P<0.1、P<0.05、P<0.01和P<0.001水平差异显著; ns表示差异不显著。CK: neither irrigation nor fertilization; N: N fertilization without irrigation; NP: N and P fertilization without irrigation; WCK: saline irrigation without fertilization; WN: saline irrigation with N fertilization; WNP: saline irrigation with N and P fertilization; W: saline irrigation; F: fertilization; W×F: interaction of the two factors. Values are means±SE (n=3). Different lowercase letters and uppercase letters in the same column and of the same organ indicate significant differences at P<0.05 and P<0.01 levels, respectively, among different treatments. #, *, ** and *** indicate significant differences at P<0.1, P<0.05, P<0.01, and P<0.001 levels, respectively; “ns” indicates no significant differences.
    下载: 导出CSV
  • [1] 肖克飚, 吴普特, 雷金银, 等. 不同类型耐盐植物对盐碱土生物改良研究[J]. 农业环境科学学报, 2012, 31(12): 2433−2440

    XIAO K B, WU P T, LEI J Y, et al. Bio-reclamation of different halophytes on saline-alkali soil[J]. Journal of Agro-Environment Science, 2012, 31(12): 2433−2440
    [2] XIE L P, WANG B D, XIN M, et al. Impacts of coppicing on Tamarix chinensis growth and carbon stocks in coastal wetlands in northern China[J]. Ecological Engineering, 2020, 147: 1−8
    [3] XU X L, MA K M, FU B J, et al. Relationships between vegetation and soil and topography in a dry warm river valley, SW China[J]. CATENA, 2008, 75(2): 138−145 doi: 10.1016/j.catena.2008.04.016
    [4] 程文娟, 潘洁, 肖辉, 等. 咸水结冰灌溉结合改良剂对滨海盐土的改良作用[J]. 中国生态农业学报, 2011, 19(4): 778−782 doi: 10.3724/SP.J.1011.2011.00778

    CHENG W J, PAN J, XIAO H, et al. Effect of combined frozen saline water irrigation and soil amendment on coastal saline land reclamation[J]. Chinese Journal of Eco-Agriculture, 2011, 19(4): 778−782 doi: 10.3724/SP.J.1011.2011.00778
    [5] 魏新燕, 刘小京. 咸水结冰灌溉对滨海盐碱地不同植被根区土壤微生物的影响[J]. 河北农业大学学报, 2014, 37(1): 22−26

    WEI X Y, LIU X J. Microbial ecological characteristics of planted saline-alkali soil in coastal saline area by freezing saline water irrigation[J]. Journal of Agricultural University of Hebei, 2014, 37(1): 22−26
    [6] 王鹏, 赵成义, 李君. 地下水埋深及矿化度对多枝柽柳幼苗光合特征及生长的影响[J]. 水土保持通报, 2012, 32(2): 84−89

    WANG P, ZHAO C Y, LI J. Effects of groundwater depth and mineralization degree on photosynthesis and growth of Tamarix ramosissima seedlings[J]. Bulletin of Soil and Water Conservation, 2012, 32(2): 84−89
    [7] 马学喜, 李生宇, 徐新文, 等. 咸水灌溉对三种柽柳幼苗成活和生长状况的影响[J]. 干旱区资源与环境, 2016, 30(1): 185−190

    MA X X, LI S Y, XU X W, et al. Effects of different mineralized irrigation water on seedling survival and growth of three species of Tamarix in Taklimakan desert[J]. Journal of Arid Land Resources and Environment, 2016, 30(1): 185−190
    [8] XIA J B, ZHAO X M, REN J Y, et al. Photosynthetic and water physiological characteristics of Tamarix chinensis under different groundwater salinity conditions[J]. Environmental and Experimental Botany, 2017, 138: 173−183 doi: 10.1016/j.envexpbot.2017.03.015
    [9] 汪宗飞, 何新林, 张明. 幼年期柽柳对不同矿化度微咸水灌溉响应的初步研究[J]. 节水灌溉, 2011, (1): 6−9

    WANG Z F, HE X L, ZHANG M. Priliminary study on respond of tamarxi ramossisima in young period to irrigation with different salinity slightly saline water[J]. Water Saving Irrigation, 2011, (1): 6−9
    [10] LIU Z Y, LI X P, ZHANG T Q, et al. Overexpression of ThMYB8 mediates salt stress tolerance by directly activating stress-responsive gene expression[J]. Plant Science, 2021, 302: 1−33 doi: 10.1016/j.plantsci.2020.110668
    [11] 解婷婷, 张希明, 单立山, 等. 灌溉量对多枝柽柳水分生理及生长的影响[J]. 干旱区研究, 2008, 25(6): 802−807

    XIE T T, ZHANG X M, SHAN L S, et al. Effect of irrigation volume on the water physiological characters and growth of Tamarix ramosissima shelter belts along the Tarim desert highway[J]. Arid Zone Research, 2008, 25(6): 802−807
    [12] 鲍士旦. 土壤农化分析[M]. 第3版. 北京: 中国农业出版社, 2007: 264–270

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd. Beijing: China Agriculture Press, 2007: 264–270
    [13] LIU J H, XIA J B, FANG Y M, et al. Effects of salt-drought stress on growth and physiobiochemical characteristics of Tamarix chinensis seedlings[J]. The Scientific World Journal, 2014, 2014: 1−7
    [14] REYNOLDS L L, JOHNSON B R, PFEIFER-MEISTER L, et al. Soil respiration response to climate change in Pacific Northwest prairies is mediated by a regional Mediterranean climate gradient[J]. Global Change Biology, 2015, 21(1): 487−500 doi: 10.1111/gcb.12732
    [15] CONROY J P, MILHAM P J, REED M L, et al. Increases in phosphorus requirements for CO2-enriched pine species[J]. Plant Physiology, 1990, 92(4): 977−982 doi: 10.1104/pp.92.4.977
    [16] 中国科学院遗传与发育生物学研究所. 滨海重盐碱地柽柳直接扦插成林的方法: 中国, 201110231187.2[P/OL]. [2013-01-02]. http://www.soopat.com/Patent/201110231187?lx=FMSQ

    Institute of Genetics and Developmental Biology, Chinese Academy of Sciences. Method for planting Tamarix chinensis cutting in coastal saline soil: China, 201110231187.2[P/OL]. [2013-01-02]. http://www.soopat.com/Patent/201110231187?lx=FMSQ
    [17] WARREN C R, MCGRATH J F, ADAMS M A. Differential effects of N, P and K on photosynthesis and partitioning of N in Pinus pinaster needles[J]. Annals of Forest Science, 2005, 62(1): 1−8 doi: 10.1051/forest:2004088
    [18] XIA J B, ZHANG S Y, GUO J, et al. Critical effects of gas exchange parameters in Tamarix chinensis Lour on soil water and its relevant environmental factors on a shell ridge island in China’s Yellow River Delta[J]. Ecological Engineering, 2015, 76: 36−46 doi: 10.1016/j.ecoleng.2014.04.001
    [19] REICH P B, OLEKSYN J, WRIGHT I J. Leaf phosphorus influences the photosynthesis-nitrogen relation: a cross-biome analysis of 314 species[J]. Oecologia, 2009, 160(2): 207−212 doi: 10.1007/s00442-009-1291-3
    [20] REICH P B, TJOELKER M G, PREGITZER K S, et al. Scaling of respiration to nitrogen in leaves, stems and roots of higher land plants[J]. Ecology Letters, 2008, 11(8): 793−801 doi: 10.1111/j.1461-0248.2008.01185.x
    [21] JOHNSON A H, FRIZANO J, VANN D R. Biogeochemical implications of labile phosphorus in forest soils determined by the Hedley fractionation procedure[J]. Oecologia, 2003, 135(4): 487−499 doi: 10.1007/s00442-002-1164-5
    [22] CLEVELAND C C, TOWNSEND A R, TAYLOR P, et al. Relationships among net primary productivity, nutrients and climate in tropical rain forest: a pan-tropical analysis[J]. Ecology Letters, 2011, 14(9): 939−947 doi: 10.1111/j.1461-0248.2011.01658.x
    [23] ZHU J K. Regulation of ion homeostasis under salt stress[J]. Current Opinion in Plant Biology, 2003, 6(5): 441−445 doi: 10.1016/S1369-5266(03)00085-2
    [24] WRIGHT S J, YAVITT J B, WURZBURGER N, et al. Potassium, phosphorus, or nitrogen limit root allocation, tree growth, or litter production in a lowland tropical forest[J]. Ecology, 2011, 92(8): 1616−1625 doi: 10.1890/10-1558.1
    [25] LI X Q, XIA J B, ZHAO X M, et al. Effects of planting Tamarix chinensis on shallow soil water and salt content under different groundwater depths in the Yellow River Delta[J]. Geoderma, 2019, 335: 104−111 doi: 10.1016/j.geoderma.2018.08.017
    [26] ZHAO X M, XIA J B, CHEN W F, et al. Transport characteristics of salt ions in soil columns planted with Tamarix chinensis under different groundwater levels[J]. PLoS One, 2019, 14(4): 1−17 doi: 10.1371/journal.pone.0215138
  • 加载中
图(2) / 表(3)
计量
  • 文章访问数:  142
  • HTML全文浏览量:  45
  • PDF下载量:  31
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 录用日期:  2021-07-12
  • 网络出版日期:  2021-07-14
  • 刊出日期:  2021-10-01

目录

    /

    返回文章
    返回