留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

稻麦轮作体系两种氨挥发监测方法比较研究

王远 闵炬 史培华 马明坤 郝雅琼 施卫明

王远, 闵炬, 史培华, 马明坤, 郝雅琼, 施卫明. 稻麦轮作体系两种氨挥发监测方法比较研究[J]. 中国生态农业学报(中英文), 2021, 29(11): 1−12 doi: 10.13930/j.cnki.cjea.210210
引用本文: 王远, 闵炬, 史培华, 马明坤, 郝雅琼, 施卫明. 稻麦轮作体系两种氨挥发监测方法比较研究[J]. 中国生态农业学报(中英文), 2021, 29(11): 1−12 doi: 10.13930/j.cnki.cjea.210210
WANG Y, MIN J, SHI P H, MA M K, HAO Y Q, SHI W M. Comparison of two monitoring methods for ammonia volatilization based on rice-wheat rotation system[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1−12 doi: 10.13930/j.cnki.cjea.210210
Citation: WANG Y, MIN J, SHI P H, MA M K, HAO Y Q, SHI W M. Comparison of two monitoring methods for ammonia volatilization based on rice-wheat rotation system[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1−12 doi: 10.13930/j.cnki.cjea.210210

稻麦轮作体系两种氨挥发监测方法比较研究

doi: 10.13930/j.cnki.cjea.210210
基金项目: 国家重点研发计划项目(2016YFD0801102)、山东省重大科技创新工程项目(2019JZZY010701)和江苏省自然科学基金(BK20170586)资助
详细信息
    作者简介:

    王远, 主要研究方向为农田面源污染防控和作物氮素营养诊断。E-mail: wangyuan@issas.ac.cn

    通讯作者:

    施卫明, 主要研究方向为农田面源污染防控和植物营养分子生物学。E-mail: wmshi@issas.ac.cn

  • 中图分类号: X511; S-3

Comparison of two monitoring methods for ammonia volatilization based on rice-wheat rotation system

Funds: This study was supported by the National Key Research and Development Program of China (2016YFD0801102), the Key Research and Development Program of Shandong Province of China (2019JZZY010701) and the Natural Science Foundation of Jiangsu Province of China (BK20170586)
More Information
  • 摘要: 氨挥发是农田活性氮损失的重要途径, 准确、有效地测定农田氨排放量是环境评估和政策制定的基础。由于氨挥发监测方法多样, 且方法间缺少系统的对比分析, 在一定程度上限制了相关研究数据的进一步利用。我国应用最广泛的氨挥发监测方法是通气式海绵吸收法和密闭室间歇抽气法, 目前, 两种监测方法仍缺少大田条件下的实测对比。本研究在不同施氮量处理下, 于水稻-小麦轮作系统作物生长期同时采用这两种方法对土壤氨挥发排放进行连续监测。结果表明, 在3个施氮水平下, 通气式海绵吸收法测得的氨挥发累积量低于密闭室间歇抽气法25%~35%, 稻麦两季结果一致, 两方法测试值的变化趋势也一致。通气式海绵吸收法在稻季测得累积氨挥发量为17.36~43.90 kg∙hm−2, 麦季为5.90~20.43 kg∙hm−2, 排放系数为2.56%~10.39%; 密闭室间歇抽气法在稻季测得累积氨挥发量为23.28~61.05 kg∙hm−2, 麦季为14.63~27.73 kg∙hm−2, 排放系数为7.09%~15.01%。相同研究区域的文献调研表明, 当施氮量为101~300 k∙hm−2时, 通气式海绵吸收法比密闭室间歇抽气法低5%~25%, 与实测数据趋势相同。基于本研究和文献调研结果, 推荐通过这两种监测方法获取的氨挥发量在施氮量低于100 kg∙hm−2时可不转换, 施氮量高于100 kg∙hm−2时可按照密闭室间歇抽气法的75%转换为通气式海绵吸收法。
  • 图  1  试验期间试验点的日均温和降雨量

    黑色箭头表示施肥事件。The black arrows indicate fertilization events.

    Figure  1.  Average daily temperature and rainfall at the experimental site during the experiment period

    图  2  水稻季不同施肥期两种氨挥发监测方法测定的土壤氨挥发速率

    Figure  2.  Soil ammonia volatilization rates relative to fertilization period in the rice season measured by two ammonia volatilization monitoring methods

    图  3  两种氨挥发监测方法测定的水稻季土壤累积氨挥发量

    不同小写字母表示同一处理下两种氨挥发监测方法间差异显著(P<0.05)。Different letters mean significant difference between two ammonia volatilization monitoring methods under the same treatment (P<0.05).

    Figure  3.  Accumulative ammonia emission in the rice season measured by two ammonia volatilization monitoring methods

    图  4  小麦季不同施肥期两种氨挥发监测方法测定的土壤氨挥发速率

    Figure  4.  Soil ammonia volatilization rates relative to fertilization period in the wheat season measured by two ammonia volatilization monitoring methods

    图  5  两种氨挥发监测方法测定的小麦季土壤累积氨挥发量

    不同小写字母表示同一处理下两种氨挥发监测方法间差异显著(P<0.05)。Different letters mean significant difference between two ammonia volatilization monitoring methods under the same treatment (P<0.05).

    Figure  5.  Accumulative ammonia emission in the wheat season measured by two ammonia volatilization monitoring methods

    图  6  两种氨挥发监测方法测定的氨挥发通量比较

    Figure  6.  Comparison of NH3 fluxes between the two ammonia volatilization monitoring methods

    图  7  两种氨挥发监测方法测定的排放系数文献调研分析

    括号内数字为相应的样本量。The numbers in brackets are the corresponding sample sizes.

    Figure  7.  Literature analysis on NH3 emission factor of the two ammonia volatilization monitoring methods

    表  1  两种氨挥发监测方法的回收率

    Table  1.   Recovery rates of the two ammonia volatilization monitoring methods

    样品号
    Sample No.
    密闭室间歇抽气法 Intermittent airflow enclosure method 通气式海绵吸收法 Ventilated sponge absorption method
    溶液挥发氨量
    NH3 volatilized from the source solution (mg)
    装置吸收氨量
    NH3 trapped by the equipment (mg)
    回收率
    Recovery rate (%)
    溶液挥发氨量
    NH3 volatilized from the source solution (mg)
    装置吸收氨量
    NH3 trapped by the equipment (mg)
    回收率 Recovery rate (%)
    1 6.12 6.30 102.97 6.30 5.98 94.98
    2 6.32 6.28 99.37 6.38 5.92 92.77
    3 6.41 6.29 98.13 6.38 6.02 94.34
    4 6.87 6.76 98.40 6.36 6.35 99.88
    5 6.19 6.05 97.81 6.43 6.15 95.65
    6 6.25 6.33 101.20 6.41 6.23 97.19
    平均值 Mean 6.36a 6.33a 99.65a 6.38a 6.11a 95.80b
    变异系数
    Coefficient of variation (%)
    3.88 3.34 1.87 0.65 2.44 2.36
      同一测试指标平均值后不同字母表示两种氨挥发监测方法间存在显著差异(P<0.05)。Different letters after the mean value of the same indicator indicate significant differences between the two ammonia volatilization monitoring methods.
    下载: 导出CSV
  • [1] 卢丽丽, 吴根义. 农田氨排放影响因素研究进展[J]. 中国农业大学学报, 2019, 24(1): 149−162 doi: 10.11841/j.issn.1007-4333.2019.01.19

    LU L L, WU G Y. Advances in affecting factors of ammonia emission in farmland[J]. Journal of China Agricultural University, 2019, 24(1): 149−162 doi: 10.11841/j.issn.1007-4333.2019.01.19
    [2] 朱兆良. 中国土壤氮素研究[J]. 土壤学报, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003

    ZHU Z L. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778−783 doi: 10.3321/j.issn:0564-3929.2008.05.003
    [3] 王桂良. 中国三大粮食作物农田活性氮损失与氮肥利用率的定量分析[D]. 北京: 中国农业大学, 2014

    WANG G L. Quantitative analysis of reactive nitrogen losses and nitrogen use efficiency of three major grain crops in China[D]. Beijing: China Agricultural University, 2014
    [4] YU C Q, HUANG X, CHEN H, et al. Managing nitrogen to restore water quality in China[J]. Nature, 2019, 567(7749): 516−520 doi: 10.1038/s41586-019-1001-1
    [5] ZHU Z L, CHEN D L. Nitrogen fertilizer use in China− Contributions to food production, impacts on the environment and best management strategies[J]. Nutrient Cycling in Agroecosystems, 2002, 63(2/3): 117−127 doi: 10.1023/A:1021107026067
    [6] KONG L, TANG X, ZHU J, et al. Improved inversion of monthly ammonia emissions in China in combination of the Chinese Ammonia Monitoring Network and ensemble Kalman filter[J]. Environmental Science & Technology, 2019, 53(21): 12529−12538
    [7] WANG M Y, KONG W M, MARTEN R, et al. Rapid growth of new atmospheric particles by nitric acid and ammonia condensation[J]. Nature, 2020, 581(7807): 184−189 doi: 10.1038/s41586-020-2270-4
    [8] PAN Y P, TIAN S L, WU D M, et al. Ammonia should be considered in field experiments mimicking nitrogen deposition[J]. Atmospheric and Oceanic Science Letters, 2020, 13(3): 248−251 doi: 10.1080/16742834.2020.1733919
    [9] 杨道伟, 许稳, 唐傲寒, 等. 中国东部地区无机氮湿沉降: 南-北不同类型监测点的比较[J]. 应用生态学报, 2016, 27(10): 3205−3212

    YANG D W, XU W, TANG A H, et al. Inorganic nitrogen wet deposition in Eastern China: Comparison of different land use-based monitoring sites in north and south regions[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3205−3212
    [10] ROWE E C, JONES L, DISE N B, et al. Metrics for evaluating the ecological benefits of decreased nitrogen deposition[J]. Biological Conservation, 2017, 212: 454−463 doi: 10.1016/j.biocon.2016.11.022
    [11] FRENCY R, TREVITT A C F, 朱兆良, 等. 水田氨挥发的测定方法[J]. 土壤学报, 1987, 24(2): 142−151

    FRENCY J R, TREVITT A C F, ZHU Z L, et al. Methods for estimating volatilization of ammonia from flooded rice fields[J]. Acta Pedologica Sinica, 1987, 24(2): 142−151
    [12] MANNHEIM T, BRASCHKAT J, MARSCHNER H. Measurement of ammonia emission after liquid manure application: Ⅱ. Comparison of the wind tunnel and the IHF method under field conditions[J]. Zeitschrift Für Pflanzenernährung Und Bodenkunde, 1995, 158(3): 215−219
    [13] 黄彬香, 苏芳, 丁新泉, 等. 田间土壤氨挥发的原位测定−风洞法[J]. 土壤, 2006, 38(6): 712−716 doi: 10.3321/j.issn:0253-9829.2006.06.009

    HUANG B X, SU F, DING X Q, et al. German wind-tunnel system for measuring ammonia volatilization from agricultural soil[J]. Soils, 2006, 38(6): 712−716 doi: 10.3321/j.issn:0253-9829.2006.06.009
    [14] 王朝辉, 刘学军, 巨晓棠, 等. 田间土壤氨挥发的原位测定−通气法[J]. 植物营养与肥料学报, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014

    WANG Z H, LIU X J, JU X T, et al. Field in situ determination of ammonia volatilization from soil: Venting method[J]. Plant Nutrition and Fertilizer Science, 2002, 8(2): 205−209 doi: 10.3321/j.issn:1008-505X.2002.02.014
    [15] KISSEL D E, BREWER H L, ARKIN G F. Design and test of a field sampler for ammonia volatilization[J]. Soil Science Society of America Journal, 1977, 41(6): 1133−1138 doi: 10.2136/sssaj1977.03615995004100060024x
    [16] NÔMMIK H. The effect of pellet size on the ammonia loss from urea applied to forest soil[J]. Plant and Soil, 1973, 39(2): 309−318 doi: 10.1007/BF00014798
    [17] 周伟, 田玉华, 曹彦圣, 等. 两种氨挥发测定方法的比较研究[J]. 土壤学报, 2011, 48(5): 1090−1095 doi: 10.11766/trxb201003050082

    ZHOU W, TIAN Y H, CAO Y S, et al. A comparative study on two methods for determination of ammonia volatilization[J]. Acta Pedologica Sinica, 2011, 48(5): 1090−1095 doi: 10.11766/trxb201003050082
    [18] 景建元, 孙晓, 杨阳, 等. 施氮水平对冬小麦冠层氨挥发的影响[J]. 农业环境科学学报, 2017, 36(2): 401−408 doi: 10.11654/jaes.2016-1233

    JING J Y, SUN X, YANG Y, et al. Ammonia volatilization of winter wheat canopy under different nitrogen rates[J]. Journal of Agro-Environment Science, 2017, 36(2): 401−408 doi: 10.11654/jaes.2016-1233
    [19] 王朝辉, 刘学军, 巨晓棠, 等. 北方冬小麦/夏玉米轮作体系土壤氨挥发的原位测定[J]. 生态学报, 2002, 22(3): 359−365 doi: 10.3321/j.issn:1000-0933.2002.03.011

    WANG Z H, LIU X J, JU X T, et al. In situ determination of ammonia volatilization from wheat maize rotation system field in North China[J]. Acta Ecologica Sinica, 2002, 22(3): 359−365 doi: 10.3321/j.issn:1000-0933.2002.03.011
    [20] 宋勇生, 范晓晖, 林德喜, 等. 太湖地区稻田氨挥发及影响因素的研究[J]. 土壤学报, 2004, 41(2): 265−269 doi: 10.3321/j.issn:0564-3929.2004.02.016

    SONG Y S, FAN X H, LIN D X, et al. Ammonia volatilation from paddy fields in the Taihu Lake region and its influencing factors[J]. Acta Pedologica Sinica, 2004, 41(2): 265−269 doi: 10.3321/j.issn:0564-3929.2004.02.016
    [21] 杨士红, 彭世彰, 徐俊增, 等. 不同水氮管理下稻田氨挥发损失特征及模拟[J]. 农业工程学报, 2012, 28(11): 99−104 doi: 10.3969/j.issn.1002-6819.2012.11.017

    YANG S H, PENG S Z, XU J Z, et al. Characteristics and simulation of ammonia volatilization from paddy fields under different water and nitrogen management[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(11): 99−104 doi: 10.3969/j.issn.1002-6819.2012.11.017
    [22] 徐万里, 刘骅, 张云舒, 等. 施肥深度、灌水条件和氨挥发监测方法对氮肥氨挥发特征的影响[J]. 新疆农业科学, 2011, 48(1): 86−93 doi: 10.6048/j.issn.1001-4330.2011.01.017

    XU W L, LIU H, ZHANG Y S, et al. Influence of the fertilization depth, irrigation and the ammonia volatilization monitoring method on ammonia volatilization characters of nitrogen fertilizer[J]. Xinjiang Agricultural Sciences, 2011, 48(1): 86−93 doi: 10.6048/j.issn.1001-4330.2011.01.017
    [23] 康飞, 孟凡乔. 基于文献分析的北方冬麦田氨挥发特性[J]. 农业工程学报, 2020, 36(1): 228−234 doi: 10.11975/j.issn.1002-6819.2020.01.027

    KANG F, MENG F Q. Ammonia volatilization from winter wheat cropland in Northern China based on a literature analysis[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(1): 228−234 doi: 10.11975/j.issn.1002-6819.2020.01.027
    [24] 田玉华, 贺发云, 尹斌, 等. 太湖地区氮磷肥施用对稻田氨挥发的影响[J]. 土壤学报, 2007, 44(5): 893−900 doi: 10.3321/j.issn:0564-3929.2007.05.018

    TIAN Y H, HE F Y, YIN B, et al. Ammonia volatilization from paddy fields in the Taihu Lake region as affected by N and P combination in fertilization[J]. Acta Pedologica Sinica, 2007, 44(5): 893−900 doi: 10.3321/j.issn:0564-3929.2007.05.018
    [25] SUN H J, ZHANG H L, POWLSON D, et al. Rice production, nitrous oxide emission and ammonia volatilization as impacted by the nitrification inhibitor 2-chloro-6-(trichloromethyl)-pyridine[J]. Field Crops Research, 2015, 173: 1−7 doi: 10.1016/j.fcr.2014.12.012
    [26] CHEN G, CHEN Y, ZHAO G H, et al. Do high nitrogen use efficiency rice cultivars reduce nitrogen losses from paddy fields?[J]. Agriculture, Ecosystems & Environment, 2015, 209: 26−33
    [27] YAO Y L, ZHANG M, TIAN Y H, et al. Urea deep placement for minimizing NH3 loss in an intensive rice cropping system[J]. Field Crops Research, 2018, 218: 254−266 doi: 10.1016/j.fcr.2017.03.013
    [28] 邓美华, 尹斌, 张绍林, 等. 不同施氮量和施氮方式对稻田氨挥发损失的影响[J]. 土壤, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005

    DENG M H, YIN B, ZHANG S L, et al. Effects of rate and method of N application on ammonia volatilization in paddy fields[J]. Soils, 2006, 38(3): 263−269 doi: 10.3321/j.issn:0253-9829.2006.03.005
    [29] 俞映倞, 薛利红, 杨林章. 太湖地区稻田不同氮肥管理模式下氨挥发特征研究[J]. 农业环境科学学报, 2013, 32(8): 1682−1689 doi: 10.11654/jaes.2013.08.028

    YU Y L, XUE L H, YANG L Z. Ammonia volatilization from paddy fields under different nitrogen schemes in Tai Lake region[J]. Journal of Agro-Environment Science, 2013, 32(8): 1682−1689 doi: 10.11654/jaes.2013.08.028
    [30] 王梦凡, 俞映倞, 杨梖, 等. 界面阻隔材料对稻田产量、氮肥利用率和氨挥发排放的影响[J]. 中国生态农业学报(中英文), 2020, 28(6): 803−812

    WANG M F, YU Y L, YANG B, et al. Effects of interface barrier materials on rice yield, nitrogen use efficiency, and NH3 volatilization[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 803−812
    [31] 张翀, 李雪倩, 苏芳, 等. 施氮方式及测定方法对紫色土夏玉米氨挥发的影响[J]. 农业环境科学学报, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024

    ZHANG C, LI X Q, SU F, et al. Effects of different fertilization and measurement methods on ammonia volatilization of summer maize in purple soil[J]. Journal of Agro-Environment Science, 2016, 35(6): 1194−1201 doi: 10.11654/jaes.2016.06.024
    [32] 朱兆良, 蔡贵信, 徐银华, 等. 种稻下氮肥的氨挥发及其在氮素损失中的重要性的研究[J]. 土壤学报, 1985, 22(4): 320−328

    ZHU Z L, CAI G X, XU Y H, et al. Ammonia volatilization and its significance to the losses of fertilizer nitrogen applied to paddy soil[J]. Acta Pedologica Sinica, 1985, 22(4): 320−328
    [33] 董文旭, 胡春胜, 张玉铭. 华北农田土壤氨挥发原位测定研究[J]. 中国生态农业学报, 2006, 14(3): 46−48

    DONG W X, HU C S, ZHANG Y M. In situ determination of ammonia volatilization in field of North China[J]. Chinese Journal of Eco-Agriculture, 2006, 14(3): 46−48
    [34] JANTALIA C P, HALVORSON A D, FOLLETT R F, et al. Nitrogen source effects on ammonia volatilization as measured with semi-static chambers[J]. Agronomy Journal, 2012, 104(6): 1595−1603 doi: 10.2134/agronj2012.0210
    [35] BOUWMAN A F, BOUMANS L J M, BATJES N H. Estimation of global NH3 volatilization loss from synthetic fertilizers and animal manure applied to arable lands and grasslands[J]. Global Biogeochemical Cycles, 2002, 16(2): 8-1−8-14
    [36] 董文煊, 邢佳, 王书肖. 1994—2006年中国人为源大气氨排放时空分布[J]. 环境科学, 2010, 31(7): 1457−1463

    DONG W X, XING J, WANG S X. Temporal and spatial distribution of anthropogenic ammonia emissions in China: 1994−2006[J]. Environmental Science, 2010, 31(7): 1457−1463
    [37] SHERLOCK R, GOH K. Dynamics of ammonia volatilization from simulated urine patches and aqueous urea applied to pasture. Ⅱ. Theoretical derivation of a simplified model[J]. Fertilizer Research, 1985, 6(1): 3−22 doi: 10.1007/BF01058161
  • 加载中
图(7) / 表(1)
计量
  • 文章访问数:  20
  • HTML全文浏览量:  4
  • PDF下载量:  10
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-07
  • 录用日期:  2021-06-08
  • 网络出版日期:  2021-07-14

目录

    /

    返回文章
    返回