留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小麦抗白粉病基因Pm2的研究进展

靳玉丽 谷田田 柳洪 安调过

靳玉丽, 谷田田, 柳洪, 安调过. 小麦抗白粉病基因Pm2的研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(5): 779−786 doi: 10.13930/j.cnki.cjea.210279
引用本文: 靳玉丽, 谷田田, 柳洪, 安调过. 小麦抗白粉病基因Pm2的研究进展[J]. 中国生态农业学报 (中英文), 2022, 30(5): 779−786 doi: 10.13930/j.cnki.cjea.210279
JIN Y L, GU T T, LIU H, AN D G. Research progress on the wheat powdery mildew resistance gene Pm2[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 779−786 doi: 10.13930/j.cnki.cjea.210279
Citation: JIN Y L, GU T T, LIU H, AN D G. Research progress on the wheat powdery mildew resistance gene Pm2[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 779−786 doi: 10.13930/j.cnki.cjea.210279

小麦抗白粉病基因Pm2的研究进展

doi: 10.13930/j.cnki.cjea.210279
基金项目: 中国科学院战略性先导科技专项(XDA24030102)、国家重点研发计划项目(2016YFD0100102)和国家自然科学基金项目(31671771, 31501388)资助
详细信息
    作者简介:

    靳玉丽, 主要研究方向为小麦抗病新基因的发掘与利用。E-mail: 157124913@qq.com

    通讯作者:

    安调过, 主要研究方向为小麦重要性状基因/QTL的发掘及利用。E-mail: andiaoguo@163.com

  • 中图分类号: S512.1

Research progress on the wheat powdery mildew resistance gene Pm2

Funds: This research was supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA24030102), the National Key Research and Development Program of China (2016YFD0100102) and the National Natural Science Foundation of China (31671771, 31501388)
More Information
  • 摘要: 小麦是我国重要的粮食作物之一, 其高产、稳产对保障我国粮食安全至关重要。由布氏白粉病菌(Blumeria graminis f. sp. tritici, Bgt)引起的白粉病是威胁小麦安全生产的主要病害之一。当前, 小麦白粉病主要通过喷洒化学药剂和改善栽培措施进行防治, 与之相比, 发掘并利用小麦抗白粉病优异基因, 培育抗病品种是控制白粉病流行更为经济、环保和有效的措施。位于小麦5D染色体短臂上的抗白粉病基因Pm2编码一个CC-NBS-LRR蛋白, 其抗性表现优异, 载体材料综合农艺性状优良, 是小麦抗白粉病育种中应用最广泛的基因之一。本文从Pm2基因位点的发现与分子标记定位、等位基因的发掘与利用、基因克隆、功能标记的开发、单倍型分析、无毒基因的研究以及在育种上的应用等方面系统总结了Pm2相关的最新研究进展, 提出了: 1) Pm2不同等位基因抗谱存在差异可能是由遗传背景的不同和其他调控因子以及白粉菌高度杂合所致; 2) 在抗病育种中应当合理布局利用抗白粉病基因Pm2, 从而延长其使用寿命; 3) 深入发掘并利用新的抗病基因及优异等位变异, 加强种质创新, 是保证小麦持久抗性的根本手段。本文为小麦抗白粉病基因Pm2抗病机制的进一步解析和育种应用提供了理论依据。
  • [1] APPELS R, EVERSOLE K, FEUILLET C, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome[J]. Science, 2018, 361: eaar7191 doi: 10.1126/science.aar7191
    [2] SAVARY S, WILLOCQUET L, PETHYBRIDGE S J, et al. The global burden of pathogens and pests on major food crops[J]. Nature Ecology & Evolution, 2019, 3(3): 430−439
    [3] WATERHOUSE W L. Australian rust studies. Ⅲ. Initial results of breeding for rust resistance[J]. Proceedings of the Linnean Society of New South Wales, 1930, 55: 596−636
    [4] MCINTOSH R A, DUBCOVSKY J, ROGERS W J, et al. Catalogue of gene symbols for wheat: 2019 supplement[M]// RAUPP W J, ed. Annual Wheat Newsletter. Manhattan, KS: Wheat Genetic and Genomic Resources at Kansas State University, 2019: 98–113
    [5] HE H G, LIU R K, MA P T, et al. Characterization of Pm68, a new powdery mildew resistance gene on chromosome 2BS of Greek durum wheat TRI 1796[J]. Theoretical and Applied Genetics, 2021, 134(1): 53−62 doi: 10.1007/s00122-020-03681-2
    [6] HEWITT T, MÜLLER M C, MOLNÁR I, et al. A highly differentiated region of wheat chromosome 7AL encodes a Pm1a immune receptor that recognizes its corresponding AvrPm1a effector from Blumeria graminis[J]. The New Phytologist, 2021, 229(5): 2812−2826 doi: 10.1111/nph.17075
    [7] SÁNCHEZ-MARTÍN J, STEUERNAGEL B, GHOSH S, et al. Rapid gene isolation in barley and wheat by mutant chromosome sequencing[J]. Genome Biology, 2016, 17(1): 1−7 doi: 10.1186/s13059-015-0866-z
    [8] BRUNNER S, HURNI S, HERREN G, et al. Transgenic Pm3b wheat lines show resistance to powdery mildew in the field[J]. Plant Biotechnology Journal, 2011, 9(8): 897−910 doi: 10.1111/j.1467-7652.2011.00603.x
    [9] SÁNCHEZ-MARTÍN J, WIDRIG V, HERREN G, et al. Wheat Pm4 resistance to powdery mildew is controlled by alternative splice variants encoding chimeric proteins[J]. Nature Plants, 2021, 7(3): 327−341 doi: 10.1038/s41477-021-00869-2
    [10] XIE J Z, GUO G H, WANG Y, et al. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat[J]. The New Phytologist, 2020, 228(3): 1011−1026 doi: 10.1111/nph.16762
    [11] HURNI S, BRUNNER S, BUCHMANN G, et al. Rye Pm8 and wheat Pm3 are orthologous genes and show evolutionary conservation of resistance function against powdery mildew[J]. The Plant Journal, 2013, 76(6): 957−969 doi: 10.1111/tpj.12345
    [12] SINGH S P, HURNI S, RUINELLI M, et al. Evolutionary divergence of the rye Pm17 and Pm8 resistance genes reveals ancient diversity[J]. Plant Molecular Biology, 2018, 98(3): 249−260 doi: 10.1007/s11103-018-0780-3
    [13] XING L P, HU P, LIU J Q, et al. Pm21 from Haynaldia villosa encodes a CC-NBS-LRR protein conferring powdery mildew resistance in wheat[J]. Molecular Plant, 2018, 11(6): 874−878 doi: 10.1016/j.molp.2018.02.013
    [14] LU P, GUO L, WANG Z Z, et al. A rare gain of function mutation in a wheat tandem kinase confers resistance to powdery mildew[J]. Nature Communications, 2020, 11: 680 doi: 10.1038/s41467-020-14294