Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain
-
摘要: 作物系数是计算作物需水量的基本参数, 准确确定作物系数在优化灌溉管理方面有重要作用。作物系数随作物生长及环境条件发生变化, 研究作物系数如何受生产条件和气象条件变化的影响, 可为准确确定作物系数提供依据。本研究基于中国科学院栾城农业生态系统试验站1980—2020年40余年间冬小麦在充分灌溉条件下的实际蒸散量, 研究冬小麦作物系数的变化规律; 并利用最近3年的试验数据, 明确现代生产水平下影响冬小麦作物系数的主导因素。结果表明, 1980—2020年间冬小麦在充分供水条件下的实际蒸散量及参考作物蒸散量多年平均值分别为434.7 mm和550.8 mm, 参考作物蒸散量年际相对稳定, 冬小麦实际蒸散量增加17.6%。作物系数多年平均值为0.80, 其中1980—1990年、1991—2000年、2001—2010年和2011—2020年平均分别为0.76、0.80、0.81和0.84; 40年间冬小麦产量增加42.4%, 作物系数增加11.6%, 作物产量提升是作物系数升高的主要原因。本研究表明在现状生产条件下, 叶面积指数、生物量是影响作物系数的重要因素, 在叶面积指数较高的情况下作物系数主要受饱和水汽压差及环境温度的影响, 2017—2020年冬小麦3个生育期作物系数分别是0.79、0.86和0.79; 生育期蒸散量均值为442.3 mm, 主要生育期3年平均作物系数分别为播种—越冬前0.70、越冬期间0.42、返青—拔节期0.76、拔节—抽穗期1.18、抽穗—灌浆期1.39、成熟期0.96。本研究结果显示作物系数并不是稳定不变的, 而是受作物生产力和大气蒸散力的影响。因此, 在利用作物系数和参考作物蒸散量评价作物需水量时, 需要综合考虑上述因素。Abstract: The crop coefficient (Kc) is defined as actual evapotranspiration (ET) under sufficient water supply divided by the reference crop ET (ET0), which can be calculated using meteorological factors. The Kc is used as a basic parameter to calculate the crop water requirements. The accurate determination of Kc plays an important role in optimizing irrigation management. The Kc changes with crop growth and environmental conditions. The purpose of this study was to assess how Kc varied with crop production and weather conditions by using a long-term field experiment of field management measures of winter wheat. The actual ET of winter wheat under sufficient irrigation and ET0 derived from daily meteorological parameters at Luancheng Agro-ecosystem Experimental Station of the Chinese Academy of Sciences from 1980 to 2020 were used to calculate the seasonal Kc. Additionally, the dominant factors affecting the Kc of winter wheat under the current production conditions were identified from experimental data of three recent years (2017–2020). The results showed that for winter wheat with sufficient water supply from 1980 to 2020, the average ET and ET0 were 434.7 mm and 550.8 mm, respectively. The ET0 was relatively stable, and the ET increased by 17.6%. The average Kc was 0.80 during the past four decades, with an average value of 0.76 in 1980–1990, 0.80 in 1991–2000, 0.81 in 2001–2010, and 0.84 in 2011–2020, indicating a continuously increasing trend. In the past four decades, the yield of winter wheat had increased by 42.4%, and Kc had increased by 11.6%. The increase in ET was the main reason for the increase in Kc. The ET during the past four decades increased with increasing crop production, and with a relatively stable ET0, the Kc increased. Therefore, the Kc varied with changes in crop grain production, which was related to biomass production and canopy size. Under the current growing conditions, leaf area index and biomass were important factors that affected Kc. When the leaf area index reached a certain level, Kc was mainly affected by the atmospheric evaporation potential determined by the saturated water vapor pressure difference and atmospheric temperature. The Kc during the recent three years was 0.79 for 2017–2018, 0.86 for 2018–2019, and 0.79 for 2019–2020. The average ET was 442.3 mm during the three years, and the average Kc at different growing stages of winter wheat were 0.70 from sowing to winter dormancy, 0.42 during winter dormancy, 0.76 from recovery to jointing, 1.18 from jointing to heading, 1.39 during heading to grain-fill, and 0.96 during maturity. Thus, the water requirements for winter wheat after winter dormancy increased sharply and reached the highest values during the heading to earlier grain-filling stages. The results from this study indicate that Kc varies with changes in the crop growing conditions and should not be taken as a constant value. Kc developed during three recent seasons in this study could be used to determine the crop water requirements for irrigation scheduling under the current growing conditions.
-
图 1 1980—2020年冬小麦生长季气象参数及其敏感系数
SAT: 平均温度敏感系数; SSH: 日照时数敏感系数; SWS: 平均风速敏感系数数; SRH: 相对湿度敏感系数。SAT: sensitivity coefficient of average temperature; SSH: sensitivity coefficient of sunshine hours; SWS: sensitivity coefficient of average wind speed; SRH: sensitivity coefficient of relative humidity.
Figure 1. Changes in meteorological factors and their sensitivity coefficients during winter wheat growing seasons from 1980 to 2020
表 1 试验地点不同层次土壤物理特征
Table 1. Soil physical characteristics at different soil layers for the experimental site
深度
Depth (cm)土壤质地
Texture容重
Bulk density (g∙cm−3)田间持水量
Field capacity (%)凋萎系数
Wilting point (%)饱和导水率
Saturated hydraulic
conductivity (m∙d−1)0~20 沙壤土 Sand loam 1.41 36.1 9.6 1.090 20~35 沙壤土 Sand loam 1.51 35.0 11.4 0.434 35~65 轻壤土 Light loam 1.47 33.4 13.9 0.730 65~90 中壤土 Middle loam 1.51 34.2 13.9 0.713 90~145 砂质黏壤土 Sandy clay loam 1.54 34.7 12.9 0.020 145~170 黏壤土 Clay loam 1.64 39.3 13.9 0.003 170~200 砂质黏壤土 Sandy clay loam 1.59 38.5 16.4 0.016 表 2 试验地点冬小麦田间管理措施变化(1980—2020年)
Table 2. Field management measures for the experimental plot during 1980−2020 for winter wheat
时期
Period栽培品种
Cultivar年总施肥量1)
Annual fertilizer amounts耕作与秸秆处理
Tillage and straw management1980—1990 ‘冀麦22’
‘Jimai 22’N 150~200 kg∙hm−2;
P2O5 80~100 kg∙hm−2小麦和玉米秸秆在人工收获后移除, 通过安装于拖拉机上的犁在冬小麦播种前进行
翻耕。
Straw of wheat and maize was removed from the field manually, soil was ploughed using a plough mounted on a tractor before sowing wheat.1991—1998 ‘冀麦24’
‘Jimai 24’N 250~300 kg∙hm−2; P2O5100~150 kg∙hm−2 联合收割机收获冬小麦并将秸秆覆盖于田间, 夏玉米秸秆于冬小麦播种前人工清除。耕作方式不变。
Wheat was harvested by combine and wheat straw was left in the field as mulch, straw of summer maize was manually removed before winter wheat sowing. The farming method unchanged.1998—2003 “石4185”
‘Shi 4185’N 300~350 kg∙hm−2; P2O5130~170 kg∙hm−2;
K2O 20 kg∙hm−2两种作物全部实行秸秆还田, 其中玉米秸秆机械粉碎后, 于冬小麦播种前旋耕与上层土壤混合。耕种方式不变。
Straws of winter wheat and summer maize were both returned to the field, with winter wheat straw left on the soil surface after harvesting. Maize straw was cut into small pieces after maize harvesting. Before sowing winter wheat, rotary tillage was applied twice to mix the straw with the top soil layer. Other farming practices unchanged.2004—2009 ‘7221’和‘科农199’
‘7221’ and ‘Kenong199’N 300~350 kg∙hm−2; P2O5150~180 kg∙hm−2;
K2O 20 kg∙hm−2秸秆处理方式不变。使用新式旋耕法逐渐代替传统耕作法。每隔2~3年深耕一次。
The same straw and tillage management as above, with deep plough added every 2−3 years.2009—2020 ‘科农199’和‘石新633’
‘Kenong199’ and ‘Shixin633’N 400~425 kg∙hm−2; P2O5180~200 kg∙hm−2;
K2O 90 kg∙hm−2秸秆处理和耕作方式同上。
The same straw and tillage management as above.1)年总施肥量是小麦、玉米一年两季的用量。其中N通过尿素施入, N含量约为46%; P2O5采用磷酸二铵, 含P2O5 46%, N 16%; K2O采用氯化钾, 含K2O 62%。1/4的尿素、全部磷酸二铵和氯化钾在冬小麦耕种前施入, 剩余的尿素在冬小麦拔节和玉米大喇叭口等量追肥施入。The annual fertilizer application was the total amount of fertilizers applied to both winter wheat and summer maize. N fertilizer was urea containing 46% N; P2O5 fertilizer was diammonium phosphate containing 46% P2O5 and 16% N; and K2O fertilizer was potassium chloride containing 62% K2O. One-fourth of urea, all diammonium phosphate and potassium chloride were applied before tillage at sowing winter wheat. All the other urea was divided equally applied to winter wheat at jointing stage and summer maize at 9th leaf stage. 表 3 2017—2020年冬小麦生长季气象条件
Table 3. Weather conditions during winter wheat growing seasons from 2017 to 2020
气象要素 Meteorological factors 2017—2018 2018—2019 2019—2020 多年平均 Long-term average from 1980 to 2020 降水 Precipitation (mm) 135.0 114.7 106.2 120.07 正积温 Positive accumulated temperature (℃) 2089.1 2101.9 2205.7 1941.2 日照时数 Sunshine hours (h) 1229.4 1193.8 1082.7 1263.9 日均风速 Average daily wind speed (m∙s−1) 1.2 0.9 0.9 1.3 相对湿度 Relative humidity (%) 59.4 59.2 57.5 65.9 参考作物蒸散量 Reference crop evapotranspiration (mm) 542.5 538.8 551.5 542.1 -
[1] JOVANOVIC N, PEREIRA L S, PAREDES P, et al. A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods[J]. Agricultural Water Management, 2020, 239: 106−267 [2] ZHANG X Y, WANG Y Z, SUN H Y, et al. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply[J]. Irrigation Science, 2013, 31(5): 1103−1112 doi: 10.1007/s00271-012-0391-8 [3] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2): 109−120 doi: 10.1016/S0168-1923(02)00015-1 [4] LI J M, INANAGA S, LI Z H, et al. Optimizing irrigation scheduling for winter wheat in the North China Plain[J]. Agricultural Water Management, 2005, 76(1): 8−23 doi: 10.1016/j.agwat.2005.01.006 [5] 左余宝, 田昌玉, 唐继伟, 等. 鲁北地区主要作物不同生育期需水量和作物系数的试验研究[J]. 中国农业气象, 2009, 30(1): 70−73, 78 doi: 10.3969/j.issn.1000-6362.2009.01.015ZUO Y B, TIAN C Y, TANG J W, et al. Studies on ETc and Kc of main crops in northern Shandong Province[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 70−73, 78 doi: 10.3969/j.issn.1000-6362.2009.01.015 [6] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[EB/OL]. 1998 [7] 孙景生, 刘祖贵, 张寄阳, 等. 风沙区春小麦作物系数试验研究[J]. 农业工程学报, 2002, 18(6): 55−58 doi: 10.3321/j.issn:1002-6819.2002.06.014SUN J S, LIU Z G, ZHANG J Y, et al. Crop coefficients of spring wheat in windy dust area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 55−58 doi: 10.3321/j.issn:1002-6819.2002.06.014 [8] PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147: 4−20 doi: 10.1016/j.agwat.2014.07.031 [9] 封志明, 杨艳昭, 丁晓强, 等. 甘肃地区参考作物蒸散量时空变化研究[J]. 农业工程学报, 2004, 20(1): 99−103 doi: 10.3321/j.issn:1002-6819.2004.01.024FENG Z M, YANG Y Z, DING X Q, et al. Temporal-spatial changing characteristics of reference crop evapotranspiration in Gansu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 99−103 doi: 10.3321/j.issn:1002-6819.2004.01.024 [10] 张瑜, 张立元, Zhang Huihui, 等. 玉米作物系数无人机遥感协同地面水分监测估算方法研究[J]. 农业工程学报, 2019, 35(1): 83−89 doi: 10.11975/j.issn.1002-6819.2019.01.010ZHANG Y, ZHANG L Y, ZHANG H H, et al. Crop coefficient estimation method of maize by UAV remote sensing and soil moisture monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 83−89 doi: 10.11975/j.issn.1002-6819.2019.01.010 [11] 王振龙, 范月, 吕海深, 等. 基于气象-生理的夏玉米作物系数及蒸散估算[J]. 农业工程学报, 2020, 36(11): 141−148 doi: 10.11975/j.issn.1002-6819.2020.11.016WANG Z L, FAN Y, LYU H S, et al. Estimation of summer maize crop coefficient and evapotranspiration based on meteorology-physiology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 141−148 doi: 10.11975/j.issn.1002-6819.2020.11.016 [12] 时学双, 曹红霞, 李天军. 基于Penman-Monteith公式的关中地区作物系数研究[J]. 灌溉排水学报, 2009, 28(2): 26−29SHI X S, CAO H X, LI T J. Crop coefficient on the Penman-Monteith formulae in Guanzhong Shaanxi[J]. Journal of Irrigation and Drainage, 2009, 28(2): 26−29 [13] FRERE M, POPOV G F. Agrometeorological Crop Monitoring and Forecasting[M]. Rome: FAO Plant Production and Protection Paper 17, 1979: 21–29 [14] 陈玉民. 关于作物系数的研究及新进展[J]. 灌溉排水, 1987, 6(2): 1−7CHEN Y M. A study on the crop coefficients and its new development[J]. Irrigation and Drainage, 1987, 6(2): 1−7 [15] 曹永强, 李晓瑞, 朱明明. 河北省主要作物系数时空分布特征[J]. 水利水电科技进展, 2019, 39(2): 37−45 doi: 10.3880/j.issn.1006-7647.2019.02.008CAO Y Q, LI X R, ZHU M M. Spatial and temporal distribution characteristics of main crop coefficients in Hebei Province[J]. Advances in Science and Technology of Water Resources, 2019, 39(2): 37−45 doi: 10.3880/j.issn.1006-7647.2019.02.008 [16] 李波, 景竹然, 魏新光, 等. 东北地区春玉米作物系数时空分布特征研究[J]. 农业机械学报, 2020, 51(4): 279−290 doi: 10.6041/j.issn.1000-1298.2020.04.032LI B, JING Z R, WEI X G, et al. Spatial and temporal distribution characteristics of spring maize coefficients in northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 279−290 doi: 10.6041/j.issn.1000-1298.2020.04.032 [17] 花佳程, 朱永华, 王振龙, 等. 淮北平原冬小麦作物系数的变化规律研究[J]. 灌溉排水学报, 2021, 40(2): 118−124HUA J C, ZHU Y H, WANG Z L, et al. Spatiotemporal variation of crop coefficient of winter wheat in Huaibei plain[J]. Journal of Irrigation and Drainage, 2021, 40(2): 118−124 [18] 环海军, 姚丹丹, 刘岩, 等. 鲁中地区作物系数确定及土壤水分预报模型研究[J]. 山东农业科学, 2017, 49(6): 143−147HUAN H J, YAO D D, LIU Y, et al. Research on crop coefficient determination and soil moisture forecast models in the middle area of Shandong Province[J]. Shandong Agricultural Sciences, 2017, 49(6): 143−147 [19] 宋妮, 孙景生, 王景雷, 等. 基于Penman修正式和Penman-Monteith公式的作物系数差异分析[J]. 农业工程学报, 2013, 29(19): 88−97 doi: 10.3969/j.issn.1002-6819.2013.19.011SONG N, SUN J S, WANG J L, et al. Analysis of difference in crop coefficients based on modified Penman and Penman-Monteith equations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 88−97 doi: 10.3969/j.issn.1002-6819.2013.19.011 [20] ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6): 1097−1104 doi: 10.1016/j.agwat.2011.02.003 [21] 何振嘉, 吴萌. 黄土高原区涌泉根灌枣树作物系数与耗水规律研究[J]. 灌溉排水学报, 2018, 37(S2): 5−9HE Z J, WU M. Crop coefficient and water consumption rule of jujube trees in bubbled-root irrigation of Loess Plateau Region[J]. Journal of Irrigation and Drainage, 2018, 37(S2): 5−9 [22] 王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J]. 农业工程学报, 2006, 22(2): 27−32 doi: 10.3321/j.issn:1002-6819.2006.02.007WANG S F, ZHANG X Y, PEI D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 27−32 doi: 10.3321/j.issn:1002-6819.2006.02.007 [23] 王鹏涛, 延军平, 蒋冲, 等. 华北平原参考作物蒸散量时空变化及其影响因素分析[J]. 生态学报, 2014, 34(19): 5589−5599WANG P T, YAN J P, JIANG C, et al. Spatial and temporal variations of reference crop evapotranspiration and its influencing factors in the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(19): 5589−5599 [24] MCCUEN R H. A sensitivity and error analysis cf procedures used for estimating evaporation[J]. Journal of the American Water Resources Association, 1974, 10(3): 486−497 doi: 10.1111/j.1752-1688.1974.tb00590.x [25] ALLEN R G, JENSEN M E, WRIGHT J L, et al. Operational estimates of reference evapotranspiration[J]. Agronomy Journal, 1989, 81(4): 650−662 doi: 10.2134/agronj1989.00021962008100040019x [26] 周瑶, 张鑫, 徐静. 青海省东部农业区参考作物蒸散量的变化及对气象因子的敏感性分析[J]. 自然资源学报, 2013, 28(5): 765−775 doi: 10.11849/zrzyxb.2013.05.006ZHOU Y, ZHANG X, XU J. Changes of reference crop evapotranspiration and sensitivity analysis of meteorological factors in eastern plateau agricultural region of Qinghai Province[J]. Journal of Natural Resources, 2013, 28(5): 765−775 doi: 10.11849/zrzyxb.2013.05.006 [27] YIN Y H, WU S H, DAI E F. Determining factors in potential evapotranspiration changes over China in the period 1971—2008[J]. Chinese Science Bulletin, 2010, 55(29): 3329−3337 doi: 10.1007/s11434-010-3289-y [28] ZHANG X Y, CHEN S Y, SUN H Y, et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat[J]. Irrigation Science, 2008, 27(1): 1−10 doi: 10.1007/s00271-008-0131-2 [29] KENDY E, GERARD-MARCHANT P, WALTER M T, et al. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain[J]. Hydrological Processes, 2003, 17(10): 2023−2029 [30] 张喜英, 张橹, 刘昌明. 太行山前平原土壤水分特征曲线拟合参数的确定[J]. 华北农学报, 2001(2): 75−82 doi: 10.3321/j.issn:1000-7091.2001.02.015ZHANG X Y, ZHANG L, LIU C M. Determination of fitting parameters of soil moisture characteristic curve in Taihang Piedmont Plain[J]. Acta Agriculturae Boreali-sinica, 2001(2): 75−82 doi: 10.3321/j.issn:1000-7091.2001.02.015 [31] ZHANG X Y, CHEN S Y, LIU M Y, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China plain[J]. Agronomy Journal, 2005, 97(3): 783−790 doi: 10.2134/agronj2004.0194 [32] 韩淑敏, 程一松, 胡春胜. 太行山山前平原作物系数与降水年型关系探讨[J]. 干旱地区农业研究, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030HAN S M, CHENG Y S, HU C S. Relationship between crop coefficient and precipitation pattern in the piedmont of Mt. Taihang[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030 [33] 周陈, 李许滨, 徐德彬, 等. 土壤肥力及冬小麦产量与生物有机肥的效应研究[J]. 安徽农业科学, 2008, 36(3): 1130−1132 doi: 10.3969/j.issn.0517-6611.2008.03.123ZHOU C, LI X B, XU D B, et al. Study on the effect of biological organic fertilizer on soil fertility and winter wheat yield[J]. Journal of Anhui Agricultural Sciences, 2008, 36(3): 1130−1132 doi: 10.3969/j.issn.0517-6611.2008.03.123 [34] ZHOU Y, ZHU H Z, CAI S B, et al. Genetic improvement of grain yield and associated traits in the Southern China winter wheat region: 1949 to 2000[J]. Euphytica, 2007, 157(3): 465−473 doi: 10.1007/s10681-007-9376-8 [35] FAN M S, ZHANG X Y, YUAN L X, et al. Current status and future perspectives to increase nutrient- and water-use efficiency in food production systems in China[M]//Improving Water and Nutrient-Use Efficiency in Food Production Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013: 263–273 [36] 王艳哲. 提高冬小麦水分利用效率的根层水氮调控机制[D]. 北京: 中国科学院大学, 2013: 110−112WANG Y Z. Regulating water and N supply in the root zone to improve water use efficiency of winter wheat[D]. Beijing: University of Chinese Academy of Sciences, 2013: 110−112 [37] KANG S Z, GU B J, DU T S, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239−254 doi: 10.1016/S0378-3774(02)00150-6 [38] 雷志栋, 罗毅, 杨诗秀, 等. 利用常规气象资料模拟计算作物系数的探讨[J]. 农业工程学报, 1999, 15(3): 119−122 doi: 10.3321/j.issn:1002-6819.1999.03.024LEI Z D, LUO Y, YANG S X, et al. Calculation of crop coefficient with meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999, 15(3): 119−122 doi: 10.3321/j.issn:1002-6819.1999.03.024 [39] 刘海军, 康跃虎. 冬小麦拔节抽穗期作物系数的研究[J]. 农业工程学报, 2006, 22(10): 52−56 doi: 10.3321/j.issn:1002-6819.2006.10.011LIU H J, KANG Y H. Calculation of crop coefficient of winter wheat at elongation-heading stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 52−56 doi: 10.3321/j.issn:1002-6819.2006.10.011 -