留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

太行山前平原40年冬小麦作物系数变化及影响因素研究

李昊天 李璐 闫宗正 高聪帅 韩琳娜 张喜英

李昊天, 李璐, 闫宗正, 高聪帅, 韩琳娜, 张喜英. 太行山前平原40年冬小麦作物系数变化及影响因素研究[J]. 中国生态农业学报 (中英文), 2022, 30(5): 747−760 doi: 10.13930/j.cnki.cjea.210342
引用本文: 李昊天, 李璐, 闫宗正, 高聪帅, 韩琳娜, 张喜英. 太行山前平原40年冬小麦作物系数变化及影响因素研究[J]. 中国生态农业学报 (中英文), 2022, 30(5): 747−760 doi: 10.13930/j.cnki.cjea.210342
LI H T, LI L, YAN Z Z, GAO C S, HAN L N, ZHANG X Y. Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 747−760 doi: 10.13930/j.cnki.cjea.210342
Citation: LI H T, LI L, YAN Z Z, GAO C S, HAN L N, ZHANG X Y. Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain[J]. Chinese Journal of Eco-Agriculture, 2022, 30(5): 747−760 doi: 10.13930/j.cnki.cjea.210342

太行山前平原40年冬小麦作物系数变化及影响因素研究

doi: 10.13930/j.cnki.cjea.210342
基金项目: 国家重点研发计划项目(2017YFE0130500)、河北省创新团体项目(D2021503001)和国网河北省电力有限公司项目(SGHEYX00SCJS2100077)资助
详细信息
    作者简介:

    李昊天, 主要从事农田节水机理与技术研究。E-mail: lihaotian19@mails.ucas.ac.cn

    通讯作者:

    张喜英, 主要从事农田节水机理与技术研究。E-mail: xyzhang@sjziam.ac.cn

  • 中图分类号: S512.11

Changes in and influencing factors of crop coefficient of winter wheat during the past 40 years on the Taihang Piedmont Plain

Funds: This study was supported by the National Key Research and Development Project of China (2017YFE0130500), Hebei Innovation Group Project (D2021503001), and the Project of State Grid Hebei Electric Power Co., Ltd. (SGHEYX00SCJS2100077).
More Information
  • 摘要: 作物系数是计算作物需水量的基本参数, 准确确定作物系数在优化灌溉管理方面有重要作用。作物系数随作物生长及环境条件发生变化, 研究作物系数如何受生产条件和气象条件变化的影响, 可为准确确定作物系数提供依据。本研究基于中国科学院栾城农业生态系统试验站1980—2020年40余年间冬小麦在充分灌溉条件下的实际蒸散量, 研究冬小麦作物系数的变化规律; 并利用最近3年的试验数据, 明确现代生产水平下影响冬小麦作物系数的主导因素。结果表明, 1980—2020年间冬小麦在充分供水条件下的实际蒸散量及参考作物蒸散量多年平均值分别为434.7 mm和550.8 mm, 参考作物蒸散量年际相对稳定, 冬小麦实际蒸散量增加17.6%。作物系数多年平均值为0.80, 其中1980—1990年、1991—2000年、2001—2010年和2011—2020年平均分别为0.76、0.80、0.81和0.84; 40年间冬小麦产量增加42.4%, 作物系数增加11.6%, 作物产量提升是作物系数升高的主要原因。本研究表明在现状生产条件下, 叶面积指数、生物量是影响作物系数的重要因素, 在叶面积指数较高的情况下作物系数主要受饱和水汽压差及环境温度的影响, 2017—2020年冬小麦3个生育期作物系数分别是0.79、0.86和0.79; 生育期蒸散量均值为442.3 mm, 主要生育期3年平均作物系数分别为播种—越冬前0.70、越冬期间0.42、返青—拔节期0.76、拔节—抽穗期1.18、抽穗—灌浆期1.39、成熟期0.96。本研究结果显示作物系数并不是稳定不变的, 而是受作物生产力和大气蒸散力的影响。因此, 在利用作物系数和参考作物蒸散量评价作物需水量时, 需要综合考虑上述因素。
  • 图  1  1980—2020年冬小麦生长季气象参数及其敏感系数

    SAT: 平均温度敏感系数; SSH: 日照时数敏感系数; SWS: 平均风速敏感系数数; SRH: 相对湿度敏感系数。SAT: sensitivity coefficient of average temperature; SSH: sensitivity coefficient of sunshine hours; SWS: sensitivity coefficient of average wind speed; SRH: sensitivity coefficient of relative humidity.

    Figure  1.  Changes in meteorological factors and their sensitivity coefficients during winter wheat growing seasons from 1980 to 2020

    图  2  冬小麦生长季参考作物蒸散量及降雨量变化(1980—2020年)

    Figure  2.  Changes in reference crop evapotranspiration (ET0) and rainfall during winter wheat growing seasons from 1980 to 2020

    图  3  1980—2020年充分供水条件下冬小麦产量及蒸散量的变化

    Figure  3.  Variations of yield and evapotranspiration (ET) of winter wheat under sufficient water supply from 1980 to 2020

    图  4  1980—2020年充分供水条件下冬小麦作物系数的变化

    Figure  4.  Variation of crop coefficient of winter wheat under sufficient water supply from 1980 to 2020

    图  5  1980—2020年充分供水冬小麦作物系数与蒸散量、参考作物蒸散量相关分析

    Figure  5.  Correlation analysis of crop coefficient, evapotranspiration, and reference crop evapotranspiration during winter wheat growing seasons under sufficient water supply from 1980 to 2020

    图  6  1980—2020年充分供水冬小麦作物系数与产量、生物量相关分析

    Figure  6.  Correlation analysis of crop coefficient, yield and biomass of winter wheat under sufficient water supply from 1980 to 2020

    图  7  2017—2020年充分供水处理冬小麦作物系数及降雨量的变化

    Figure  7.  Changes in crop coefficients of winter wheat under sufficient water supply and distribution of rainfall and irrigation during the growing seasons of winter wheat from 2017 to 2020

    图  8  2017—2020年充分供水处理冬小麦平均生物量及叶面积指数变化

    Figure  8.  Changes in biomass and leaf area index during three growing seasons of winter wheat under sufficient water supply from 2017 to 2020

    图  9  2017—2020年冬小麦主要生育期作物系数与生物量、叶面积指数的相关关系分析

    Figure  9.  Correlation analysis between crop coefficients with biomass and leaf area index of winter wheat during different growth stages for three seasons from 2017 to 2020

    图  10  2017—2020年冬小麦各生育期作物系数与饱和水汽压差、温度相关性分析

    Figure  10.  Correlation analysis between crop coefficient with saturated water vapor pressure difference and air temperature during different growing stages of winter wheat for three seasons from 2017 to 2020

    表  1  试验地点不同层次土壤物理特征

    Table  1.   Soil physical characteristics at different soil layers for the experimental site

    深度
    Depth (cm)
    土壤质地
    Texture
    容重
    Bulk density (g∙cm−3)
    田间持水量
    Field capacity (%)
    凋萎系数
    Wilting point (%)
    饱和导水率
    Saturated hydraulic
    conductivity (m∙d−1)
    0~20沙壤土 Sand loam1.4136.19.61.090
    20~35沙壤土 Sand loam1.5135.011.40.434
    35~65轻壤土 Light loam1.4733.413.90.730
    65~90中壤土 Middle loam1.5134.213.90.713
    90~145砂质黏壤土 Sandy clay loam1.5434.712.90.020
    145~170黏壤土 Clay loam1.6439.313.90.003
    170~200砂质黏壤土 Sandy clay loam1.5938.516.40.016
    下载: 导出CSV

    表  2  试验地点冬小麦田间管理措施变化(1980—2020年)

    Table  2.   Field management measures for the experimental plot during 1980−2020 for winter wheat

    时期
    Period
    栽培品种
    Cultivar
    年总施肥量1)
    Annual fertilizer amounts
    耕作与秸秆处理
    Tillage and straw management
    1980—1990 ‘冀麦22’
    ‘Jimai 22’
    N 150~200 kg∙hm−2;
    P2O5 80~100 kg∙hm−2
    小麦和玉米秸秆在人工收获后移除, 通过安装于拖拉机上的犁在冬小麦播种前进行
    翻耕。
    Straw of wheat and maize was removed from the field manually, soil was ploughed using a plough mounted on a tractor before sowing wheat.
    1991—1998 ‘冀麦24’
    ‘Jimai 24’
    N 250~300 kg∙hm−2; P2O5100~150 kg∙hm−2 联合收割机收获冬小麦并将秸秆覆盖于田间, 夏玉米秸秆于冬小麦播种前人工清除。耕作方式不变。
    Wheat was harvested by combine and wheat straw was left in the field as mulch, straw of summer maize was manually removed before winter wheat sowing. The farming method unchanged.
    1998—2003 “石4185”
    ‘Shi 4185’
    N 300~350 kg∙hm−2; P2O5130~170 kg∙hm−2;
    K2O 20 kg∙hm−2
    两种作物全部实行秸秆还田, 其中玉米秸秆机械粉碎后, 于冬小麦播种前旋耕与上层土壤混合。耕种方式不变。
    Straws of winter wheat and summer maize were both returned to the field, with winter wheat straw left on the soil surface after harvesting. Maize straw was cut into small pieces after maize harvesting. Before sowing winter wheat, rotary tillage was applied twice to mix the straw with the top soil layer. Other farming practices unchanged.
    2004—2009 ‘7221’和‘科农199’
    ‘7221’ and ‘Kenong199’
    N 300~350 kg∙hm−2; P2O5150~180 kg∙hm−2;
    K2O 20 kg∙hm−2
    秸秆处理方式不变。使用新式旋耕法逐渐代替传统耕作法。每隔2~3年深耕一次。
    The same straw and tillage management as above, with deep plough added every 2−3 years.
    2009—2020 ‘科农199’和‘石新633’
    ‘Kenong199’ and ‘Shixin633’
    N 400~425 kg∙hm−2; P2O5180~200 kg∙hm−2;
    K2O 90 kg∙hm−2
    秸秆处理和耕作方式同上。
    The same straw and tillage management as above.
      1)年总施肥量是小麦、玉米一年两季的用量。其中N通过尿素施入, N含量约为46%; P2O5采用磷酸二铵, 含P2O5 46%, N 16%; K2O采用氯化钾, 含K2O 62%。1/4的尿素、全部磷酸二铵和氯化钾在冬小麦耕种前施入, 剩余的尿素在冬小麦拔节和玉米大喇叭口等量追肥施入。The annual fertilizer application was the total amount of fertilizers applied to both winter wheat and summer maize. N fertilizer was urea containing 46% N; P2O5 fertilizer was diammonium phosphate containing 46% P2O5 and 16% N; and K2O fertilizer was potassium chloride containing 62% K2O. One-fourth of urea, all diammonium phosphate and potassium chloride were applied before tillage at sowing winter wheat. All the other urea was divided equally applied to winter wheat at jointing stage and summer maize at 9th leaf stage.
    下载: 导出CSV

    表  3  2017—2020年冬小麦生长季气象条件

    Table  3.   Weather conditions during winter wheat growing seasons from 2017 to 2020

    气象要素 Meteorological factors2017—20182018—20192019—2020多年平均 Long-term average from 1980 to 2020
    降水 Precipitation (mm)135.0114.7106.2120.07
    正积温 Positive accumulated temperature (℃)2089.12101.92205.71941.2
    日照时数 Sunshine hours (h)1229.41193.81082.71263.9
    日均风速 Average daily wind speed (m∙s−1)1.20.90.91.3
    相对湿度 Relative humidity (%)59.459.257.565.9
    参考作物蒸散量 Reference crop evapotranspiration (mm)542.5538.8551.5542.1
    下载: 导出CSV
  • [1] JOVANOVIC N, PEREIRA L S, PAREDES P, et al. A review of strategies, methods and technologies to reduce non-beneficial consumptive water use on farms considering the FAO56 methods[J]. Agricultural Water Management, 2020, 239: 106−267
    [2] ZHANG X Y, WANG Y Z, SUN H Y, et al. Optimizing the yield of winter wheat by regulating water consumption during vegetative and reproductive stages under limited water supply[J]. Irrigation Science, 2013, 31(5): 1103−1112 doi: 10.1007/s00271-012-0391-8
    [3] LIU C M, ZHANG X Y, ZHANG Y Q. Determination of daily evaporation and evapotranspiration of winter wheat and maize by large-scale weighing lysimeter and micro-lysimeter[J]. Agricultural and Forest Meteorology, 2002, 111(2): 109−120 doi: 10.1016/S0168-1923(02)00015-1
    [4] LI J M, INANAGA S, LI Z H, et al. Optimizing irrigation scheduling for winter wheat in the North China Plain[J]. Agricultural Water Management, 2005, 76(1): 8−23 doi: 10.1016/j.agwat.2005.01.006
    [5] 左余宝, 田昌玉, 唐继伟, 等. 鲁北地区主要作物不同生育期需水量和作物系数的试验研究[J]. 中国农业气象, 2009, 30(1): 70−73, 78 doi: 10.3969/j.issn.1000-6362.2009.01.015

    ZUO Y B, TIAN C Y, TANG J W, et al. Studies on ETc and Kc of main crops in northern Shandong Province[J]. Chinese Journal of Agrometeorology, 2009, 30(1): 70−73, 78 doi: 10.3969/j.issn.1000-6362.2009.01.015
    [6] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56[EB/OL]. 1998
    [7] 孙景生, 刘祖贵, 张寄阳, 等. 风沙区春小麦作物系数试验研究[J]. 农业工程学报, 2002, 18(6): 55−58 doi: 10.3321/j.issn:1002-6819.2002.06.014

    SUN J S, LIU Z G, ZHANG J Y, et al. Crop coefficients of spring wheat in windy dust area[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 55−58 doi: 10.3321/j.issn:1002-6819.2002.06.014
    [8] PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147: 4−20 doi: 10.1016/j.agwat.2014.07.031
    [9] 封志明, 杨艳昭, 丁晓强, 等. 甘肃地区参考作物蒸散量时空变化研究[J]. 农业工程学报, 2004, 20(1): 99−103 doi: 10.3321/j.issn:1002-6819.2004.01.024

    FENG Z M, YANG Y Z, DING X Q, et al. Temporal-spatial changing characteristics of reference crop evapotranspiration in Gansu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2004, 20(1): 99−103 doi: 10.3321/j.issn:1002-6819.2004.01.024
    [10] 张瑜, 张立元, Zhang Huihui, 等. 玉米作物系数无人机遥感协同地面水分监测估算方法研究[J]. 农业工程学报, 2019, 35(1): 83−89 doi: 10.11975/j.issn.1002-6819.2019.01.010

    ZHANG Y, ZHANG L Y, ZHANG H H, et al. Crop coefficient estimation method of maize by UAV remote sensing and soil moisture monitoring[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(1): 83−89 doi: 10.11975/j.issn.1002-6819.2019.01.010
    [11] 王振龙, 范月, 吕海深, 等. 基于气象-生理的夏玉米作物系数及蒸散估算[J]. 农业工程学报, 2020, 36(11): 141−148 doi: 10.11975/j.issn.1002-6819.2020.11.016

    WANG Z L, FAN Y, LYU H S, et al. Estimation of summer maize crop coefficient and evapotranspiration based on meteorology-physiology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(11): 141−148 doi: 10.11975/j.issn.1002-6819.2020.11.016
    [12] 时学双, 曹红霞, 李天军. 基于Penman-Monteith公式的关中地区作物系数研究[J]. 灌溉排水学报, 2009, 28(2): 26−29

    SHI X S, CAO H X, LI T J. Crop coefficient on the Penman-Monteith formulae in Guanzhong Shaanxi[J]. Journal of Irrigation and Drainage, 2009, 28(2): 26−29
    [13] FRERE M, POPOV G F. Agrometeorological Crop Monitoring and Forecasting[M]. Rome: FAO Plant Production and Protection Paper 17, 1979: 21–29
    [14] 陈玉民. 关于作物系数的研究及新进展[J]. 灌溉排水, 1987, 6(2): 1−7

    CHEN Y M. A study on the crop coefficients and its new development[J]. Irrigation and Drainage, 1987, 6(2): 1−7
    [15] 曹永强, 李晓瑞, 朱明明. 河北省主要作物系数时空分布特征[J]. 水利水电科技进展, 2019, 39(2): 37−45 doi: 10.3880/j.issn.1006-7647.2019.02.008

    CAO Y Q, LI X R, ZHU M M. Spatial and temporal distribution characteristics of main crop coefficients in Hebei Province[J]. Advances in Science and Technology of Water Resources, 2019, 39(2): 37−45 doi: 10.3880/j.issn.1006-7647.2019.02.008
    [16] 李波, 景竹然, 魏新光, 等. 东北地区春玉米作物系数时空分布特征研究[J]. 农业机械学报, 2020, 51(4): 279−290 doi: 10.6041/j.issn.1000-1298.2020.04.032

    LI B, JING Z R, WEI X G, et al. Spatial and temporal distribution characteristics of spring maize coefficients in northeast China[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(4): 279−290 doi: 10.6041/j.issn.1000-1298.2020.04.032
    [17] 花佳程, 朱永华, 王振龙, 等. 淮北平原冬小麦作物系数的变化规律研究[J]. 灌溉排水学报, 2021, 40(2): 118−124

    HUA J C, ZHU Y H, WANG Z L, et al. Spatiotemporal variation of crop coefficient of winter wheat in Huaibei plain[J]. Journal of Irrigation and Drainage, 2021, 40(2): 118−124
    [18] 环海军, 姚丹丹, 刘岩, 等. 鲁中地区作物系数确定及土壤水分预报模型研究[J]. 山东农业科学, 2017, 49(6): 143−147

    HUAN H J, YAO D D, LIU Y, et al. Research on crop coefficient determination and soil moisture forecast models in the middle area of Shandong Province[J]. Shandong Agricultural Sciences, 2017, 49(6): 143−147
    [19] 宋妮, 孙景生, 王景雷, 等. 基于Penman修正式和Penman-Monteith公式的作物系数差异分析[J]. 农业工程学报, 2013, 29(19): 88−97 doi: 10.3969/j.issn.1002-6819.2013.19.011

    SONG N, SUN J S, WANG J L, et al. Analysis of difference in crop coefficients based on modified Penman and Penman-Monteith equations[J]. Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(19): 88−97 doi: 10.3969/j.issn.1002-6819.2013.19.011
    [20] ZHANG X Y, CHEN S Y, SUN H Y, et al. Changes in evapotranspiration over irrigated winter wheat and maize in North China Plain over three decades[J]. Agricultural Water Management, 2011, 98(6): 1097−1104 doi: 10.1016/j.agwat.2011.02.003
    [21] 何振嘉, 吴萌. 黄土高原区涌泉根灌枣树作物系数与耗水规律研究[J]. 灌溉排水学报, 2018, 37(S2): 5−9

    HE Z J, WU M. Crop coefficient and water consumption rule of jujube trees in bubbled-root irrigation of Loess Plateau Region[J]. Journal of Irrigation and Drainage, 2018, 37(S2): 5−9
    [22] 王淑芬, 张喜英, 裴冬. 不同供水条件对冬小麦根系分布、产量及水分利用效率的影响[J]. 农业工程学报, 2006, 22(2): 27−32 doi: 10.3321/j.issn:1002-6819.2006.02.007

    WANG S F, ZHANG X Y, PEI D. Impacts of different water supplied conditions on root distribution, yield and water utilization efficiency of winter wheat[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(2): 27−32 doi: 10.3321/j.issn:1002-6819.2006.02.007
    [23] 王鹏涛, 延军平, 蒋冲, 等. 华北平原参考作物蒸散量时空变化及其影响因素分析[J]. 生态学报, 2014, 34(19): 5589−5599

    WANG P T, YAN J P, JIANG C, et al. Spatial and temporal variations of reference crop evapotranspiration and its influencing factors in the North China Plain[J]. Acta Ecologica Sinica, 2014, 34(19): 5589−5599
    [24] MCCUEN R H. A sensitivity and error analysis cf procedures used for estimating evaporation[J]. Journal of the American Water Resources Association, 1974, 10(3): 486−497 doi: 10.1111/j.1752-1688.1974.tb00590.x
    [25] ALLEN R G, JENSEN M E, WRIGHT J L, et al. Operational estimates of reference evapotranspiration[J]. Agronomy Journal, 1989, 81(4): 650−662 doi: 10.2134/agronj1989.00021962008100040019x
    [26] 周瑶, 张鑫, 徐静. 青海省东部农业区参考作物蒸散量的变化及对气象因子的敏感性分析[J]. 自然资源学报, 2013, 28(5): 765−775 doi: 10.11849/zrzyxb.2013.05.006

    ZHOU Y, ZHANG X, XU J. Changes of reference crop evapotranspiration and sensitivity analysis of meteorological factors in eastern plateau agricultural region of Qinghai Province[J]. Journal of Natural Resources, 2013, 28(5): 765−775 doi: 10.11849/zrzyxb.2013.05.006
    [27] YIN Y H, WU S H, DAI E F. Determining factors in potential evapotranspiration changes over China in the period 1971—2008[J]. Chinese Science Bulletin, 2010, 55(29): 3329−3337 doi: 10.1007/s11434-010-3289-y
    [28] ZHANG X Y, CHEN S Y, SUN H Y, et al. Dry matter, harvest index, grain yield and water use efficiency as affected by water supply in winter wheat[J]. Irrigation Science, 2008, 27(1): 1−10 doi: 10.1007/s00271-008-0131-2
    [29] KENDY E, GERARD-MARCHANT P, WALTER M T, et al. A soil-water-balance approach to quantify groundwater recharge from irrigated cropland in the North China Plain[J]. Hydrological Processes, 2003, 17(10): 2023−2029
    [30] 张喜英, 张橹, 刘昌明. 太行山前平原土壤水分特征曲线拟合参数的确定[J]. 华北农学报, 2001(2): 75−82 doi: 10.3321/j.issn:1000-7091.2001.02.015

    ZHANG X Y, ZHANG L, LIU C M. Determination of fitting parameters of soil moisture characteristic curve in Taihang Piedmont Plain[J]. Acta Agriculturae Boreali-sinica, 2001(2): 75−82 doi: 10.3321/j.issn:1000-7091.2001.02.015
    [31] ZHANG X Y, CHEN S Y, LIU M Y, et al. Improved water use efficiency associated with cultivars and agronomic management in the North China plain[J]. Agronomy Journal, 2005, 97(3): 783−790 doi: 10.2134/agronj2004.0194
    [32] 韩淑敏, 程一松, 胡春胜. 太行山山前平原作物系数与降水年型关系探讨[J]. 干旱地区农业研究, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030

    HAN S M, CHENG Y S, HU C S. Relationship between crop coefficient and precipitation pattern in the piedmont of Mt. Taihang[J]. Agricultural Research in the Arid Areas, 2005, 23(5): 152−158 doi: 10.3321/j.issn:1000-7601.2005.05.030
    [33] 周陈, 李许滨, 徐德彬, 等. 土壤肥力及冬小麦产量与生物有机肥的效应研究[J]. 安徽农业科学, 2008, 36(3): 1130−1132 doi: 10.3969/j.issn.0517-6611.2008.03.123

    ZHOU C, LI X B, XU D B, et al. Study on the effect of biological organic fertilizer on soil fertility and winter wheat yield[J]. Journal of Anhui Agricultural Sciences, 2008, 36(3): 1130−1132 doi: 10.3969/j.issn.0517-6611.2008.03.123
    [34] ZHOU Y, ZHU H Z, CAI S B, et al. Genetic improvement of grain yield and associated traits in the Southern China winter wheat region: 1949 to 2000[J]. Euphytica, 2007, 157(3): 465−473 doi: 10.1007/s10681-007-9376-8
    [35] FAN M S, ZHANG X Y, YUAN L X, et al. Current status and future perspectives to increase nutrient- and water-use efficiency in food production systems in China[M]//Improving Water and Nutrient-Use Efficiency in Food Production Systems. Hoboken, NJ, USA: John Wiley & Sons, Inc, 2013: 263–273
    [36] 王艳哲. 提高冬小麦水分利用效率的根层水氮调控机制[D]. 北京: 中国科学院大学, 2013: 110−112

    WANG Y Z. Regulating water and N supply in the root zone to improve water use efficiency of winter wheat[D]. Beijing: University of Chinese Academy of Sciences, 2013: 110−112
    [37] KANG S Z, GU B J, DU T S, et al. Crop coefficient and ratio of transpiration to evapotranspiration of winter wheat and maize in a semi-humid region[J]. Agricultural Water Management, 2003, 59(3): 239−254 doi: 10.1016/S0378-3774(02)00150-6
    [38] 雷志栋, 罗毅, 杨诗秀, 等. 利用常规气象资料模拟计算作物系数的探讨[J]. 农业工程学报, 1999, 15(3): 119−122 doi: 10.3321/j.issn:1002-6819.1999.03.024

    LEI Z D, LUO Y, YANG S X, et al. Calculation of crop coefficient with meteorological data[J]. Transactions of the Chinese Society of Agricultural Engineering, 1999, 15(3): 119−122 doi: 10.3321/j.issn:1002-6819.1999.03.024
    [39] 刘海军, 康跃虎. 冬小麦拔节抽穗期作物系数的研究[J]. 农业工程学报, 2006, 22(10): 52−56 doi: 10.3321/j.issn:1002-6819.2006.10.011

    LIU H J, KANG Y H. Calculation of crop coefficient of winter wheat at elongation-heading stages[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(10): 52−56 doi: 10.3321/j.issn:1002-6819.2006.10.011
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  1504
  • HTML全文浏览量:  90
  • PDF下载量:  63
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-02
  • 录用日期:  2021-07-29
  • 网络出版日期:  2021-08-27
  • 刊出日期:  2022-05-18

目录

    /

    返回文章
    返回