Review of research development associated with the application of saline water irrigation to vegetables
-
摘要: 我国淡水资源严重短缺且分布不均, 开发利用储量丰富的咸水资源对于保障水安全战略具有重要的意义。我国蔬菜种植面积和产量居世界首位, 蔬菜既是产量较高也是耗水量较大的经济作物。如何安全利用咸水资源, 拓宽蔬菜灌溉用水供应来源, 保证蔬菜生产是淡水短缺地区面临的主要问题, 也是当今咸水利用方面的研究重点和难点。因此, 本文从咸水资源利用潜力、咸水灌溉应用状况、咸水灌溉对蔬菜生长、产量和品质的影响等方面对咸水灌溉在蔬菜种植中的高效利用机理、技术及未来发展趋势进行了综述。利用2.4~11.83 dS∙m−1的咸水灌溉虽使蔬菜产量降低6.21%~63.05%, 但蔬菜品质提高6.25%~74.07%, 采用适宜的咸水灌溉调控技术, 优化灌溉策略可提高咸水灌溉的利用效率, 在未来微咸水利用和扩大蔬菜种植面积中可发挥重要作用。Abstract: Freshwater resources are scarce and unevenly distributed in China. The exploitation of saline water resources is of great significance to the success of water security strategies. Currently, there are researches focusing on overcoming the difficulties associated with saline-water utilization. The sowing area and yield of vegetables are the highest in the world, but vegetables are economic crops with relatively large water consumptions. The main problem faced by freshwater shortage regions is how to safely use saline water resources, broaden the supply source of vegetable irrigation water, and ensure vegetable production. Therefore, this paper reviews the mechanisms and technologies associated with the application and future development of saline water irrigation in vegetable planting from the aspects of the utilization potential of saline water resources; application status of saline water irrigation; and effects of saline water irrigation on vegetable growth, yield, and quality to provide water resources that guarantee the high-quality green development of agriculture. The results showed that using 2.4−11.83 dS∙m−1 saline water irrigation reduced vegetable yields by 6.21%−63.05% but improved vegetable quality by 6.25%−74.07%. Using suitable saline water irrigation regulation technologies and optimizing irrigation strategies can improve the utilization efficiency of saline water irrigation and play an important role in the sustainable development of agriculture in the future.
-
Key words:
- Saline water irrigation /
- Salt tolerance /
- Vegetable quality /
- Irrigation strategy /
- Ecological effect
-
表 1 蔬菜作物耐盐度
Table 1. Salt tolerance of vegetables
作 物1)
Crop1)电导率上限2)
Electrical conductivity up limit2) (dS·m−1)b3)
(%/dS·m−1)耐盐等级4)
Rating4)小型蔬菜 Small vegetables 青花椰菜 Broccoli 2.8 9.2 MS 布鲁塞尔芽菜 Brussels sprouts 1.8 9.7 MS 甘蓝 Cabbage 1.0~1.8 9.8~14.0 MS 花椰菜 Cauliflower 1.8 6.2 MS 芹菜 Celery 1.8~2.5 6.2~13.0 MS 卷心菜 Lettuce 1.3~1.7 12.0 MS 洋葱 Onion 1.2 16.0 S 菠菜 Spinach 2.0~3.2 7.7~16.0 MS 萝卜 Radishes 1.2~2.0 7.6~13.0 MS 茄科蔬菜 Solanaceae vegetables 茄子 Egg plant — — MS 胡椒 Peppers 1.5~1.7 12.0~14.0 MS 番茄 Tomato 0.9~2.5 9.0 MS 葫芦科蔬菜 Cucurbitaceae vegetables 黄瓜 Cucumber 1.1~2.5 7.0~13.0 MS 南瓜、冬瓜 Pumplkin, winter squash 1.2 13.0 MS 西葫芦 Zucchini 4.7 10.0 MT 笋瓜(小胡瓜) Squash (scallop) 3.2 16.0 MS 西瓜 Watermalon — — MS 根茎和块茎 Roots and tubers 甜菜 Beets 4.0 9.0 MT 欧洲萝卜 Parsnip — — S 马铃薯 Potato 1.7 12.0 MS 甘薯(红薯) Sweet potato 1.5~2.5 10.0 MS 芜菁 Turnip 0.9 9.0 MS 胡萝卜 Suger beet 7.0 5.9 T 豆科植物 Leguminosae crops 豆角(鲜) Beans 1.0 19.0 S 蚕豆 Broadbean 1.5~1.6 9.6 MS 黎豆 Cowpea 4.9 12.0 MT 花生 Peanut 3.2 29.0 MS 豌豆 Peas 1.5 14.0 S 黄豆 Soybeans 5.0 20.0 MT 1)表中数据仅是一种指南, 因为耐盐度随气候、土壤条件和耕作方法而变化, 作物经常在发芽期和结籽期耐盐度较低; 2)电导率上限指产量开始降低时根系层盐分的平均值; 3) b 是指电导率超过电导率上限后每增加一个单位电导度作物产量减少的百分数; 4)耐盐等级分为耐盐(T)、中等耐盐(MT)、中度敏感(MS)和敏感(S)。1) The data serve only as a guideline: Tolerance varies depending upon climate, soil conditions and cultural practices. Crops are often less tolerant during germination and seedling stage. 2) Electrical conductivity up limit is the average root zone salinity at which yield starts to decline. 3) b is the reducting percentage in crop yield per 1 dS·m−1 increase when electrical conductivity beyond its’ up limit. 4) Ratings is salt tolerant rank, which is divided into four grades: tolerant (T), moderately tolerant (MT), moderately sensitive (MS) and sensitive (S). -
[1] 中华人民共和国统计局. 中国统计年鉴[M]. 北京: 中国统计出版社, 2020Statistics Bureau of the People’s Republic of China. China Statistical Yearbook[M]. Beijing: China Statistics Press, 2020 [2] 康绍忠, 孙景生, 张喜英. 中国北方主要作物需水量与耗水管理[M]. 北京: 中国水利水电出版社, 2018KANG S Z, SUN J S, ZHANG X Y. Water Demand and Water Consumption Management of Major Crops in Northern China[M]. Beijing: China Water&Power Press, 2018 [3] 孟建, 姚旭擎, 杨晓琳, 等. 地下水超采区农业种植结构与作物耗水时空演变研究[J]. 农业机械学报, 2020, 51(11): 302−312 doi: 10.6041/j.issn.1000-1298.2020.11.033MENG J, YAO X Q, YANG X L, et al. Spatial and temporal evolution of agricultural planting structure and crop water consumption in groundwater overdraft area[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(11): 302−312 doi: 10.6041/j.issn.1000-1298.2020.11.033 [4] 孙宏勇, 张喜英, 邵立威. 调亏灌溉在果树上应用的研究进展[J]. 中国生态农业学报, 2009, 17(6): 1288−1291SUN H Y, ZHANG X Y, SHAO L W. Regulated deficit irrigation and its application on fruit trees[J]. Chinese Journal of Eco-Agriculture, 2009, 17(6): 1288−1291 [5] 王全九, 单鱼洋. 微咸水灌溉与土壤水盐调控研究进展[J]. 农业机械学报, 2015, 46(12): 117−126 doi: 10.6041/j.issn.1000-1298.2015.12.017WANG Q J, SHAN Y Y. Review of research development on water and soil regulation with brackish water irrigation[J]. Transactions of the Chinese Society for Agricultural Machinery, 2015, 46(12): 117−126 doi: 10.6041/j.issn.1000-1298.2015.12.017 [6] 张伟. 咸水灌溉研究进展[J]. 山西水利科技, 2012(1): 12−13, 39 doi: 10.3969/j.issn.1006-8139.2012.01.005ZHANG W. Research progress of salt water irrigation[J]. Shanxi Hydrotechnics, 2012(1): 12−13, 39 doi: 10.3969/j.issn.1006-8139.2012.01.005 [7] 刘昌明. 中国水文地理[M]. 北京: 科学出版社, 2014LIU C M. Hydrogeography of China[M]. Beijing: Science Press, 2014 [8] 高从堦. 海水淡化及海水与苦咸水利用发展建议[M]. 北京: 高等教育出版社, 2007GAO C J. Suggestions on Seawater Desalination and Utilization of Seawater and Brackish Water[M]. Beijing: Higher Education Press, 2007 [9] 马中昇, 谭军利, 魏童. 中国微咸水利用的地区和作物适应性研究进展[J]. 灌溉排水学报, 2019, 38(3): 70−75MA Z S, TAN J L, WEI T. The variation of salt-tolerance of crops in different regions irrigated with brackish water in China[J]. Journal of Irrigation and Drainage, 2019, 38(3): 70−75 [10] 阮明艳. 咸水灌溉的应用及发展措施[J]. 新疆农垦经济, 2006(4): 66−68 doi: 10.3969/j.issn.1000-7652.2006.04.017RUAN M Y. Application and development measures of salt water irrigation[J]. Xinjiang State Farms Economy, 2006(4): 66−68 doi: 10.3969/j.issn.1000-7652.2006.04.017 [11] 霍海霞, 张建国. 咸水灌溉下土壤盐分运移研究进展与展望[J]. 节水灌溉, 2015(4): 41−45 doi: 10.3969/j.issn.1007-4929.2015.04.012HUO H X, ZHANG J G. Advance and prospects of research on soil salt movement under saline irrigation[J]. Water Saving Irrigation, 2015(4): 41−45 doi: 10.3969/j.issn.1007-4929.2015.04.012 [12] 屈东星, 沈秀云, 刘晓燕. 河北沧州市粮食安全目标下的缺水问题及对策[J]. 中国防汛抗旱, 2010, 20(4): 39−41QU D X, SHEN X Y, LIU X Y. Water shortage and its countermeasures in Cangzhou City, Hebei Province under the target of food security[J]. China Flood & Drought Management, 2010, 20(4): 39−41 [13] 张余良, 陆文龙. 微咸水灌溉对小麦生理特性及产量的影响[J]. 河南农业科学, 2007, 36(8): 31−34 doi: 10.3969/j.issn.1004-3268.2007.08.008ZHANG Y L, LU W L. Affects of brackish water irrigation on output and physiological characters of wheat[J]. Journal of Henan Agricultural Sciences, 2007, 36(8): 31−34 doi: 10.3969/j.issn.1004-3268.2007.08.008 [14] 王卫光, 王修贵, 沈荣开, 等. 微咸水灌溉研究进展[J]. 节水灌溉, 2003(2): 9−11, 46 doi: 10.3969/j.issn.1007-4929.2003.02.003WANG W G, WANG X G, SHEN R K, et al. Progress of research on light salt water irrigation[J]. Water Saving Irrigation, 2003(2): 9−11, 46 doi: 10.3969/j.issn.1007-4929.2003.02.003 [15] 曹玲, 王艳芳, 陈宝悦, 等. 主要蔬菜作物耐盐性比较[J]. 华北农学报, 2013, 28(S1): 233−237 doi: 10.7668/hbnxb.2013.S1.043CAO L, WANG Y F, CHEN B Y, et al. The comparison of salt tolerance in major vegetable crops[J]. Acta Agriculturae Boreali-Sinica, 2013, 28(S1): 233−237 doi: 10.7668/hbnxb.2013.S1.043 [16] ALLEN R G, PEREIRA L S, RAES D, et al. Crop evapotranspiration - guidelines for computing crop water requirements-FAO Irrigation and Drainage Paper 56 [J]. FAO, 1998 [17] 张福海, 罗会, 崔松山, 等. 耐盐促生菌剂对盐碱环境下枸杞生长的影响[J]. 园艺与种苗, 2017, 37(7): 33−35ZHANG F H, LUO H, CUI S S, et al. Effects of relieving-salt-stress and promoting growth microbial inoculum on Lycium barbarum in saline-alkali soil[J]. Horticulture & Seed, 2017, 37(7): 33−35 [18] WANG P, LI X Y, TIAN L, et al. Low salinity promotes the growth of broccoli sprouts by regulating hormonal homeostasis and photosynthesis[J]. Horticulture, Environment, and Biotechnology, 2019, 60(1): 19−30 doi: 10.1007/s13580-018-0095-y [19] 李丹, 万书勤, 康跃虎, 等. 滨海盐碱地微咸水滴灌水盐调控对番茄生长及品质的影响[J]. 灌溉排水学报, 2020, 39(7): 39−50LI D, WAN S Q, KANG Y H, et al. Effects of water-salt regulation on tomato growth and quality under drip irrigation with brackish water in coastal saline-alkali soil[J]. Journal of Irrigation and Drainage, 2020, 39(7): 39−50 [20] 万书勤, 康跃虎, 王丹, 等. 华北半湿润地区微咸水滴灌对番茄生长和产量的影响[J]. 农业工程学报, 2008, 24(8): 30−35 doi: 10.3321/j.issn:1002-6819.2008.08.007WAN S Q, KANG Y H, WANG D, et al. Effect of saline water on tomato growth and yield by drip irrigation in semi-humid regions of North China[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(8): 30−35 doi: 10.3321/j.issn:1002-6819.2008.08.007 [21] 武育芳, 杨官凯, 曹行行, 等. 不同基质下咸、淡水灌溉对番茄生长和品质的影响[J]. 干旱地区农业研究, 2021, 39(5): 153−159, 168 doi: 10.7606/j.issn.1000-7601.2021.05.20WU Y F, YANG G K, CAO H H, et al. Effects of brackish and fresh water irrigation on tomato growth and quality under different substrates[J]. Agricultural Research in the Arid Areas, 2021, 39(5): 153−159, 168 doi: 10.7606/j.issn.1000-7601.2021.05.20 [22] 汪洋, 田军仓, 高艳明, 等. 非耕地温室番茄微咸水灌溉试验研究[J]. 灌溉排水学报, 2014, 33(1): 12−16WANG Y, TIAN J C, GAO Y M, et al. Brackish water irrigation of greenhouse tomato in non-cultivated land[J]. Journal of Irrigation and Drainage, 2014, 33(1): 12−16 [23] CHISARI M, TODARO A, BARBAGALLO R N, et al. Salinity effects on enzymatic browning and antioxidant capacity of fresh-cut baby Romaine lettuce (Lactuca sativa L. cv. Duende)[J]. Food Chemistry, 2010, 119(4): 1502−1506 doi: 10.1016/j.foodchem.2009.09.033 [24] 翟红梅, 董宝娣, 乔匀周, 等. 基质栽培对微咸水灌溉下不同种类蔬菜生长的影响[J]. 干旱地区农业研究, 2013, 31(4): 11−15 doi: 10.3969/j.issn.1000-7601.2013.04.002ZHAI H M, DONG B D, QIAO Y Z, et al. Effect of substrate culture on the growth of different vegetables under brackish water irrigation[J]. Agricultural Research in the Arid Areas, 2013, 31(4): 11−15 doi: 10.3969/j.issn.1000-7601.2013.04.002 [25] 张荠文, 吴昊. 微咸水膜下滴灌对沙漠温室黄瓜产量的影响研究[J]. 地下水, 2018, 40(6): 96−98 doi: 10.3969/j.issn.1004-1184.2018.06.035ZHANG J W, WU H. Effect of drip irrigation with brackish water under plastic film on cucumber yield in desert greenhouse[J]. Ground Water, 2018, 40(6): 96−98 doi: 10.3969/j.issn.1004-1184.2018.06.035 [26] PASTERNAK D, MALACH Y D. Irrigation with brackish water under desert conditions X. Irrigation management of tomatoes (Lycopersicon esculentum Mills) on desert sand dunes[J]. Agricultural Water Management, 1995, 28(2): 121−132 doi: 10.1016/0378-3774(95)01171-E [27] GAWAD G A, ARSLAN A, GAIHBE A, et al. The effects of saline irrigation water management and salt tolerant tomato varieties on sustainable production of tomato in Syria (1999−2002)[J]. Agricultural Water Management, 2005, 78(1/2): 39−53 [28] PATEL R M, PRASHER S O, DONNELLY D, et al. Subirrigation with brackish water for vegetable production in arid regions[J]. Bioresource Technology, 1999, 70(1): 33−37 doi: 10.1016/S0960-8524(99)00012-7 [29] 焦艳平, 张艳红, 潘增辉, 等. 不同矿化度微咸水灌溉对大白菜生长和土壤盐分累积的影响[J]. 节水灌溉, 2012(12): 4−8JIAO Y P, ZHANG Y H, PAN Z H, et al. Effect of saline water irrigation on Chinese cabbage growth and soil salt accumulation[J]. Water Saving Irrigation, 2012(12): 4−8 [30] SAVVAS D, LENZ F. Effects of NaCl or nutrient-induced salinity on growth, yield, and composition of eggplants grown in rockwool[J]. Scientia Horticulturae, 2000, 84(1/2): 37−47 [31] MENDLINGER S. Effect of increasing plant density and salinity on yield and fruit quality in muskmelon[J]. Scientia Horticulturae, 1994, 57(1/2): 41−49 [32] SAHIN U, EKINCI M, ORS S, et al. Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata)[J]. Scientia Horticulturae, 2018, 240: 196−204 doi: 10.1016/j.scienta.2018.06.016 [33] DEL AMOR F M, MARTINEZ V, CERDÁ A. Salinity duration and concentration affect fruit yield and quality, and growth and mineral composition of melon plants grown in perlite[J]. HortScience, 1999, 34(7): 1234−1237 doi: 10.21273/HORTSCI.34.7.1234 [34] 江雪飞, 乔飞, 邹志荣. 不同生育期咸水灌溉对砂培甜瓜产量和品质的影响[J]. 西北农林科技大学学报: 自然科学版, 2006, 34(10): 87−90JIANG X F, QIAO F, ZOU Z R. Effects of brackish irrigation on fruit yield and quality of melon in sand culture[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry: Natural Science Edition, 2006, 34(10): 87−90 [35] 吴蕴玉, 金星, 徐元, 等. 秸秆覆盖条件下微咸水灌溉对番茄生长和产量品质的影响[J]. 节水灌溉, 2015(7): 21−24 doi: 10.3969/j.issn.1007-4929.2015.07.006WU Y Y, JIN X, XU Y, et al. Effects of saline water irrigation on tomato growth, quality and yield under straw mulching[J]. Water Saving Irrigation, 2015(7): 21−24 doi: 10.3969/j.issn.1007-4929.2015.07.006 [36] ZIPELEVISH E, GRINBERGE A, AMAR S, et al. Eggplant dry matter composition fruit yield and quality as affected by phosphate and total salinity caused by potassium fertilizers in the irrigation solution[J]. Journal of Plant Nutrition, 2000, 23(4): 431−442 doi: 10.1080/01904160009382030 [37] HAND M J, TAFFOUO V D, NOUCK A E, et al. Effects of salt stress on plant growth, nutrient partitioning, chlorophyll content, leaf relative water content, accumulation of osmolytes and antioxidant compounds in pepper (Capsicum annuum L.) cultivars[J]. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 2017, 45(2): 481−490 doi: 10.15835/nbha45210928 [38] VÍLLORA G, MORENO D A, PULGAR G, et al. Zucchini growth, yield, and fruit quality in response to sodium chloride stress[J]. Journal of Plant Nutrition, 1999, 22(6): 855−861 doi: 10.1080/01904169909365677 [39] NAVARRO J M, GARRIDO C, CARVAJAL M, et al. Yield and fruit quality of pepper plants under sulphate and chloride salinity[J]. The Journal of Horticultural Science and Biotechnology, 2002, 77(1): 52−57 doi: 10.1080/14620316.2002.11511456 [40] SAKAMOTO K, KOGI M, YANAGISAWA T. Effects of salinity and nutrients in seawater on hydroponic culture of red leaf lettuce[J]. Environmental Control in Biology, 2014, 52(3): 189−195 doi: 10.2525/ecb.52.189 [41] NEOCLEOUS D, KOUKOUNARAS A, SIOMOS A S, et al. Assessing the salinity effects on mineral composition and nutritional quality of green and red “baby” lettuce[J]. Journal of Food Quality, 2014, 37(1): 1−8 doi: 10.1111/jfq.12066 [42] KIM H J, FONSECA J M, CHOI J H, et al. Salt in irrigation water affects the nutritional and visual properties of romaine lettuce (Lactuca sativa L.)[J]. Journal of Agricultural and Food Chemistry, 2008, 56(10): 3772−3776 doi: 10.1021/jf0733719 [43] 李国安, 蒋静, 马娟娟, 等. 咸水灌溉对土壤水盐分布和小麦产量的影响[J]. 排灌机械工程学报, 2018, 36(6): 544−552LI G A, JIANG J, MA J J, et al. Effect of saline water irrigation on water-salt distribution and yield of wheat[J]. Journal of Drainage and Irrigation Machinery Engineering, 2018, 36(6): 544−552 [44] 陈丽娟, 冯起, 王昱, 等. 微咸水灌溉条件下含黏土夹层土壤的水盐运移规律[J]. 农业工程学报, 2012, 28(8): 44−51 doi: 10.3969/j.issn.1002-6819.2012.08.007CHEN L J, FENG Q, WANG Y, et al. Water and salt movement under saline water irrigation in soil with clay interlayer[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(8): 44−51 doi: