Volume 29 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
YUAN L, WANG X Z, SUN H Y, LIU X J, LIU B B. Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913−1920 doi: 10.12357/cjea.20210144
Citation: YUAN L, WANG X Z, SUN H Y, LIU X J, LIU B B. Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1913−1920 doi: 10.12357/cjea.20210144

Growth promotion and mitigation of salt stress in wheat seedlings by a Kushneria bacterium

doi: 10.12357/cjea.20210144
Funds:  This work was supported by the National Natural Science Foundation of China (31861133018, 41807058)
More Information
  • Corresponding author: E-mail: binbinliu@sjziam.ac.cn
  • Received Date: 2021-03-11
  • Accepted Date: 2021-04-22
  • Available Online: 2021-09-22
  • Publish Date: 2021-11-10
  • Globally, soil salinization is a major land degradation process, taking more than 1 million hectares of farmland out of production per year, threatening food security. In salt-affected soils, crop growth, development, and yield dramatically decrease due to salt toxicity in plants, reduced soil fertility and water availability to plants, and altered hydraulic properties of the soil. The rhizospheric microbiome is closely related to crop stress tolerance. Plants recruit specific groups of microbes in the rhizosphere, which provide nutrients and plant hormones that promote plant growth and stress tolerance. Kushneria indalinina JP-JH is a salt-tolerant and auxin-secreting bacteria strain isolated from the rhizosphere of Suaeda salsa. In this study, the effects of K. indalinina JP-JH on the growth and salt tolerance of wheat seedlings were investigated. The experiment was conducted using the wheat variety ‘Xiaoyan 60’ in a hydroponic system with Hoagland nutrient solution. The seedlings were inoculated with K. indalinina JP-JH under no salt (0 mmol∙L−1), low salt (200 mmol∙L−1), and high salt (400 mmol∙L−1) conditions. Seeds without bacterial inoculation were prepared under the same conditions and used as control treatments. Plant growth parameters and organic acids contents in the root exudates were analyzed after 40 days of incubation. The results showed that the fresh weight of wheat seedlings in the treatments with K. indalinina JP-JH inoculation was significantly higher than that of the uninoculated group at all three salt concentrations. K. indalinina JP-JH inoculation significantly increased the plant dry weight of the whole plant under both salt-free and low salt-stressed conditions but had no significant effect on dry weight under high salt-stressed conditions. Meanwhile, K. indalinina JP-JH inoculation significantly increased plant height under high salt-stressed conditions but had no significant effect under salt-free and low salt-stressed conditions. Dry weight and plant height were negatively related to the salt concentration in the inoculated and uninoculated treatments. The concentrations of six organic acids (oxalic acid, tartaric acid, malic acid, citric acid, fumaric acid, and succinic acid) secreted from roots were determined for treatments with different salt concentrations, with or without bacterial inoculation. K. indalinina JP-JH inoculation significantly increased the contents of oxalic acid and tartaric acid in the root exudates under salt-stressed conditions (both low and high salt concentrations) but had no significant effect on organic acids secretion under salt-free conditions. This suggests that oxalic acid and tartaric acid may play important roles in regulating plant-microbe interactions and improving the salt tolerance of wheat variety ‘Xiaoyan 60’. Taken together, our results indicate that K. indalinina JP-JH promotes plant growth and development and improves the salt tolerance of wheat at seedling stage, which may be related to alterations in the root exudation potential and plant-microbe interactions. This study produced new experimental data on the mechanisms of microorganisms that promote plant growth and salt tolerance and provided biological resources for developing biofertilizers to enhance wheat growth under salt stress conditions.
  • loading
  • [1]
    ZHU J K. Abiotic stress signaling and responses in plants[J]. Cell, 2016, 167(2): 313−324 doi: 10.1016/j.cell.2016.08.029
    [2]
    KONG X Q, LUO Z, DONG H Z, et al. Non-uniform salinity in the root zone alleviates salt damage by increasing sodium, water and nutrient transport genes expression in cotton[J]. Scientific Reports, 2017, 7: 2879 doi: 10.1038/s41598-017-03302-x
    [3]
    李建国, 濮励杰, 朱明, 等. 土壤盐渍化研究现状及未来研究热点[J]. 地理学报, 2012, 67(9): 1233−1245 doi: 10.11821/xb201209008

    LI J G, PU L J, ZHU M, et al. The present situation and hot issues in the salt-affected soil research[J]. Acta Geographica Sinica, 2012, 67(9): 1233−1245 doi: 10.11821/xb201209008
    [4]
    GENC Y, OLDACH K, TAYLOR J, et al. Uncoupling of sodium and chloride to assist breeding for salinity tolerance in crops[J]. The New Phytologist, 2016, 210(1): 145−156 doi: 10.1111/nph.13757
    [5]
    AKRAMI M, ARZANI A. Inheritance of fruit yield and quality in melon (Cucumis melo L.) grown under field salinity stress[J]. Scientific Reports, 2019, 9: 7249 doi: 10.1038/s41598-019-43616-6
    [6]
    国家统计局. 国家统计局关于2020年粮食产量数据的公告[EB/OL]. 国家统计局. [2020-12-10]. http://www.stats.gov.cn/tjsj/zxfb/202012/t20201210_1808377.html

    National Bureau of Statistics. Announcement of the National Bureau of Statistics on grain output data in 2020[EB/OL]. National Bureau of Statistics. [2020-12-10]. http://www.stats.gov.cn/tjsj/zxfb/202012/t20201210_1808377.html
    [7]
    LI Z S, LI B, ZHENG Q, et al. Review and new progress in wheat wide hybridization for improving the resistance to biotic and abiotic stresses[C]//Advances in Wheat Genetics: from Genome to Field, 2015, DOI: 10.1007/978-4-431-55675-6_43
    [8]
    赵松山, 王奉芝, 陆丽, 等. 抗旱耐盐型小麦品种沧6001的选育[J]. 华北农学报, 2000, 15(S1): 113−117

    ZHAO S S, WANG F Z, LU L, et al. Breeding and selection of drought resistant and salt tolerant wheat variety Cang 6001[J]. Acta Agriculturae Boreall-Sinica, 2000, 15(S1): 113−117
    [9]
    于亮, 钮力亚, 王奉芝, 等. 临汾6154/冀麦32小麦组合的育种利用[J]. 作物研究, 2017, 31(2): 115−118

    YU L, NIU L Y, WANG F Z, et al. Study on the breeding and usage of wheat combination of Linfen 6154/Jimai 32[J]. Crop Research, 2017, 31(2): 115−118
    [10]
    WAGNER M R, LUNDBERG D S, DEL RIO T G, et al. Host genotype and age shape the leaf and root microbiomes of a wild perennial plant[J]. Nature Communications, 2016, 7: 12151 doi: 10.1038/ncomms12151
    [11]
    MARSCHNER H. Functions of mineral nutrients[M]//Mineral Nutrition of Higher Plants. Amsterdam: Elsevier, 1995: 229–312
    [12]
    SASSE J, MARTINOIA E, NORTHEN T. Feed your friends: do plant exudates shape the root microbiome?[J]. Trends in Plant Science, 2018, 23(1): 25−41 doi: 10.1016/j.tplants.2017.09.003
    [13]
    JONES D L. Organic acids in the rhizosphere — a critical review[J]. Plant and Soil, 1998, 205(1): 25−44 doi: 10.1023/A:1004356007312
    [14]
    龚松贵, 王兴祥, 张桃林, 等. 低分子量有机酸对红壤无机磷活化的作用[J]. 土壤学报, 2010, 47(4): 692−697 doi: 10.11766/trxb2010470414

    GONG S G, WANG X X, ZHANG T L, et al. Release of inorganic phosphorus from red soils induced by low molecular weight organic acids[J]. Acta Pedologica Sinica, 2010, 47(4): 692−697 doi: 10.11766/trxb2010470414
    [15]
    STEVENS G G, PÉREZ-FERNÁNDEZ M A, MORCILLO R J L, et al. Roots and nodules response differently to P starvation in the Mediterranean-type legume Virgilia divaricata[J]. Frontiers in Plant Science, 2019, 10: 73 doi: 10.3389/fpls.2019.00073
    [16]
    VESSEY J K. Plant growth promoting rhizobacteria as biofertilizers[J]. Plant and Soil, 2003, 255(2): 571−586 doi: 10.1023/A:1026037216893
    [17]
    BHATTACHARYYA P N, JHA D K. Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture[J]. World Journal of Microbiology Biotechnology, 2012, 28: 1327−1350 doi: 10.1007/s11274-011-0979-9
    [18]
    BABALOLA O O. Beneficial bacteria of agricultural importance[J]. Biotechnology Letters, 2010, 32(11): 1559−1570 doi: 10.1007/s10529-010-0347-0
    [19]
    PAEPEN S, VANDERLEYDEN J, REMANS R. Indole-3-acetic acid in microbial and microorganism-plant signaling[J]. FEMS Microbiology Reviews, 2007, 31(4): 425−448 doi: 10.1111/j.1574-6976.2007.00072.x
    [20]
    DINKELAKER B, ROMHELD V, MARSCHNER H. Citric acid excretion and precipitation of calcium citrate in the rhizosphere of white lupin (Lupinus albus L.)[J]. Plant, Cell and Environment, 1989, 12(3): 285−292 doi: 10.1111/j.1365-3040.1989.tb01942.x
    [21]
    GARDNER W K, BARBER D A, PARBERY D G. The acquisition of phosphorus by Lupinus albus L. Ⅲ. The probable mechanism by which phosphorus movement in the soil/root interface is enhanced[J]. Plant and Soil, 1983, 70: 107−124 doi: 10.1007/BF02374754
    [22]
    王新珍, 刘小京, 胡春胜, 等. 一株缓解植物盐害的耐盐促生细菌JP-JH及其应用: 中国, CN111100813A[P]. [2020-05-05]. https://www.iprdb.com/patent-528-CN111100813B.html

    WANG X Z, LIU X J, HU C S, et al. A salt-tolerant and growth-promoting bacterium JP-JH for alleviating plant salt injury and its application: China, CN111100813A[P]. [2020-05-05]. https://www.iprdb.com/patent-528-CN111100813B.html
    [23]
    OGIHARA Y, TAKUMI S, HANDA H. Advances in Wheat Genetics: From Genome to Field[M]. Toyota: Springer, 2015
    [24]
    MURATOVA A, POZDNYAKOVA N, GOLUBEV S, et al. Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment[J]. Chemosphere, 2009, 74(8): 1031−1036 doi: 10.1016/j.chemosphere.2008.11.011
    [25]
    钟正燕, 陈炳发, 宋雁辉, 等. 根分泌物有机酸的研究方法[J]. 环境科学导刊, 2019, 38(S1): 12−18

    ZHONG Z Y, CHEN B F, SONG Y H, et al. Research methods on organic acids in root exudates[J]. Environmental Science Survey, 2019, 38(S1): 12−18
    [26]
    ZHAO L J, HUANG Y X, HU J, et al. 1H NMR and GC-MS based metabolomics reveal defense and detoxification mechanism of cucumber plant under nano-Cu stress[J]. Environmental Science & Technology, 2016, 50(4): 2000−2010
    [27]
    TU S X, MA L N, LUONGO T. Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata[J]. Plant and Soil, 2004, 258(1): 9−19 doi: 10.1023/B:PLSO.0000016499.95722.16
    [28]
    王平, 周荣. 高效液相色谱法测定植物根系分泌物中的有机酸[J]. 色谱, 2006, 24(3): 239−242 doi: 10.3321/j.issn:1000-8713.2006.03.006

    WANG P, ZHOU R. Determination of organic acids exuded from plant roots by high performance liquid chromatography[J]. Chinese Journal of Chromatography, 2006, 24(3): 239−242 doi: 10.3321/j.issn:1000-8713.2006.03.006
    [29]
    郭燕, 梁俊, 李敏敏, 等. 高效液相色谱法测定苹果果实中的有机酸[J]. 食品科学, 2012, 33(2): 227−230

    GUO Y, LIANG J, LI M M, et al. Determination of organic acids in apple fruits by HPLC[J]. Food Science, 2012, 33(2): 227−230
    [30]
    蒋晓玲. 解淀粉芽孢杆菌Y19微生物菌肥的研制及其生物效益研究[D]. 昆明: 云南农业大学, 2015

    JIANG X L. Development of microbial fertilizer and biological effect of Bacillus amyloliquefaciens Y19[D]. Kunming: Yunnan Agricultural University, 2015
    [31]
    史功赋, 赵小庆, 方静, 等. 土壤微生物在植物生长发育中的作用及应用前景[J]. 北方农业学报, 2019, 47: 108−114 doi: 10.3969/j.issn.2096-1197.2019.06.19

    SHI G F, ZHAO X Q, FANG J, et al. Research progress on the effects of soil microorganisms on plant growth and development[J]. Journal of Northern Agriculture, 2019, 47: 108−114 doi: 10.3969/j.issn.2096-1197.2019.06.19
    [32]
    杨杉杉. 耐盐植物根际促生细菌筛选及其对盐胁迫小麦幼苗的促生效应研究[D]. 呼和浩特: 内蒙古农业大学, 2018

    YANG B B. Study on isolation of salt-tolerant plant growth-promoting rhizobacteria and their promotion effect on wheat seedling under salt stress[D]. Hohhot: Inner Mongolia Agricultural University, 2018
    [33]
    刘进法, 王鹏, 罗园, 等. 低磷胁迫下AM真菌对枳实生苗吸磷效应及根系分泌有机酸的影响[J]. 亚热带植物科学, 2010, 39(1): 9–13

    LIU J F, WANG P, LUO Y, et al. Effects of arbuscular mycorrhizal fungus on absorbing phosphorus and excreting organic acids of Poncirus trifoliata seedlings under low-phosphorus stress[J]. Subtropical Plant Science, 2010, 39(1): 9–13
    [34]
    孙晨瑜, 曾燕红, 马俊卿, 等. 丛枝菌根真菌对黄花蒿生长和根系分泌物化学组成的影响[J]. 热带作物学报, 2020, 41(9): 1831−1837 doi: 10.3969/j.issn.1000-2561.2020.09.016

    SUN C Y, ZENG Y H, MA J Q, et al. Effects of arbuscular mycorrhizal fungi on Artemisia annua L. growth and chemical composition of root exudates[J]. Chinese Journal of Tropical Crops, 2020, 41(9): 1831−1837 doi: 10.3969/j.issn.1000-2561.2020.09.016
    [35]
    王树起, 韩晓增, 乔云发, 等. 缺磷胁迫条件下大豆根系有机酸的分泌特性[J]. 大豆科学, 2009, 28(3): 409−414

    WANG S Q, HAN X Z, QIAO Y F, et al. Characteristics of organic acids exudated from soybean (Glycine max L.) roots under P deficiency stress[J]. Soybean Science, 2009, 28(3): 409−414
    [36]
    JONES D L, DENNIS P G, OWEN A G, et al. Organic acid behavior in soils—misconceptions and knowledge gaps[J]. Plant and Soil, 2003, 248(1/2): 31−41 doi: 10.1023/A:1022304332313
    [37]
    梅映学. 碱蓬内生菌高Y1-1对镉和/或铝胁迫下水稻幼苗内源激素及有机酸含量的影响[D]. 沈阳: 沈阳师范大学, 2017

    MEI Y X. Effect of endophyte Gao Y1-1 infection on endogenous hormones and organic acids of rice seedlings under Cd and/or Al stress[D]. Shenyang: Shenyang Normal University, 2017
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(1)

    Article Metrics

    Article views (177) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return