Volume 29 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
DUAN L C, GUO R G, CAI Z, LIN Z J, WU Z M, FANG S, ZHANG C H, LIU D. Spatiotemporal changes in the characteristics of the safe growth period and high temperature damage of ratoon rice in nine southern provinces of South China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2061−2073 doi: 10.12357/cjea.20210244
Citation: DUAN L C, GUO R G, CAI Z, LIN Z J, WU Z M, FANG S, ZHANG C H, LIU D. Spatiotemporal changes in the characteristics of the safe growth period and high temperature damage of ratoon rice in nine southern provinces of South China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2061−2073 doi: 10.12357/cjea.20210244

Spatiotemporal changes in the characteristics of the safe growth period and high temperature damage of ratoon rice in nine southern provinces of South China

doi: 10.12357/cjea.20210244
Funds:  This study was supported by the National Natural Science Foundation of China (41965008), the Special Project of Weather Forecast of Crop Yield at Home and Abroad in 2020 (20200202), the Youth Projects of Jiangxi Meteorological Bureau (20190613), and the Open Research Fund of Nanchang Agricultural Meteorological Laboratory (2018NNZS102)
More Information
  • Corresponding author: E-mail: nuistdan@126.com
  • Received Date: 2021-04-24
  • Accepted Date: 2021-06-02
  • Available Online: 2021-07-14
  • Publish Date: 2021-12-07
  • In the context of global warming and with increasing cultivated area of ratoon rice, precise control of ratoon rice sowing is of particular importance to ensure safe maturation and for utilizing the optimal temperature and light resources, stabilizing the production of ratoon rice, and ensuring food security. This study aimed to clarify recent spatiotemporal changes in terms of safe sowing date, duration from safe sowing date to safe full heading date (i.e., safe growth period), and high-temperature damage, and provide insights into novel strategies to utilize optimal temperature and light resources, and ensure safe production under the pressure of global warming. After collecting daily average temperature data in the past 39 years (1981–2019) from 601 weather stations in nine southern provinces of China (namely Sichuan, Chongqing, Hubei, Hunan, Jiangxi, Anhui, Jiangsu, Zhejiang, and Fujian), we examined the changes in safe sowing date and safe growth period, as well as high-temperature damage of ratoon rice in these provinces by using methods of climate change trends calculation and abrupt changes analysis. The results showed that the safe sowing date had advanced 3.3 d·(10a)−1, the safe full heading date was delayed by 1.5 d∙(10a)−1, and the safe growth period had extended by 4.8 d∙(10a)−1. The abrupt shift in the safe sowing date occurred in 2001, after then this date occurred 9 days earlier. The greatest change in the safe growth period occurred in 1996, after then this period was 12 days longer than before. The safe sowing date occurred earlier in the south part than in the north part, and the safe growth period was longer in the southeast than in the northwest. High-temperature damage in June to July and August to September tended to increase. Mild, moderate, and severe damage increased by 48.5 times∙(10a)−1, 30.3 times∙(10a)−1, and 37.4 times∙(10a)−1, respectively, in June to July; and by 52.7 times∙(10a)−1, 18.2 times∙(10a)−1, and 34.6 times∙(10a)−1, respectively, in August to September. Moreover, high-temperature damage in June to July was more serious than that in August to September. The annual average numbers of mild, moderate, and severe high-temperature damage in June to July were 83.9, 41.6, and 115.9 times more than those in August to September. The years characterized by abrupt changes in mild, moderate, and severe high-temperature damage were 1998, 1988, and 1986 in June to July, and 1992, 2002, and 2002 in August to September, respectively. In all cases, high-temperature damage increased significantly after the abrupt change years and their occurrence followed the order of mild > severe > moderate in both June to July, and August to September. In conclusion, the advancement of the safe sowing date and the extension of the safe growing period of ratoon rice were advantageous as they benefited full use of temperature and light resources and yield increasing of ratoon rice in nine provinces of South China. However, concurrent increases in high-temperature damage impeded the high yields of high-quality ratoon rice.
  • loading
  • [1]
    IPCC. Climate Change 2013. The Rhysical Science Basis. Contribution of Working Group to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change[R]. Cambridge: Cambridge University Press, 2013
    [2]
    《第三次气候变化国家评估报告》编写委员会. 第三次气候变化国家评估报告[R]. 2版. 北京: 科学出版社, 2015

    Committee for the Compilation of Third National Climate Assessment. Compilation of Third National Climate Assessment[R]. 2nd ed. Beijing: Science Press, 2015
    [3]
    YUAN S, CASSMAN K G, HUANG J L, et al. Can ratoon cropping improve resource use efficiencies and profitability of rice in central China[J]. Field Crops Research, 2019, 234: 66−72 doi: 10.1016/j.fcr.2019.02.004
    [4]
    张绍文, 李亚贞, 郑伟, 等. 赣中北油稻稻三熟制再生稻优质品种筛选及气象因子对其米质的影响[J]. 杂交水稻, 2018, 33(6): 56−63

    ZHANG S W, LI Y Z, ZHENG W, et al. Variety screening of high quality ratoon rice for the triple-cropping of rapeseed-rice-ratoon rice in the north-central Jiangxi and the effects of climatic factors on its grain quality[J]. Hybrid Rice, 2018, 33(6): 56−63
    [5]
    段秀建, 张巫军, 姚雄, 等. 杂交中稻机收蓄留再生稻高产高效栽培技术[J]. 杂交水稻, 2019, 34(1): 44−46

    DUAN X J, ZHANG W J, YAO X, et al. High-yielding and high-efficiency cultivation techniques for ratooning rice of mid-season hybrid rice under mechanical harvest conditions[J]. Hybrid Rice, 2019, 34(1): 44−46
    [6]
    徐富贤, 熊洪, 张林, 等. 再生稻产量形成特点与关键调控技术研究进展[J]. 中国农业科学, 2015, 48(9): 1702−1717 doi: 10.3864/j.issn.0578-1752.2015.09.04

    XU F X, XIONG H, ZHANG L, et al. Progress in research of yield formation of ratooning rice and its high-yielding key regulation technologies[J]. Scientia Agricultura Sinica, 2015, 48(9): 1702−1717 doi: 10.3864/j.issn.0578-1752.2015.09.04
    [7]
    徐富贤, 袁驰, 王学春, 等. 不同杂交中稻品种在川南再生稻区的两季产量及头季稻米品质差异[J]. 中国生态农业学报(中英文), 2020, 28(7): 990−998

    XU F X, YUAN C, WANG X C, et al. Differences in the two-crop yields and main-crop rice qualities among different hybrid mid-season rice varieties in the ratooning rice region of southern Sichuan, China[J]. Chinese Journal of Eco-Agriculture, 2020, 28(7): 990−998
    [8]
    邹丹, 唐启源, 郑华斌, 等. 发苗肥与发苗水层对再生稻发苗和产量的影响[J]. 灌溉排水学报, 2019, 38(10): 26−31

    ZOU D, TANG Q Y, ZHENG H B, et al. The effects of seedling-fertilizer and seedling-water-layer on grain yield and seedling growth of ratooning rice[J]. Journal of Irrigation and Drainage, 2019, 38(10): 26−31
    [9]
    黄成志, 雷树凡, 严明建, 等. 直播中稻+再生稻栽培最适播期和最佳播种量研究[J]. 湖南农业科学, 2018, (1): 21−24

    HUANG C Z, LEI S F, YAN M J, et al. Optimum seeding period and sowing amount of medium rice + ratooning rice[J]. Hunan Agricultural Sciences, 2018, (1): 21−24
    [10]
    汪浩, 张强, 张文地, 等. 腋芽萌发能力对再生稻产量影响的研究进展[J]. 中国水稻科学, 2020, 34(3): 205−216

    WANG H, ZHANG Q, ZHANG W D, et al. Advances in the effects of the ability of axillary bud germination on grain yield in ratoon rice[J]. Chinese Journal of Rice Science, 2020, 34(3): 205−216
    [11]
    杨军, 章毅之, 贺浩华, 等. 水稻高温热害的研究现状与进展[J]. 应用生态学报, 2020, 31(8): 2817−2830

    YANG J, ZHANG Y Z, HE H H, et al. Current status and research advances of high-temperature hazards in rice[J]. Chinese Journal of Applied Ecology, 2020, 31(8): 2817−2830
    [12]
    方文, 罗文质, 张景国, 等. 四川再生稻的生态条件及区域适应性研究[J]. 西南农业学报, 1994, 7(3): 15

    FANG W, LUO W Z, ZHANG J G, et al. Ecological conditions of ratooning rice and its area suitability[J]. Southwest China Journal of Agricultural Sciences, 1994, 7(3): 15
    [13]
    黄淑娥, 李迎春, 殷剑敏. “3S”技术在江西省再生稻种植气候可行性研究中的应用[J]. 江西农业大学学报, 2001, 23(4): 573−576 doi: 10.3969/j.issn.1000-2286.2001.04.032

    HUANG S E, LI Y C, YIN J M. Application of “3S” technology in climatic feasibility study of ratooning paddy growing in Jiangxi Province[J]. Acta Agriculturae Universitis Jiangxiensis, 2001, 23(4): 573−576 doi: 10.3969/j.issn.1000-2286.2001.04.032
    [14]
    王贵学, 黄友钦, 陈国惠, 等. 安徽省再生稻气候生态区区划研究[J]. 西南农业大学学报, 1995, (3): 207−211

    WANG G X, HUANG Y Q, CHEN G H, et al. Climatic and ecological division of ratoon rice cultivation in Anhui Province[J]. Journal of Southwest Agricultural University, 1995, (3): 207−211
    [15]
    王贵学, 黄友钦, 陈国惠, 等. 湖北省再生稻气候生态区区划研究[J]. 西南农业大学学报, 1995, 17(3): 202−206

    WANG G X, HUANG Y Q, CHEN G H, et al. Climatic and ecological division of ratoon rice cultivation in Hubei Province[J]. Journal of Southwest Agricultural University, 1995, 17(3): 202−206
    [16]
    高阳华, 陈志军, 杨世琦, 等. 基于GIS的重庆市再生稻光热资源适宜性区划[J]. 长江流域资源与环境, 2011, 20(6): 672−676

    GAO Y H, CHEN Z J, YANG S Q, et al. GIS-based sunshine and heat resources adaptive regionalization of ratoon rice in Chongqing area[J]. Resources and Environment in the Yangtze Basin, 2011, 20(6): 672−676
    [17]
    高亮之, 李林, 郭鹏. 中国水稻生长季与稻作制度的气候生态研究[J]. 农业气象, 1983, 4(1): 50−55

    GAO L Z, LI L, GUO P. Study on the rice growth season and the meteor-ecology model of rice cropping system[J]. Chinese Journal of Agrometeorology, 1983, 4(1): 50−55
    [18]
    石庆华, 潘晓华. 双季水稻生产技术问答[M]. 南昌: 江西科学技术出版社, 2010: 122–149

    SHI Q H, PAN X H. Question Answering of Production Technique of Double Rice[M]. Nanchang: Jiangxi Science and Technology Press, 2010: 122–149
    [19]
    朱德峰, 汤金仪, 张玉屏, 等. 中华人民共和国农业行业标准《NY/T 2915—2016》: 水稻高温热害鉴定与分级[S]. 北京: 中华人民共和国农业农村部, 2016

    ZHU D F, TANG J Y, ZHANG Y P, et al. Agricultural Industry Standard of the People’ s Republic of China (NY/T 2915—2016): Identification and Classification of Heat Injury of Rice[S]. Beijing: Ministry of Agriculture and Rural Affairs of the People’s Republic of China, 2016
    [20]
    谢远玉, 黄淑娥, 田俊, 等. 长江中下游热量资源时空演变特征及其对双季稻种植的影响[J]. 应用生态学报, 2016, 27(9): 2950−2958

    XIE Y Y, HUANG S E, TIAN J, et al. Spatial-temporal characteristics of thermal resources and its influence on the growth of double cropping rice in the middle and lower reaches of the Yangtze River, China[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 2950−2958
    [21]
    魏凤英. 现代气候统计诊断预测技术[M]. 北京: 气象出版社, 2007

    WEI F Y. Modern Climate Statistical Diagnosis and Prediction Technology[M]. Beijing: China Meteorological Press, 2007
    [22]
    杨炳玉, 申双和, 陶苏林, 等. 江西省水稻高温热害发生规律研究[J]. 中国农业气象, 2012, 33(4): 615−622 doi: 10.3969/j.issn.1000-6362.2012.04.021

    YANG B Y, SHEN S H, TAO S L, et al. Spatial and temporal pattern of rice heat injury in Jiangxi[J]. Chinese Journal of Agrometeorology, 2012, 33(4): 615−622 doi: 10.3969/j.issn.1000-6362.2012.04.021
    [23]
    张倩, 赵艳霞, 王春乙. 长江中下游地区高温热害对水稻的影响[J]. 灾害学, 2011, 26(4): 57−62 doi: 10.3969/j.issn.1000-811X.2011.04.011

    ZHANG Q, ZHAO Y X, WANG C Y. Study on the impact of high temperature damage to rice in the lower and middle reaches of the Yangtze River[J]. Journal of Catastrophology, 2011, 26(4): 57−62 doi: 10.3969/j.issn.1000-811X.2011.04.011
    [24]
    方文, 熊洪, 姚文力. 再生稻腋芽萌发的生态条件研究[J]. 生态学杂志, 1990, 9(5): 6−11

    FANG W, XIONG H, YAO W L. Ecological conditions for the sprouting of axillary bud of ratooning rice[J]. Chinese Journal of Ecology, 1990, 9(5): 6−11
    [25]
    符淙斌, 王强. 气候突变的定义和检测方法[J]. 大气科学, 1992, 16(4): 482−493 doi: 10.3878/j.issn.1006-9895.1992.04.11

    FU C B, WANG Q. The definition and detection of the abrupt climatic change[J]. Chinese Journal of Atmospheric Sciences, 1992, 16(4): 482−493 doi: 10.3878/j.issn.1006-9895.1992.04.11
    [26]
    芮广军, 张玲玲, 杨会宁, 等. 近60年淮河流域典型等值界线时空分布特征研究[J]. 安徽农学通报, 2020, 26(22): 139−144

    RUI G J, ZHANG L L, YANG H N, et al. Temporal and spatial distribution characteristics of typical equivalent boundary lines in Huaihe River basin in the near 60 years[J]. Anhui Agricultural Science Bulletin, 2020, 26(22): 139−144
    [27]
    赵双庆, 范文, 于宁宇. 基于小波和MK检验的董志塬年降水量分析[J]. 河北工程大学学报: 自然科学版, 2020, 37(1): 84−90

    ZHAO S Q, FAN W, YU N Y. Analysis of annual precipitation in the Dongzhi tableland based on wavelet and MK tests[J]. Journal of Hebei University of Engineering: Natural Science Edition, 2020, 37(1): 84−90
    [28]
    叶清, 杨晓光, 解文娟, 等. 气候变暖背景下中国南方水稻生长季可利用率变化趋势[J]. 中国农业科学, 2013, 46(21): 4399−4415 doi: 10.3864/j.issn.0578-1752.2013.21.002

    YE Q, YANG X G, XIE W J, et al. Tendency of use efficiency of rice growth season in Southern China under the background of global warming[J]. Scientia Agricultura Sinica, 2013, 46(21): 4399−4415 doi: 10.3864/j.issn.0578-1752.2013.21.002
    [29]
    吴芸紫, 段门俊, 刘章勇, 等. 播种期对3个再生稻品种产量及产量构成因子的影响[J]. 作物杂志, 2017, (2): 151−156

    WU Y Z, DUAN M J, LIU Z Y, et al. Effects of sowing date on yield and yield components of three varieties of ratooning rice[J]. Crops, 2017, (2): 151−156
    [30]
    黄农荣, 傅友强, 钟旭华, 等. 华南双季稻主栽品种的光能利用效率及聚类分析[J]. 中国生态农业学报(中英文), 2019, 27(11): 1714−1724

    HUANG N R, FU Y Q, ZHONG X H, et al. Radiation use efficiency and its classification of main varieties in double-cropping rice region of South China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1714−1724
    [31]
    任天举, 王培华, 段基文, 等. 温度与再生稻农艺性状的相关性研究[J]. 中国农业气象, 2002, 23(1): 4−8

    REN T J, WANG P H, DUAN J W, et al. Correlation analysis of temperature and agronomic characters of ratooning rice[J]. Chinese Journal of Agrometeorology, 2002, 23(1): 4−8
    [32]
    刘丹, 李迎春. 气候变化背景下江西省近55年≥10 ℃积温的时空变化特征[J]. 江西农业学报, 2017, 29(1): 85−91

    LIU D, LI Y C. Spatial-temporal variation on characteristics of accumulated temperature above 10 ℃ in Jiangxi Province in recent 55 years under background of global climate warming[J]. Acta Agriculture Jiangxi, 2017, 29(1): 85−91
    [33]
    李帅, 张勃, 马彬, 等. 基于格点数据的中国1961—2016年≥5 ℃、≥10 ℃有效积温时空演变[J]. 自然资源学报, 2020, 35(5): 1216−1227 doi: 10.31497/zrzyxb.20200516

    LI S, ZHANG B, MA B, et al. Spatiotemporal evolution of effective accumulated temperatures of ≥5 ℃ and ≥10 ℃ based on grid data in China from 1961 to 2016[J]. Journal of Natural Resources, 2020, 35(5): 1216−1227 doi: 10.31497/zrzyxb.20200516
    [34]
    陈超, 徐富贤, 庞艳梅, 等. 西南区域水稻关键生育期界限温度起始期的预测研究[J]. 中国生态农业学报(中英文), 2019, 27(8): 1172−1182

    CHEN C, XU F X, PANG Y M, et al. Prediction of threshold temperature start date for rice at critical development stages in Southwest China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(8): 1172−1182
    [35]
    廖江林, 肖小军, 宋宇, 等. 灌浆初期高温对水稻籽粒充实和剑叶理化特性的影响[J]. 植物生理学报, 2013, 49(2): 175−180

    LIAO J L, XIAO X J, SONG Y, et al. Effects of high temperature on grain-filling of rice caryopsis and physiological and biochemical characteristic of flag leave at early milky stage[J]. Plant Physiology Journal, 2013, 49(2): 175−180
    [36]
    张宏玉, 刘凯, 钟平安, 等. 水稻品种灌浆期耐热性的综合评判[J]. 生态学报, 2006, 26(7): 2154−2160

    ZHANG H Y, LIU K, ZHONG P A, et al. Comprehensive evaluated on heat tolerance at grain filling stage of different rice varieties[J]. Acta Ecologica Sinica, 2006, 26(7): 2154−2160
    [37]
    王庆志, 丰大清, 杨幽, 等. 豫南稻区再生稻生产主要气象灾害分析及对策[J]. 中国稻米, 2020, 26(3): 54−57, 60 doi: 10.3969/j.issn.1006-8082.2020.03.012

    WANG Q Z, FENG D Q, YANG Y, et al. Analysis and countermeasures for the major meteorological disasters in ratoon rice production in southern Henan[J]. China Rice, 2020, 26(3): 54−57, 60 doi: 10.3969/j.issn.1006-8082.2020.03.012
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(9)

    Article Metrics

    Article views (276) PDF downloads(62) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return