Volume 29 Issue 11
Nov.  2021
Turn off MathJax
Article Contents
LI Y F, XU J X, LIU B S, SUN Q P, LI J J, LIU J B, LANG Q Q, SUN R H, JIN H Y. Effects of different biogas slurries on soil microbial carbon metabolism[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1921−1930 doi: 10.12357/cjea.20210274
Citation: LI Y F, XU J X, LIU B S, SUN Q P, LI J J, LIU J B, LANG Q Q, SUN R H, JIN H Y. Effects of different biogas slurries on soil microbial carbon metabolism[J]. Chinese Journal of Eco-Agriculture, 2021, 29(11): 1921−1930 doi: 10.12357/cjea.20210274

Effects of different biogas slurries on soil microbial carbon metabolism

doi: 10.12357/cjea.20210274
Funds:  This study was supported by the Youth Foundation of Beijing Academy of Agriculture and Forestry Sciences (QNJJ202004, QNJJ202125, QNJJ201908), Beijing Innovation Team of Technology System in Dairy Industry (BAIC06-2021), the Special Project for Agricultural Ecological Environment Protection of China (2110402), and the Demonstration and Extension Project of Agricultural Science and Technology of Beijing Academy of Agriculture and Forestry Sciences (2018025)
More Information
  • Corresponding author: E-mail: sunrh_abc@163.com
  • Received Date: 2021-05-07
  • Accepted Date: 2021-06-30
  • Available Online: 2021-08-27
  • Publish Date: 2021-11-10
  • Biogas slurry is a high-quality organic fertilizer, but different types of biogas slurries have different physical and chemical properties. To explore the effect of biogas slurries derived from different livestock and poultry wastes on the soil microbial community structure, a culture experiment was conducted in the laboratory with the following treatments: soil amended with biogas slurry from chicken manure (FS), pig manure (PS), and cow manure (CS), and an unamended control (CK). The experiment was conducted with equal nitrogen input for each treatment. Samples were collected after incubation of soil for 60 days. Changes in the carbon metabolism of microbial communities subjected to different treatments were examined using the Biolog microplate culture method. Compared to the control, the biogas slurry treatments exerted no significant effect on soil organic matter content, but improved soil pH, electrical conductivity, and contents of inorganic nitrogen, total nitrogen, available phosphorus, and available potassium to varying degrees. Soil microbial biomass carbon was highest in CS, whereas that in PS was significantly lower than that in CK (P<0.05). The highest carbon source utilization intensity was found in FS, while that in CS was similar to that in CK, and lower in PS. Carbohydrate utilization by soil microbes was highest in FS, where it showed a significant increase with respect to that of PS (P<0.05). The utilization of amino acids was inhibited by all biogas slurry treatments; however, such inhibition was significant only in PS when compared with CK (P<0.05). Carboxylic acid utilization was significantly higher in FS than that in the other treatments (P<0.05). The various treatments exerted three distinct effects on amine utilization: on the one hand, FS promoted amine utilization, which showed values significantly higher than those in CK and PS (P<0.05); on the other hand, PS treatment did not significantly affect amine utilization when compared to that of CK; and finally, there was no significant difference in amine utilization between microbial communities subjected to CS and the other treatments. When compared with the other treatments, FS resulted in soil microbial communities with significantly higher values of both Shannon and Simpson indices (P<0.05). The highest value of the McIntosh index was observed in the FS-treated community, with a significant increase with respect to that of PS. Amino acid utilization was the parameter showing the strongest correlations (P<0.05 or P<0.01) with various soil chemical properties. Particularly, significant negative correlations were observed with nitrate nitrogen content, total nitrogen content, available potassium content, and electrical conductivity. In contrast, there were no significant correlations between the diversity indices and soil chemical properties. Soil microbial biomass carbon was negatively correlated with nitrate and available potassium contents (P<0.05). Conversely, soil microbial biomass nitrogen was negatively correlated with the pH and electrical conductivity (P<0.05). Principal component analysis of microbial carbon metabolism showed that the microbial community of PS was differed from that of CK, while CS and FS had relatively small effects on microbial community metabolism. In summary, biogas slurry derived from different livestock and poultry wastes exerted different effects on soil microbial carbon metabolism. Nevertheless, future experiments are required to verify the long-term effects of different biogas slurries in the field.
  • loading
  • [1]
    张树清, 张夫道, 刘秀梅, 等. 规模化养殖畜禽粪主要有害成分测定分析研究[J]. 植物营养与肥料学报, 2005, 11(6): 822−829 doi: 10.3321/j.issn:1008-505X.2005.06.019

    ZHANG S Q, ZHANG F D, LIU X M, et al. Determination and analysis on main harmful composition in excrement of scale livestock and poultry feedlots[J]. Plant Nutrition and Fertilizing Science, 2005, 11(6): 822−829 doi: 10.3321/j.issn:1008-505X.2005.06.019
    [2]
    钟珍梅, 宋亚娜, 黄秀声, 等. 沼液对狼尾草地土壤微生物群落的影响[J]. 草地学报, 2016, 24(1): 54−60

    ZHONG Z M, SONG Y N, HUANG X S, et al. Effects of biogas slurry application on the soil microorganisms of P. americanum × P. purpureum grassland[J]. Acta Agrestia Sinica, 2016, 24(1): 54−60
    [3]
    CAO Y, WANG J D, WU H S, et al. Soil chemical and microbial responses to biogas slurry amendment and its effect on Fusarium wilt suppression[J]. Applied Soil Ecology, 2016, 107: 116−123 doi: 10.1016/j.apsoil.2016.05.010
    [4]
    MÖLLER K. Effects of anaerobic digestion on soil carbon and nitrogen turnover, N emissions, and soil biological activity. A review[J]. Agronomy for Sustainable Development, 2015, 35(3): 1021−1041
    [5]
    NIYUNGEKO C, LIANG X Q, LIU C L, et al. Effect of biogas slurry application on soil nutrients, phosphomonoesterase activities, and phosphorus species distribution[J]. Journal of Soils and Sediments, 2020, 20(2): 900−910
    [6]
    TANG Y F, LUO L M, CARSWELL A, et al. Changes in soil organic carbon status and microbial community structure following biogas slurry application in a wheat-rice rotation[J]. Science of the Total Environment, 2021, 757: 143786
    [7]
    ODLARE M, ARTHURSON V, PELL M, et al. Land application of organic waste — Effects on the soil ecosystem[J]. Applied Energy, 2011, 88(6): 2210−2218 doi: 10.1016/j.apenergy.2010.12.043
    [8]
    XU M, XIAN Y, WU J, et al. Effect of biogas slurry addition on soil properties, yields, and bacterial composition in the rice-rape rotation ecosystem over 3 years[J]. Journal of Soils and Sediments, 2019, 19(5): 2534−2542 doi: 10.1007/s11368-019-02258-x
    [9]
    MIN Y Y, TOYOTA K, SATO E, et al. Effects of anaerobically digested slurry on Meloidogyne incognita and Pratylenchus penetrans in tomato and radish production[J]. Applied and Environmental Soil Science, 2011, 2011: 1−6
    [10]
    李钰飞, 刘本生, 许俊香, 等. 沼液淹没土壤抑制根结线虫及对土壤线虫群落的影响[J]. 中国生态农业学报(中英文), 2020, 28(8): 1249−1257

    LI Y F, LIU B S, XU J X, et al. Effects of soil flooding of biogas slurry on root-knot nematode (Meloidogyne spp.) and soil nematode community[J]. Chinese Journal of Eco-Agriculture, 2020, 28(8): 1249−1257
    [11]
    MORAL R, MORENO-CASELLES J, PEREZ-MURCIA M D, et al. Characterisation of the organic matter pool in manures[J]. Bioresource Technology, 2005, 96(2): 153−158 doi: 10.1016/j.biortech.2004.05.003
    [12]
    ARRIAGA F J, LOWERY B. Soil physical properties and crop productivity of an eroded soil amended with cattle manure[J]. Soil Science, 2003, 168(12): 888−899
    [13]
    NYAMANGARA J, GOTOSA J, MPOFU S E. Cattle manure effects on structural stability and water retention capacity of a granitic sandy soil in Zimbabwe[J]. Soil and Tillage Research, 2001, 62(3/4): 157−162
    [14]
    HAFEZ A R. Comparative changes in soil-physical properties induced by admixtures of manures from various domestic animals[J]. Soil Science, 1974, 118(1): 53−59
    [15]
    ABUBAKER J, CEDERLUND H, ARTHURSON V, et al. Bacterial community structure and microbial activity in different soils amended with biogas residues and cattle slurry[J]. Applied Soil Ecology, 2013, 72: 171−180
    [16]
    柯蓝婷, 王海涛, 王远鹏, 等. 不同来源家庭户用沼气池沼液成分分析及风险评价[J]. 化工学报, 2014, 65(5): 1840−1847

    KE L T, WANG H T, WANG Y P, et al. Component analysis and risk assessment of anaerobically digested slurry from households in China[J]. CIESC Journal, 2014, 65(5): 1840−1847
    [17]
    赵凤莲, 孙钦平, 李吉进, 等. 不同沼肥对油菜产量、品质及氮素利用效率的影响[J]. 水土保持学报, 2010, 24(3): 127−130

    ZHAO F L, SUN Q P, LI J J, et al. Effects of different biogas fertilizers on yield, quality and nitrogen use efficiency of the rape[J]. Journal of Soil and Water Conservation, 2010, 24(3): 127−130
    [18]
    曹志平. 生态农业未来的发展方向[J]. 中国生态农业学报, 2013, 21(1): 29−38

    CAO Z P. Future orientation of ecological agriculture[J]. Chinese Journal of Eco-Agriculture, 2013, 21(1): 29−38
    [19]
    李钰飞, 李季, 李吉进, 等. 温室不同管理模式对土壤微生物生物量碳和原生动物丰度的影响[J]. 土壤, 2018, 50(4): 696−704

    LI Y F, LI J, LI J J, et al. Effects of different management practices on microbial biomass carbon and protozoa abundance under greenhouse conditions[J]. Soils, 2018, 50(4): 696−704
    [20]
    LI Y F, CHEN Y F, LI J, et al. Organic management practices enhance soil food web biomass and complexity under greenhouse conditions[J]. Applied Soil Ecology, 2021, 167: 104010
    [21]
    贺纪正, 陆雅海, 傅伯杰. 土壤生物学前沿[M]. 北京: 科学出版社, 2015: 29–50

    HE J Z, LU Y H, FU B J. Frontier of Soil Biology[M]. Beijing: Science Press, 2015: 29–50
    [22]
    WINDING A, HUND-RINKE K, RUTGERS M. The use of microorganisms in ecological soil classification and assessment concepts[J]. Ecotoxicology and Environmental Safety, 2005, 62(2): 230−248
    [23]
    WENTZEL S, JOERGENSEN R G. Effects of biogas and raw slurries on grass growth and soil microbial indices[J]. Journal of Plant Nutrition and Soil Science, 2016, 179(2): 215−222
    [24]
    黄继川, 徐培智, 彭智平, 等. 基于稻田土壤肥力及生物学活性的沼液适宜用量研究[J]. 植物营养与肥料学报, 2016, 22(2): 362−371

    HUANG J C, XU P Z, PENG Z P, et al. Biogas slurry use amount for suitable soil nutrition and biodiversity in paddy soil[J]. Journal of Plant Nutrition and Fertilizer, 2016, 22(2): 362−371
    [25]
    郑学博, 樊剑波, 崔键, 等. 沼液还田对旱地红壤微生物群落代谢与多样性的影响[J]. 生态学报, 2016, 36(18): 5865−5875

    ZHENG X B, FAN J B, CUI J, et al. Analysis on metabolic characteristics and functional diversity of soil edaphon communities in upland red soil under biogas slurry application[J]. Acta Ecologica Sinica, 2016, 36(18): 5865−5875
    [26]
    郑学博, 樊剑波, 何园球, 等. 沼液化肥全氮配比对土壤微生物及酶活性的影响[J]. 农业工程学报, 2015, 31(19): 142−150

    ZHENG X B, FAN J B, HE Y Q, et al. Effect of total nitrogen ratio of biogas slurry/chemical fertilizer on microflora and enzyme activities of soil[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(19): 142−150
    [27]
    鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000: 25–114

    BAO S D. Soil Agro-chemistrical Analysis[M]. Beijing: China Agriculture Press, 2000: 25–114
    [28]
    吴金水, 林启美, 黄巧云, 等. 土壤微生物生物量测定方法及其应用[M]. 北京: 气象出版社, 2006: 54–78

    WU J S, LIN Q M, HUANG Q Y, et al. Soil Microbial Biomass — Methods and Application[M]. Beijing: China Meteorological Press, 2006: 54–78
    [29]
    林先贵. 土壤微生物研究原理与方法[M]. 北京: 高等教育出版社, 2010: 170–172

    LIN X G. Principles and Methods of Soil Microbiology Research[M]. Beijing: High Education Press, 2010: 170–172
    [30]
    甄丽莎, 谷洁, 胡婷, 等. 黄土高原石油污染土壤微生物群落结构及其代谢特征[J]. 生态学报, 2015, 35(17): 5703−5710

    ZHEN L S, GU J, HU T, et al. Microbial community structure and metabolic characteristics of oil-contaminated soil in the Loess Plateau[J]. Acta Ecologica Sinica, 2015, 35(17): 5703−5710
    [31]
    靳红梅, 常志州, 叶小梅, 等. 江苏省大型沼气工程沼液理化特性分析[J]. 农业工程学报, 2011, 27(1): 291−296

    JIN H M, CHANG Z Z, YE X M, et al. Physical and chemical characteristics of anaerobically digested slurry from large-scale biogas project in Jiangsu Province[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 291−296
    [32]
    靳红梅, 付广青, 常志州, 等. 猪、牛粪厌氧发酵中氮素形态转化及其在沼液和沼渣中的分布[J]. 农业工程学报, 2012, 28(21): 208−214

    JIN H M, FU G Q, CHANG Z Z, et al. Distribution of nitrogen in liquid and solid fraction of pig and dairy manure in anaerobic digestion reactor[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(21): 208−214
    [33]
    王文静, 魏静, 马文奇, 等. 氮肥用量和秸秆根茬碳投入对黄淮海平原典型农田土壤有机质积累的影响[J]. 生态学报, 2010, 30(13): 3591−3598

    WANG W J, WEI J, MA W Q, et al. Effect of nitrogen amendment and straw-stubble input on accumulation of soil organic matter in typical farmlands of Huang-Huai-Hai Plain[J]. Acta Ecologica Sinica, 2010, 30(13): 3591−3598
    [34]
    JOHANSEN A, CARTER M S, JENSEN E S, et al. Effects of digestate from anaerobically digested cattle slurry and plant materials on soil microbial community and emission of CO2 and N2O[J]. Applied Soil Ecology, 2013, 63: 36−44
    [35]
    徐阳春, 沈其荣, 冉炜. 长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影响[J]. 土壤学报, 2002, 39(1): 83−90

    XU Y C, SHEN Q R, RAN W. Effects of zero-tillage and application of manure on soil microbial biomass C, N, and P after sixteen years of cropping[J]. Acta Pedologica Sinica, 2002, 39(1): 83−90
    [36]
    胡诚, 曹志平, 叶钟年, 等. 不同的土壤培肥措施对低肥力农田土壤微生物生物量碳的影响[J]. 生态学报, 2006, 26(3): 808−814

    HU C, CAO Z P, YE Z N, et al. Impact of soil fertility maintaining practice on soil microbial biomass carbon in low production agro-ecosystem in Northern China[J]. Acta Ecologica Sinica, 2006, 26(3): 808−814
    [37]
    龙攀, 隋鹏, 高旺盛, 等. 不同有机物料还田对农田土壤有机碳以及微生物量碳的影响[J]. 中国农业大学学报, 2015, 20(3): 153−160

    LONG P, SUI P, GAO W S, et al. Effects of agricultural organic wastes incorporation on soil organic carbon and microbial carbon[J]. Journal of China Agricultural University, 2015, 20(3): 153−160
    [38]
    王继红, 刘景双, 于君宝, 等. 氮磷肥对黑土玉米农田生态系统土壤微生物量碳、氮的影响[J]. 水土保持学报, 2004, 18(1): 35−38

    WANG J H, LIU J S, YU J B, et al. Effect of fertilizing N and P on soil microbial biomass carbon and nitrogen of black soil corn agroecosystem[J]. Journal of Soil Water Conservation, 2004, 18(1): 35−38
    [39]
    耿晨光, 段婧婧, 李汛, 等. 沼液的园林地消解处理利用及其对土壤微生物碳、氮与酶活性的影响[J]. 农业环境科学学报, 2012, 31(10): 1965−1971

    GENG C G, DUAN J J, LI X, et al. Short-term effects of biogas slurry application to garden land on soil microbial biomass carbon & nitrogen and soil enzymes[J]. Journal of Agro-Environment Science, 2012, 31(10): 1965−1971
    [40]
    张红, 王桂良. 沼液和氮肥配施对菜田土壤微生物生物量和活性的影响[J]. 安徽农业科学, 2011, 39(27): 16601−16603, 16723

    ZHANG H, WANG G L. Effects of biogas slurry combinated with nitrogen fertilizer on soil microbial biomass and enzyme activities[J]. Journal of Anhui Agricultural Sciences, 2011, 39(27): 16601−16603, 16723
    [41]
    曹云, 常志州, 马艳, 等. 沼液施用对辣椒疫病的防治效果及对土壤生物学特性的影响[J]. 中国农业科学, 2013, 46(3): 507−516

    CAO Y, CHANG Z Z, MA Y, et al. Effects of application of anaerobically digested slurry on suppression of pepper (Capsicum frutescens L.) blight and soil biological characteristics[J]. Scientia Agricultura Sinica, 2013, 46(3): 507−516
    [42]
    王强, 戴九兰, 吴大千, 等. 微生物生态研究中基于BIOLOG方法的数据分析[J]. 生态学报, 2010, 30(3): 817−823

    WANG Q, DAI J L, WU D Q, et al. Statistical analysis of data from BIOLOG method in the study of microbial ecology[J]. Acta Ecologica Sinica, 2010, 30(3): 817−823
    [43]
    郑华, 欧阳志云, 方治国, 等. BIOLOG在土壤微生物群落功能多样性研究中的应用[J]. 土壤学报, 2004, 41(3): 456−461

    ZHENG H, OUYANG Z Y, FANG Z G, et al. Application of biolog to study on soil microbial community functional diversity[J]. Acta Pedologica Sinica, 2004, 41(3): 456−461
    [44]
    GARLAND J L, MILLS A L. Classification and characterization of heterotrophic microbial communities on the basis of patterns of community-level sole-carbon-source utilization[J]. Applied and Environmental Microbiology, 1991, 57(8): 2351−2359
    [45]
    孙波, 赵其国, 张桃林, 等. 土壤质量与持续环境Ⅲ. 土壤质量评价的生物学指标[J]. 土壤, 1997, 29(5): 225−234

    SUN B, ZHAO Q G, ZHANG T L, et al. Soil quality and sustainable environment:Ⅲ. Biological indicators for soil quality assessment[J]. Soils, 1997, 29(5): 225−234
    [46]
    HAACK S K, GARCHOW H, KLUG M J, et al. Analysis of factors affecting the accuracy, reproducibility, and interpretation of microbial community carbon source utilization patterns[J]. Applied and Environmental Microbiology, 1995, 61(4): 1458−1468
    [47]
    NANNIPIERI P, ASCHER J, CECCHERINI M T, et al. Microbial diversity and soil functions[J]. European Journal of Soil Science, 2003, 54(4): 655−670
    [48]
    曹云, 马艳, 吴华山, 等. 沼液处理对土壤微生物性状及西瓜枯萎病发生的影响[J]. 中国土壤与肥料, 2016, (1): 34−41

    CAO Y, MA Y, WU H S, et al. Suppression of Fusarium wilt of watermelon by biogas slurry application and its effect on soil microbiological characteristics[J]. Soil and Fertilizer Sciences in China, 2016, (1): 34−41
    [49]
    胡婵娟, 刘国华, 吴雅琼. 土壤微生物生物量及多样性测定方法评述[J]. 生态环境学报, 2011, 20(Z1): 1161−1167

    HU C J, LIU G H, WU Y Q. A review of soil microbial biomass and diversity measurements[J]. Ecology and Environmental Sciences, 2011, 20(Z1): 1161−1167
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(3)

    Article Metrics

    Article views (319) PDF downloads(55) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return