Volume 29 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
RAO X Y, LI H J, ZHANG S W, LUO M, LIU Z Q, ZHANG J W. Suitability analysis of remote sensing monitoring methods for grassland vegetation growth[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2084−2092 doi: 10.12357/cjea.20210280
Citation: RAO X Y, LI H J, ZHANG S W, LUO M, LIU Z Q, ZHANG J W. Suitability analysis of remote sensing monitoring methods for grassland vegetation growth[J]. Chinese Journal of Eco-Agriculture, 2021, 29(12): 2084−2092 doi: 10.12357/cjea.20210280

Suitability analysis of remote sensing monitoring methods for grassland vegetation growth

doi: 10.12357/cjea.20210280
Funds:  This study was supported by the Inner Mongolia Science and Technology Achievement Transformation Special Project (2020CG0054), the National Natural Science Foundation of China (41971262, 51779116, 52079063), and the Natural Science Foundation of Inner Mongolia Autonomous Region (2019JQ06)
More Information
  • Corresponding author: LI Hongjun, E-mail: lhj@sjziam.ac.cn; ZHANG Shengwei, E-mail: zsw@imau.edu.cn
  • Received Date: 2021-05-11
  • Accepted Date: 2021-08-08
  • Available Online: 2021-08-27
  • Publish Date: 2021-12-07
  • The research and application of grassland vegetation growth monitoring methods have important scientific significance and application value for the sustainable use of grassland resources and the improvement of the ecological environment. Remote sensing monitoring has characteristics such as high timeliness and wide coverage, and several remote sensing monitoring methods have been increasingly used in crop growth monitoring. As the monitoring objects are all plants, these monitoring methods were tried to introduce to monitor grassland vegetation growth in this study. We applied four remote sensing monitoring methods for the crop growth: direct monitoring, vegetation growth process curve, same period comparison, and NDVI percentiles to the grassland vegetation growth monitoring of West Ujimqin County in Inner Mongolia; to clarify the suitability and limitation of these remote sensing monitoring methods for crop growth when monitoring grassland vegetation growth using MODIS Vegetation Index Products (NDVI). The monitoring results provided by the direct monitoring method and the NDVI percentile method were compared with the ground sampling data. The direct monitoring method could intuitively reflect the spatial heterogeneity of grassland vegetation growth by the grassland NDVI, and the NDVI value was significantly correlated with the dry weight of grassland yield per unit area (R2=0.5502). However, this method could not provide details on the growth of different types of grasslands owing to the limitation of the NDVI grade. The vegetation growth process curve method could only collectively reflect the changes in the overall growth of the grassland in the monitored area over time, showing that the growth was better or worse than that of the reference year. In this study, the NDVI peak values of the vegetation growth process curves for the meadow grassland and typical grassland were 0.73 and 0.55, respectively, significantly different from the whole regional lumped monitoring results (NDVI peak value was 0.60). This means that different grassland types should be monitored separately to reflect their respective growth processes. For the same period comparison method, if the selected reference year was different, the method would provide different monitoring results for grassland growth; the results from grassland growth monitoring were semi-quantitative comparative. Using the statistical analysis of NDVI data of different grassland types for 5 years, the NDVI percentile method could quantitatively evaluate the growth of corresponding grassland types, as shown in this study. The determination coefficient of the correlation between the growth score provided by the NDVI percentile method and the dry weight of grassland yield per unit area was 0.5047. To achieve a reasonable classification of these semi-quantitative monitoring results of grassland growth, the assistance of ground grassland monitoring information is required. There is an urgent need to establish a sky-air-ground integrated grassland growth monitoring platform to improve the efficiency and accuracy of grassland vegetation growth monitoring.
  • loading
  • [1]
    YANG X C, XU B, ZHU X H, et al. A monitoring indicator system for remote sensing of grassland vegetation growth and suitability evaluation—a case study of the Xilingol Grassland in Inner Mongolia, China[J]. International Journal of Remote Sensing, 2015, 36(19/20): 5105−5122
    [2]
    于海达, 杨秀春, 徐斌, 等. 草原植被长势遥感监测研究进展[J]. 地理科学进展, 2012, 31(7): 885−894 doi: 10.11820/dlkxjz.2012.07.007

    YU H D, YANG X C, XU B, et al. The progress of remote sensing monitoring for grassland vegetation growth[J]. Progress in Geography, 2012, 31(7): 885−894 doi: 10.11820/dlkxjz.2012.07.007
    [3]
    高睿. 多尺度遥感方法对牧草营养成分的反演研究[D]. 哈尔滨: 东北农业大学, 2019

    GAO R. Research on retrieval of pastures nutritional ingredients based on multi-scale remote sensing methods[D]. Harbin: Northeast Agricultural University, 2019
    [4]
    段淳清. 内蒙古草地资源现状及其可持续利用对策[J]. 内蒙古草业, 2006, 18(3): 21−25

    DUAN C Q. The present situation and sustainable utilization countermeasures of grassland resources in Inner Mongolia[J]. Inner Mongolia Prataculture, 2006, 18(3): 21−25
    [5]
    田海静, 王林, 石俊华. 近20年中国北方草原植被长势动态监测[J]. 草业科学, 2020, 37(11): 2165−2174 doi: 10.11829/j.issn.1001-0629.2020-0261

    TIAN H J, WANG L, SHI J H. Vegetation dynamics of the north Chinese grassland in the past 20 years[J]. Pratacultural Science, 2020, 37(11): 2165−2174 doi: 10.11829/j.issn.1001-0629.2020-0261
    [6]
    潘庆民, 薛建国, 陶金, 等. 中国北方草原退化现状与恢复技术[J]. 科学通报, 2018, 63(17): 1642−1650 doi: 10.1360/N972017-01178

    PAN Q M, XUE J G, TAO J, et al. Current status of grassland degradation and measures for grassland restoration in Northern China[J]. Chinese Science Bulletin, 2018, 63(17): 1642−1650 doi: 10.1360/N972017-01178
    [7]
    顾丽婷. 近十年北方草原退化因素研究综述[J]. 新西部, 2017, (33): 33−34

    GU L T. A review on the degradation factors of grassland in recent ten years in the northern China[J]. New West, 2017, (33): 33−34
    [8]
    马其东, 王晓武. 优质豆科牧草栽培管理技术[M]. 北京: 台海出版社, 2003

    MA Q D, WANG X W. Cultivation and Management Techniques of High Quality Leguminous Forage[M]. Beijing: Taihai Press, 2003
    [9]
    付晶莹, 彭婷, 江东, 等. 草地资源立体观测研究进展与理论框架[J]. 资源科学, 2020, 42(10): 1932−1943

    FU J Y, PENG T, JIANG D, et al. Research progress and theoretical framework of multidimensional observation of grassland resources[J]. Resources Science, 2020, 42(10): 1932−1943
    [10]
    葛静, 孟宝平, 杨淑霞, 等. 基于ADC和MODIS遥感数据的高寒草地地上生物量监测研究−以黄河源区为例[J]. 草业学报, 2017, 26(7): 23−34 doi: 10.11686/cyxb2017010

    GE J, MENG B P, YANG S X, et al. Monitoring of above-ground biomass in alpine grassland based on agricultural digital camera and MODIS remote sensing data: a case study in the Yellow River Headwater Region[J]. Acta Prataculturae Sinica, 2017, 26(7): 23−34 doi: 10.11686/cyxb2017010
    [11]
    李媛, 徐坤, 谢应忠. 遥感在草地生态系统研究中的应用现状[J]. 宁夏工程技术, 2012, 11(4): 390−395 doi: 10.3969/j.issn.1671-7244.2012.04.028

    LI Y, XU K, XIE Y Z. Review on the application of remote sensing in the studying of grassland ecosystem[J]. Ningxia Engineering Technology, 2012, 11(4): 390−395 doi: 10.3969/j.issn.1671-7244.2012.04.028
    [12]
    GAO T, YANG X C, JIN Y X, et al. Spatio-temporal variation in vegetation biomass and its relationships with climate factors in the Xilingol grasslands, Northern China[J]. PLoS One, 2013, 8(12): e83824 doi: 10.1371/journal.pone.0083824
    [13]
    姚兴成, 曲恬甜, 常文静, 等. 基于MODIS数据和植被特征估算草地生物量[J]. 中国生态农业学报, 2017, 25(4): 530−541

    YAO X C, QU T T, CHANG W J, et al. Estimation of grassland biomass using MODIS data and plant community characteristics[J]. Chinese Journal of Eco-Agriculture, 2017, 25(4): 530−541
    [14]
    梁顺林, 白瑞, 陈晓娜, 等. 2019年中国陆表定量遥感发展综述[J]. 遥感学报, 2020, 24(6): 618−671

    LIANG S L, BAI R, CHEN X N, et al. Review of China’s land surface quantitative remote sensing development in 2019[J]. Journal of Remote Sensing, 2020, 24(6): 618−671
    [15]
    方臣, 胡飞, 陈曦, 等. 自然资源遥感应用研究进展[J]. 资源环境与工程, 2019, 33(4): 563−569

    FANG C, HU F, CHEN X, et al. Advances in application of remote sensing to natural resources[J]. Resources Environment & Engineering, 2019, 33(4): 563−569
    [16]
    杨闫君. 基于植被指数时序谱类内差异特征的冬小麦遥感识别研究[D]. 南京: 南京大学, 2019

    YANG Y J. Remote sensing-based winter wheat identification considering temporal-spectral intra-class difference characteristics of vegetation index[D]. Nanjing: Nanjing University, 2019
    [17]
    刘良云. 植被定量遥感原理与应用[M]. 北京: 科学出版社, 2014

    LIU L Y. Principle and Application of Quantitative Remote Sensing for Vegetation[M]. Beijing: Science Press, 2014
    [18]
    徐斌, 杨秀春, 金云翔. 草原植被遥感监测[M]. 北京: 科学出版社, 2016

    XU B, YANG X C, JIN Y X. Remote Sensing Monitoring of Grassland Vegetation[M]. Beijing: Science Press, 2016
    [19]
    徐斌, 杨秀春, 侯向阳, 等. 草原植被遥感监测方法研究进展[J]. 科技导报, 2007, 25(9): 5−8 doi: 10.3321/j.issn:1000-7857.2007.09.002

    XU B, YANG X C, HOU X Y, et al. Advance of technology of remote sensing monitoring for grassland vegetation[J]. Science & Technology Review, 2007, 25(9): 5−8 doi: 10.3321/j.issn:1000-7857.2007.09.002
    [20]
    PIDGORODETSKA L V, ZYELYK Y I. Detection of winter crops by satellite data on the basis of soil-adaptive perpendicular vegetation index[J]. Astronomical School’s Report, 2015, 11(1): 91−98 doi: 10.18372/2411-6602.11.1091
    [21]
    李楠, 韩金锋, 阳维宗, 等. 2000—2019年若尔盖高原植被生长季NDVI时空变化特征研究[J]. 西南林业大学学报: 自然科学, 2021, 41(1): 133−139

    LI N, HAN J F, YANG W Z, et al. Spatio-temporal variation of NDVI in the vegetation growing season of the Zoige Plateau from 2000 to 2019[J]. Journal of Southwest Forestry University: Natural Sciences, 2021, 41(1): 133−139
    [22]
    孙丽, 王蔚丹, 陈媛媛, 等. 2019年美国冬小麦长势遥感监测分析[J]. 安徽农业科学, 2020, 48(1): 241−244 doi: 10.3969/j.issn.0517-6611.2020.01.072

    SUN L, WANG W D, CHEN Y Y, et al. Analysis of winter wheat growth of United States with remote sensing data in 2019[J]. Journal of Anhui Agricultural Sciences, 2020, 48(1): 241−244 doi: 10.3969/j.issn.0517-6611.2020.01.072
    [23]
    LI C C, LI H J, LI J Z, et al. Using NDVI percentiles to monitor real-time crop growth[J]. Computers and Electronics in Agriculture, 2019, 162: 357−363 doi: 10.1016/j.compag.2019.04.026
    [24]
    蒙继华. 农作物长势遥感监测指标研究[D]. 北京: 中国科学院研究生院(中国科学院遥感应用研究所), 2006

    MENG J H. Research to crop growth monitoring indicators with remote sensing[D]. Beijing: Graduate University of Chinese Academay of Sciences (Institute of Remote Sensing Applications, Chinese Academy of Sciences), 2006
    [25]
    吴文斌, 史云, 周清波, 等. 天空地数字农业管理系统框架设计与构建建议[J]. 智慧农业, 2019, 1(2): 64−72

    WU W B, SHI Y, ZHOU Q B, et al. Framework and recommendation for constructing the SAGI digital agriculture system[J]. Smart Agriculture, 2019, 1(2): 64−72
    [26]
    杨杰, 张莹莹, 王建雄, 等. 利用NDVI与EVI再合成的植被指数算法[J]. 遥感信息, 2020, 35(5): 127−133 doi: 10.3969/j.issn.1000-3177.2020.05.016

    YANG J, ZHANG Y Y, WANG J X, et al. Vegetation index algorithm using NDVI and EVI resynthesis[J]. Remote Sensing Information, 2020, 35(5): 127−133 doi: 10.3969/j.issn.1000-3177.2020.05.016
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)

    Article Metrics

    Article views (312) PDF downloads(59) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return