Volume 30 Issue 4
Apr.  2022
Turn off MathJax
Article Contents
LUO S M. Low carbon development strategy for agriculture based on cybernetics[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 495−499 doi: 10.12357/cjea.20210583
Citation: LUO S M. Low carbon development strategy for agriculture based on cybernetics[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 495−499 doi: 10.12357/cjea.20210583

Low carbon development strategy for agriculture based on cybernetics

doi: 10.12357/cjea.20210583
  • Received Date: 2021-08-30
  • Accepted Date: 2021-09-14
  • Available Online: 2021-09-19
  • Publish Date: 2022-04-11
  • Agriculture is an agroecosystem with a cybernetic system nature. The low-carbon development of agriculture falls into the category of eco-friendly eco-agriculture. Human direct regulation methods for the low-carbon development of eco-agriculture originate from the exploration of traditional and local farmers, modern interdisciplinary agricultural research, and eco-friendly high-tech industries. To get low-carbon goals, the methods from different sources, which are conducive to adapting and strengthening the natural regulation process, can be investigated for their compatibility, synergy and effectiveness within a specific system. The selected methods can be synthesized and optimized to help form a diversified low-carbon system and a suitable technical package. The top-down stimulation measures introduced by the government and the bottom-up efforts provided by people constitute the human indirect regulation for agroecosystems. These entities need to cooperate to form a social joint force to effectively accelerate the low-carbon development of eco-agriculture to reach the national goal of carbon neutralization.
  • loading
  • [1]
    中国气象局气候变化中心. 中国气候变化蓝皮书(2021)[M]. 北京: 科学出版社, 2021. https://www.jiemian.com/article/ 6442652.html

    Climate Change Center of China Meteorological Administration. China’s Blue Book on Climate Change in China (2021)[M]. Beijing: Sciences Press, 2021. https://www.jiemian.com/article/6442652.html
    [2]
    KAY J E. Kay, early models successfully predicted global warming[J]. Nature, 2020, 578(6): 45−46
    [3]
    陈雅如, 赵金成. 碳达峰、碳中和目标下全球气候治理新格局与林草发展机遇[J]. 世界林业研究, 2021, 34(6): 1−5

    CHEN Y R, ZHAO J C. New pattern of global climate governance and opportunities for forest and grassland development under the target of carbon emission peaked and carbon neutral[J]. World Forestry Research, 2021, 34(6): 1−5
    [4]
    吴昊玥, 黄瀚蛟, 何宇, 等. 中国农业碳排放效率测度、空间溢出与影响因素[J]. 中国生态农业学报(中英文), 2021, 29(10): 1762−1773

    WU H Y, HUANG H J, HE Y, et al. Measurement, spatial spillover and influencing factors of agricultural carbon emissions efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1762−1773
    [5]
    金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021, 321(5): 29−37

    JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021, 321(5): 29−37
    [6]
    骆世明. 系统论、信息论和控制论与我国农业生态学的发展[J]. 中国生态农业学报(中英文), 2021, 29(2): 340−344

    LUO S M. Influence of cybernetic theory, information theory, and system’ s theory on the development of agroecology in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(2): 340−344
    [7]
    骆世明. 农业生态学[M]. 3版. 北京: 中国农业出版社, 2017

    LUO S M. Agroecology[M]. 3rd editon. Beijing: Chinese Agriculture Press, 2017
    [8]
    WEZEL A, BELLON S, DORÉ T, et al. Agroecology as a science, a movement and a practice. A review[J]. Agronomy for Sustainable Development, 2009, 29(4): 503−515 doi: 10.1051/agro/2009004
    [9]
    骆世明. 生态农业确认体系的构建[J]. 农业现代化研究, 2020, 41(1): 1−6 doi: 10.13872/j.1000-0275.2020.0001

    LUO S M. The setting up of identification system for agroecology[J]. Research of Agricultural Modernization, 2020, 41(1): 1−6 doi: 10.13872/j.1000-0275.2020.0001
    [10]
    向继恩, 陈灿, 黄璜. 稻田养鱼农业文化遗产综合效益评价[J]. 遗产与保护研究, 2016, 1(5): 111−117 doi: 10.3969/j.issn.2096-0913.2016.05.016

    XIANG J E, CHEN C, HUANG H. Evaluation of comprehensive benefits of agricultural heritage in fish culture in the rice field[J]. Research on Heritages and Preservation, 2016, 1(5): 111−117 doi: 10.3969/j.issn.2096-0913.2016.05.016
    [11]
    郭亚容, 高宇琼. 元阳哈尼梯田生态智慧及其在当代的意义探究[J]. 南方农业, 2020, 12(14): 170−172

    GUO Y R, GAO Y Q. Ecological wisdom of Hani Terrace in Yuanyang and its contemporary significance[J]. South China Agriculture, 2020, 12(14): 170−172
    [12]
    龚建周, 蒋超, 胡月明, 等. 珠三角基塘系统研究回顾及展望[J]. 地理科学进展, 2020, 39(7): 1236−1246

    GONG J Z, JIANG C, HU Y M, et al. A review and prospect of research on the dike-pond system in the Pearl River Delta[J]. Progress in Geography, 2020, 39(7): 1236−1246
    [13]
    顾兴国, 刘某承, 闵庆文. 太湖南岸桑基鱼塘的起源与演变[J]. 丝绸, 2018, 55(7): 97−104

    GU X G, LIU M C, MIN Q W. The origin and evolution of the mulberry-dyke & fish-pond by the south bank of the Tai Lake[J]. Journal of Silk, 2018, 55(7): 97−104
    [14]
    XIE J, HU L, TANG J, et al. Ecological mechanisms underlying the sustainability of the agricultural heritage rice-fish coculture system[J]. PNAS, 2011, 108(50): E1381−E1387 doi: 10.1073/pnas.1111043108
    [15]
    章家恩, 陆敬雄, 张光辉, 等. 鸭稻共作生态农业模式的功效及存在的技术问题探讨[J]. 农业系统科学与综合研究, 2006, 22(2): 94−97 doi: 10.3969/j.issn.1001-0068.2006.02.004

    ZHANG J E, LU J X, ZHANG G H, et al. Discussion on rice-duck integrated farming ecosystem and the related technology innovation[J]. System Sciences and Comprehensive Studies in Agriculture, 2006, 22(2): 94−97 doi: 10.3969/j.issn.1001-0068.2006.02.004
    [16]
    刘艳红. 农业有害生物的防治技术与策略[J]. 植物保护, 2010(11): 27−28

    LIU Y H. Control technology and strategy of agricultural pests[J]. Plant Protection, 2010(11): 27−28
    [17]
    陈志怡, 李金月. 新型高效环保型肥料综述[J]. 现代农业科技, 2013, 24: 260

    CHEN Z Y, LI J Y. Review on new high-efficiency and environmental protection fertilizer[J]. Modern Agricultural Science and Technology, 2013, 24: 260
    [18]
    潘殿莲, 姜永竹, 李凌燕. 探究测土配方施肥与有机肥的合理运用[J]. 农业开发与装备, 2021(4): 126−127

    PAN D L, JIANG Y Z, LI L Y. To explore the rational application of soil testing, formula fertilization and organic fertilizer [J]. Agricultural development and equipment, 2021(4): 126−127
    [19]
    徐奕, 梁学峰, 赵立杰, 等. 生物碳的特性及其在农业上的应用研究进展[J]. 山东化工, 2016, 45(20): 81−85 doi: 10.3969/j.issn.1008-021X.2016.20.031

    XU Y, LIANG X F, ZHAO L J, et al. Current research advances of biochar characteristics and it’ s application in agriculture[J]. Shandong Chemical Industry, 2016, 45(20): 81−85 doi: 10.3969/j.issn.1008-021X.2016.20.031
    [20]
    张学智, 王继岩, 张藤丽, 等. 中国农业系统甲烷排放量评估及低碳措施[J]. 环境科学与技术, 2021, 44(3): 200−208

    ZHANG X Z, WANG J Y, ZHANG T L, et al. Assessment of methane emissions from China’ s agricultural system and low carbon measures[J]. Environmental Science & Technology, 2021, 44(3): 200−208
    [21]
    SONG Y Y, YE M, LI C Y, et al. Hijacking common mycorrhizal networks for herbivore-induced defense signal transfer between tomato plants[J]. Scientific Reports, 2013, 4: 3915 doi: 10.1038/srep03915
    [22]
    LI M H, GUO J J, REN T, et al. Crop rotation history constrains soil biodiversity and multifunctionality relationships[J]. Agriculture, Ecosystem and Environment, 2021, 319: 107540 doi: 10.1016/j.agee.2021.107540
    [23]
    洪昕. 碳纳米材料在农业环境改良中的应用进展[J]. 现代农业科技, 2019, 17: 174−175 doi: 10.3969/j.issn.1007-5739.2019.12.113

    HONG X. Application progress of carbon nanomaterials in improvement of agricultural environment[J]. Modern Agricultural Science and Technology, 2019, 17: 174−175 doi: 10.3969/j.issn.1007-5739.2019.12.113
    [24]
    虞利俊, 徐磊, 唐玉邦. 先进功能高分子材料在设施农业中的应用与前景展望[J]. 江西农业学报, 2013, 25(3): 111−114 doi: 10.3969/j.issn.1001-8581.2013.03.030

    YU L J, XU L, TANG Y B. Application and prospects of advanced functional macromolecule materials in facility agriculture[J]. Acta Agriculturae Jiangxi, 2013, 25(3): 111−114 doi: 10.3969/j.issn.1001-8581.2013.03.030
    [25]
    欧非凡, 张超群. 农业信息处理技术研究与应用进展[J]. 中国农学通报, 2021, 37(20): 113−118 doi: 10.11924/j.issn.1000-6850.casb2021-0135

    OU F F, ZHANG C Q. The research and application progress of agricultural information processing technology[J]. Chinese Agricultural Science Bulletin, 2021, 37(20): 113−118 doi: 10.11924/j.issn.1000-6850.casb2021-0135
    [26]
    骆世明. 论生态农业模式的基本类型[J]. 中国生态农业学报, 2009, 17(3): 405−409 doi: 10.3724/SP.J.1011.2009.00405

    LUO S M. Fundamental classification of eco-agricultural models[J]. Chinese Journal of Eco-Agriculture, 2009, 17(3): 405−409 doi: 10.3724/SP.J.1011.2009.00405
    [27]
    胡文娟. 碳标签是企业的下一个全球“绿色通行证”[J]. 可持续发展经济导刊, 2021(4): 24−26

    HU W J. Carbon labels are companies’ next global “green passport”[J]. Sustainable Development Economic Guide, 2021(4): 24−26
    [28]
    张雄智, 王岩, 魏辉煌, 等. 产品碳标签制度的发展现状及我国应对策略[J]. 山西农业科学, 2017, 45(10): 1714−1718 doi: 10.3969/j.issn.1002-2481.2017.10.34

    ZHANG X Z, WANG Y, WEI H H, et al. Development status of product carbon labelling system and the coping strategies in China[J]. Journal of Shanxi Agricultural Sciences, 2017, 45(10): 1714−1718 doi: 10.3969/j.issn.1002-2481.2017.10.34
    [29]
    骆世明. 论生态农业的技术体系[J]. 中国生态农业学报, 2010, 18(3): 453−457 doi: 10.3724/SP.J.1011.2010.00453

    LUO S M. On the technical package for eco-agriculture[J]. Chinese Journal of Eco-Agriculture , 2010, 18(3): 453−457 doi: 10.3724/SP.J.1011.2010.00453
    [30]
    杨长进. 碳交易市场助推乡村振兴低碳化发展的实践与路径探索[J]. 价格理论与实践, 2020(2): 18−24

    YANG C J. The practice and path exploration of carbon trading market boosting rural revitalization and low-carbon development [J]. Price Theory and Practices, 2020(2): 18−24
    [31]
    高尚宾, 李季, 乔玉辉, 等. NY/T 3667—2020 生态农场评价技术规范[S/OL]. 北京: 中华人民共和国农业农村部, 2020. https://max.book118.com/html/2020/1206/7035123000003026.shtm

    GAO S B, LI J, QIAO Y H, et al. NY/T 3667—2020 Technical Specification for Ecological Farm Evaluation[S/OL]. Ministry of Agriculture and Rural Fairs of People’s Republic of China, 2020. https://max.book118.com/html/2020/1206/7035123000003026.shtm
    [32]
    骆世明. 中国生态农业制度的构建[J]. 中国生态农业学报, 2018, 26(5): 759−770

    LUO S M. Setting up policy system for eco-agriculture in China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(5): 759−770
    [33]
    骆世明. 构建我国农业生态转型的政策法规体系[J]. 生态学报, 2015, 35(6): 2020−2027

    LUO S M. To form the policy and legal system for eco-transformation of agriculture in China[J]. Acta Ecologica Sinica, 2015, 35(6): 2020−2027
    [34]
    王松良. 协同发展生态农业与社区支持农业促进乡村振兴[J]. 中国生态农业学报(中英文), 2019, 27(2): 212−217

    WANG S L. Concerted development of ecological agriculture along with community-supported agriculture to facilitate rural vitalization[[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 212−217
    [35]
    张宁, 成春艳, 牛青华. 近十年我国社区支持农业研究进展[J]. 安徽农业科学, 2018, 46(20): 17−19, 31 doi: 10.3969/j.issn.0517-6611.2018.20.005

    ZHANG N, CHENG C Y, NIU Q H. Research progress of community support agriculture in China in recent ten years[J]. Journal of Anhui Agricultural Sciences, 2018, 46(20): 17−19, 31 doi: 10.3969/j.issn.0517-6611.2018.20.005
    [36]
    高尚宾, 徐志宇, 靳拓, 等. 乡村振兴视角下中国生态农业发展分析[J]. 中国生态农业学报(中英文), 2019, 27(2): 163−168

    GAO S B, XU Z Y, JIN T, et al. Analysis of eco-agriculture construction based on rural revitalization in China[J]. Chinese Journal of Eco-Agriculture, 2019, 27(2): 163−168
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1152) PDF downloads(219) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return