Turn off MathJax
Article Contents
WEI X H, NIE Z G. Sensitivity analysis and optimization of leaf area index related parameters of dryland wheat based on APSIM model[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−11 doi: 10.12357/cjea.20230345
Citation: WEI X H, NIE Z G. Sensitivity analysis and optimization of leaf area index related parameters of dryland wheat based on APSIM model[J]. Chinese Journal of Eco-Agriculture, 2024, 32(1): 1−11 doi: 10.12357/cjea.20230345

Sensitivity analysis and optimization of leaf area index related parameters of dryland wheat based on APSIM model

doi: 10.12357/cjea.20230345
Funds:  This study was supported by the National Natural Science Foundation of China (32160416), Gansu Provincial Education Department Industrial Support Plan Project (2021CYZC-15, 2022CYZC-41), and Gansu Agricultural University Youth Mentor Support Fund (GAU-QDFC-2022-19)
More Information
  • Corresponding author: E-mail: niezg@gsau.edu.cn
  • Received Date: 2023-06-20
  • Accepted Date: 2023-09-22
  • Rev Recd Date: 2023-09-06
  • Available Online: 2023-09-22
  • Crop growth model parameterization is characterized by a large number of parameters and the low efficiency of parameterization. To determine the rate of crop model parameters quickly and efficiently, the promotion of rapid application of crop models in localization is required. In this study, we used a combination of sensitivity analysis and intelligent optimization algorithm to adjust the parameters of the crop model. We used the experimental data (leaf area index) of dryland wheat in large fields in Mazichuan Village, Lijiabao Town from 2002 to 2004, and Anjiagou Village, Fengxiang Town from 2015 to 2017 in Anding District, Dingxi City, Gansu Province as references. Using the extended Fourier amplitude sensitivity test method, a sensitivity analysis of 23 parameters of the APSIM-Wheat dryland wheat leaf growth sub-model was performed using SimLab software, and the sensitivity coefficients of each parameter to the model results were obtained. On this basis, the parameters with a larger first-order sensitivity index and global sensitivity index were selected as the optimization parameters, and R programming was used to construct the algorithmic fitness function, implement the particle swarm optimization algorithm, and run the APSIM-Wheat model to optimize the parameters automatically. We performed this to ensure fast and effective determination of the model parameters. The results showed that :1) the six parameters most sensitive to the leaf growth model of dryland wheat were, in descending order, maximum specific leaf area at a leaf area index of 0, nitrogen limiting factors in leaf growth, accumulated temperature from seedling to jointing, extinction coefficient, accumulated temperature from jointing to flowering, and transpiration efficiency coefficient; 2) optimization of the parameters in the leaf growth submodel for dryland wheat resulted in a maximum specific at a leaf area index of 0 was 26 652 mm2∙g−1 , a nitrogen limiting factor in leaf growth was 0.96, an accumulated temperature from seedling to jointing was 382 ℃·d, an extinction coefficient was 0.44, an accumulated temperature from jointing to flowering was 542 ℃·d, and a transpiration efficiency coefficient was 0.0056; 3) after the optimization of the aforementioned parameters, the mean value of the root mean square error between the measured and simulated values of the leaf area index decreased from 0.080 to 0.042. The mean value of the normalized root mean square error decreased from 11.54% to 6.11%, and the mean value of the model validity index increased from 0.962 to 0.988, indicating that the simulation of the leaf area index was better after the optimization. When compared with the traditional manual trial-and-error method, this method avoids the uncertainty of the optimization parameters, quickly and efficiently identifies the important parameters of the model, realizes automatic parameter rate fixing, improves the efficiency of model parameter rate fixing, alleviates the problem of many parameters and low efficiency in the process of model rate fixing, and finally, enables the model to be applied locally faster so that it can better guide the agricultural production. The methodology of this study is also instructive for the parameter tuning optimization of other crop modules in the APSIM-Wheat model.
  • loading
  • [1]
    TANTALAKI N, SOURAVLAS S, ROUMELIOTIS M. Data-driven decision making in precision agriculture: the rise of big data in agricultural systems[J]. Journal of Agricultural & Food Information, 2019, 20(4): 344−380
    [2]
    姜志伟, 陈仲新, 周清波, 等. CERES-Wheat作物模型参数全局敏感性分析[J]. 农业工程学报, 2011, 27(1): 236−242 doi: 10.3969/j.issn.1002-6819.2011.01.038

    JIANG Z W, CHEN Z X, ZHOU Q B, et al. Global sensitivity analysis of CERES-Wheat model parameters[J]. Transactions of the Chinese Society of Agricultural Engineering, 2011, 27(1): 236−242 doi: 10.3969/j.issn.1002-6819.2011.01.038
    [3]
    AHUJA L, MA L W. Parameterization of agricultural system models[M]//AHUJA L R, MA L W, HOWELL T A. Agricultural System Models in Field Research and Technology Transfer. Boca Raton: CRC Press, 2002
    [4]
    THORP K R, BATCHELOR W D, PAZ J O, et al. Using cross-validation to evaluate CERES-Maize yield simulations within a decision support system for precision agriculture[J]. Transactions of the ASABE, 2007, 50(4): 1467−1479 doi: 10.13031/2013.23605
    [5]
    DAI C N, YAO M, XIE Z J, et al. Parameter optimization for growth model of greenhouse crop using genetic algorithms[J]. Applied Soft Computing, 2009, 9(1): 13−19 doi: 10.1016/j.asoc.2008.02.002
    [6]
    崔金涛, 丁继辉, YESILEKIN N, 等. 基于EFAST的CERES-Wheat模型土壤参数敏感性分析[J]. 农业机械学报, 2020, 51(12): 276−283 doi: 10.6041/j.issn.1000-1298.2020.12.030

    CUI J T, DING J H, YESILEKIN N, et al. Sensitivity analysis of soil input parameters of CERES-Wheat model based on EFAST method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(12): 276−283 doi: 10.6041/j.issn.1000-1298.2020.12.030
    [7]
    兴安, 卓志清, 赵云泽, 等. 基于EFAST的不同生产水平下WOFOST模型参数敏感性分析[J]. 农业机械学报, 2020, 51(2): 161−171 doi: 10.6041/j.issn.1000-1298.2020.02.018

    XING A, ZHUO Z Q, ZHAO Y Z, et al. Sensitivity analysis of WOFOST model crop parameters under different production levels based on EFAST method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(2): 161−171 doi: 10.6041/j.issn.1000-1298.2020.02.018
    [8]
    VANUYTRECHT E, RAES D, WILLEMS P. Global sensitivity analysis of yield output from the water productivity model[J]. Environmental Modelling & Software, 2014, 51: 323−332
    [9]
    CÉSAR TREJO ZÚÑIGA E, LÓPEZ CRUZ I L, GARCÍA A R. Parameter estimation for crop growth model using evolutionary and bio-inspired algorithms[J]. Applied Soft Computing, 2014, 23: 474−482 doi: 10.1016/j.asoc.2014.06.023
    [10]
    SOUNDHARAJAN B, SUDHEER K P. Sensitivity analysis and auto-calibration of ORYZA2000 using simulation-optimization framework[J]. Paddy and Water Environment, 2013, 11(1): 59−71
    [11]
    房全孝. 根系水质模型中土壤与作物参数优化及其不确定性评价[J]. 农业工程学报, 2012, 28(10): 118−123 doi: 10.3969/j.issn.1002-6819.2012.10.019

    FANG Q X. Optimizing and uncertainty evaluation of soil and crop parameters in root zone water quality model[J]. Transactions of the Chinese Society of Agricultural Engineering, 2012, 28(10): 118−123 doi: 10.3969/j.issn.1002-6819.2012.10.019
    [12]
    聂志刚, 李广, 王钧, 等. 基于APSIM模型旱地小麦叶面积指数相关参数的优化[J]. 中国农业科学, 2019, 52(12): 2056−2068 doi: 10.3864/j.issn.0578-1752.2019.12.004

    NIE Z G, LI G, WANG J, et al. Parameter optimization for the simulation of leaf area index of dryland wheat with the APSIM model[J]. Scientia Agricultura Sinica, 2019, 52(12): 2056−2068 doi: 10.3864/j.issn.0578-1752.2019.12.004
    [13]
    李广, 黄高宝, William Bellotti, 等. APSIM模型在黄土丘陵沟壑区不同耕作措施中的适用性[J]. 生态学报, 2009, 29(5): 2655−2663 doi: 10.3321/j.issn:1000-0933.2009.05.056

    LI G, HUANG G B, WILLIAM B, et al. Adaptation research of APSIM model under different tillage systems in the Loess hill-gullied region[J]. Acta Ecologica Sinica, 2009, 29(5): 2655−2663 doi: 10.3321/j.issn:1000-0933.2009.05.056
    [14]
    邓晓垒, 董莉霞, 李广, 等. 西北春麦区Apsim-Wheat模型参数全局敏感性分析[J]. 麦类作物学报, 2022, 42(6): 746−754 doi: 10.7606/j.issn.1009-1041.2022.06.12

    DENG X L, DONG L X, LI G, et al. Global sensitivity analysis of Apsim-Wheat model parameters in northwest spring wheat region[J]. Journal of Triticeae Crops, 2022, 42(6): 746−754 doi: 10.7606/j.issn.1009-1041.2022.06.12
    [15]
    刘铁梅, 王燕, 邹薇, 等. 大麦叶面积指数模拟模型[J]. 应用生态学报, 2010, 21(1): 121−128 doi: 10.13287/j.1001-9332.2010.0067

    LIU T M, WANG Y, ZOU W, et al. Simulation model of barley leaf area index[J]. Chinese Journal of Applied Ecology, 2010, 21(1): 121−128 doi: 10.13287/j.1001-9332.2010.0067
    [16]
    逯玉兰, 李广, 闫丽娟, 等. 基于APSIM模型的不同氮肥方案小麦叶面积指数的模拟研究[J]. 甘肃农业大学学报, 2020, 55(3): 38−44, 53 doi: 10.13432/j.cnki.jgsau.2020.03.006

    LU Y L, LI G, YAN L J, et al. Simulating study on leaf area index of spring wheat in dryland under different nitrogen fertilization schemes based on APSIM model[J]. Journal of Gansu Agricultural University, 2020, 55(3): 38−44, 53 doi: 10.13432/j.cnki.jgsau.2020.03.006
    [17]
    ASSENG S, KEATING B A, FILLERY I R P, et al. Performance of the APSIM-wheat model in Western Australia[J]. Field Crops Research, 1998, 57(2): 163−179 doi: 10.1016/S0378-4290(97)00117-2
    [18]
    ASSENG S, VAN KEULEN H, STOL W. Performance and application of the APSIM Nwheat model in the Netherlands[J]. European Journal of Agronomy, 2000, 12(1): 37−54 doi: 10.1016/S1161-0301(99)00044-1
    [19]
    SALTELLI A, TARANTOLA S, CAMPOLONGO F, et al. Sensitivity Analysis in Practice[M]. Halsted Press: Wiley, 2004
    [20]
    DEJONGE K C, ASCOUGH J C, AHMADI M, et al. Global sensitivity and uncertainty analysis of a dynamic agroecosystem model under different irrigation treatments[J]. Ecological Modelling, 2012, 231: 113−125 doi: 10.1016/j.ecolmodel.2012.01.024
    [21]
    ZHAO G, BRYAN B A, SONG X D. Sensitivity and uncertainty analysis of the APSIM-wheat model: interactions between cultivar, environmental, and management parameters[J]. Ecological Modelling, 2014, 279: 1−11 doi: 10.1016/j.ecolmodel.2014.02.003
    [22]
    ZHENG B, CHENU K, DOHERTY A, et al. The APSIM-wheat module (7.5 R3008)[J]. Agricultural Production Systems Simulator (APSIM) Initiative, 2014, 615
    [23]
    KENNEDY J, EBERHART R. Particle swarm optimization[C]//Proceedings of ICNN'95-International Conference on Neural Networks. November 27-December 1, 1995, Perth, WA, Australia. IEEE, 2002: 1942–1948
    [24]
    丁帅伟, 席怡, 刘骞, 等. 基于粒子群算法的低渗油藏CO2驱油与封存自动优化[J]. 中国石油大学学报(自然科学版), 2022, 46(4): 109−115

    DING S W, XI Y, LIU Q, et al. An automatic optimization method of CO2 injection for enhanced oil recovery and storage in low permeability reservoirs based on particle swarm optimization algorithm[J]. Journal of China University of Petroleum (Edition of Natural Science), 2022, 46(4): 109−115
    [25]
    刘志娟, 杨晓光, 王静, 等. APSIM玉米模型在东北地区的适应性[J]. 作物学报, 2012, 38(4): 740−746

    LIU Z J, YANG X G, WANG J, et al. Adaptability of APSIM maize model in Northeast China[J]. Acta Agronomica Sinica, 2012, 38(4): 740−746
    [26]
    ZHANG X C. Calibration, refinement, and application of the WEPP model for simulating climatic impact on wheat produc-tion[J]. Transactions of the ASAE, 2004, 47(4): 1075−1085 doi: 10.13031/2013.16580
    [27]
    张宪政. 作物生理研究法[M]. 北京: 农业出版社, 1992

    ZHANG X Z. Crop Physiology Research Method[M]. Beijing: Agricultural Publishing House, 1992
    [28]
    许育彬, 沈玉芳, 李世清. CO2浓度升高和施氮对冬小麦光合面积及粒叶比的影响[J]. 中国生态农业学报, 2013, 21(9): 1049−1056 doi: 10.3724/SP.J.1011.2013.01049

    XU Y B, SHEN Y F, LI S Q. Effects of elevated CO2 and nitrogen application on photosynthetic area and gain-leaf ratio of winter wheat[J]. Chinese Journal of Eco-Agriculture, 2013, 21(9): 1049−1056 doi: 10.3724/SP.J.1011.2013.01049
    [29]
    李正鹏, 宋明丹, 冯浩. 水氮耦合下冬小麦LAI与株高的动态特征及其与产量的关系[J]. 农业工程学报, 2017, 33(4): 195−202 doi: 10.11975/j.issn.1002-6819.2017.04.027

    LI Z P, SONG M D, FENG H. Dynamic characteristics of leaf area index and plant height of winter wheat influenced by irrigation and nitrogen coupling and their relationships with yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2017, 33(4): 195−202 doi: 10.11975/j.issn.1002-6819.2017.04.027
    [30]
    许强, 王彦才, 马宏玮. 宁夏春小麦缺氮导致减产的生理机理研究[J]. 干旱地区农业研究, 1999, 17(3): 56−61 doi: 10.3321/j.issn:1000-7601.1999.03.011

    XU Q, WANG Y C, MA H W. Study on physiological mechanism of the decline in spring wheat production caused by inscofficient nitrogen in Ningxia[J]. Agricultural Reseach in the Arid Areas, 1999, 17(3): 56−61 doi: 10.3321/j.issn:1000-7601.1999.03.011
    [31]
    FRANCO A C, BUSTAMANTE M, CALDAS L S, et al. Leaf functional traits of Neotropical savanna trees in relation to seasonal water deficit[J]. Trees, 2005, 19(3): 326−335 doi: 10.1007/s00468-004-0394-z
    [32]
    胡燕美, 苏慧, 朱玉磊, 等. 花后早期增温对小麦旗叶光合和抗氧化特性及籽粒发育的影响[J]. 麦类作物学报, 2020, 40(10): 1247−1256 doi: 10.7606/j.issn.1009-1041.2020.10.12

    HU Y M, SU H, ZHU Y L, et al. Effects of early warming after anthesis on photosynthesis and anti- oxidant characteristics of flag leaf and grain development of wheat[J]. Journal of Triticeae Crops, 2020, 40(10): 1247−1256 doi: 10.7606/j.issn.1009-1041.2020.10.12
    [33]
    康定明, 王宏星, 魏琳. 不同品种不同播期冬小麦株型和消光系数K的初步研究[J]. 石河子农学院学报, 1993, 11(3): 15−21

    KANG D M, WANG H X, WEI L. A preliminary study on the relationship between varieties, seedling date and extinction coefficient (K value) of canopx leaves of winter wheat community[J]. Journal of Shihezi University (Natural Science), 1993, 11(3): 15−21
    [34]
    赵鸿, 杨启国, 邓振镛, 等. 半干旱雨养区小麦光合作用、蒸腾作用及水分利用效率特征[J]. 干旱地区农业研究, 2007, 25(1): 125−130 doi: 10.3321/j.issn:1000-7601.2007.01.026

    ZHAO H, YANG Q G, DENG Z Y, et al. Characteristics of photosynthesis, transpiration and water use efficiency of wheat leaf in semi-arid rain feed region[J]. Agricultural Research in the Arid Areas, 2007, 25(1): 125−130 doi: 10.3321/j.issn:1000-7601.2007.01.026
    [35]
    魏迪. 小麦蒸腾效率候选基因TaER及气孔发育相关基因TaEPF1-2B的优势单倍型分析[D]. 杨凌: 西北农林科技大学, 2021

    WEI D. Superior haplotypes analysis of transpiration efficiency candidate gene TaER and stomatal development related genes TaEPF1-2B in bread wheat[D]. Yangling: Northwest A & F University, 2021
    [36]
    谢松涯, 张宝忠. 基于全局敏感性分析的WOFOST模型参数优化[J]. 中国农村水利水电, 2018(12): 29−34 doi: 10.3969/j.issn.1007-2284.2018.12.006

    XIE S Y, ZHANG B Z. Optimization of WOFOST model parameters based on global sensitivity analysis[J]. China Rural Water and Hydropower, 2018(12): 29−34 doi: 10.3969/j.issn.1007-2284.2018.12.006
    [37]
    WANG J, LI X, LU L, et al. Parameter sensitivity analysis of crop growth models based on the extended Fourier Amplitude Sensitivity Test method[J]. Environmental Modelling & Software, 2013, 48: 171−182
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(4)

    Article Metrics

    Article views (165) PDF downloads(12) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return