Volume 31 Issue 12
Dec.  2023
Turn off MathJax
Article Contents
XIONG F X, ZHAO X L, GUO Z Y, ZHU S B. Research on the effects of rural land consolidation on agricultural carbon emissions: a quasi-natural experiment based on the high-standard farmland construction policy[J]. Chinese Journal of Eco-Agriculture, 2023, 31(12): 2022−2032 doi: 10.12357/cjea.20230353
Citation: XIONG F X, ZHAO X L, GUO Z Y, ZHU S B. Research on the effects of rural land consolidation on agricultural carbon emissions: a quasi-natural experiment based on the high-standard farmland construction policy[J]. Chinese Journal of Eco-Agriculture, 2023, 31(12): 2022−2032 doi: 10.12357/cjea.20230353

Research on the effects of rural land consolidation on agricultural carbon emissions: a quasi-natural experiment based on the high-standard farmland construction policy

doi: 10.12357/cjea.20230353
Funds:  This study was supported by the National Natural Science Foundation of China (71840013), Jiangxi Province Selenium-Rich Agriculture Special Project 2021 (JXFXZD-2021-02) and 2023 Graduate Student Innovation Special Fund Project, School of Economics and Management, Jiangxi Agricultural University (JG2023013).
More Information
  • Corresponding author: E-mail: shubinzhu@163.com
  • Received Date: 2023-06-27
  • Accepted Date: 2023-08-18
  • Rev Recd Date: 2023-08-26
  • Available Online: 2023-09-05
  • Publish Date: 2023-12-15
  • Under the carbon emission pattern of “carbon peak and carbon neutral”, agricultural carbon emissions, as one of the main sources of greenhouse gases, have become a key area for emission reduction. High-standard farmland construction is an important measure for promoting green, low-carbon, and high-quality agricultural development. An in-depth investigation of the effects and mechanisms of high-standard farmland construction policies on agricultural carbon emissions can provide an empirical basis for optimizing policy formulation and reducing agricultural carbon emissions. This is of great significance in promoting the development of low-carbon agriculture. Based on the theories of scale economy and division of labor, this study constructed a theoretical model of “high-standard farmland construction-agrochemical input intensity/socialized service-agricultural carbon emission”. Based on panel data from 30 provinces in China from 2007 to 2017, this study analyzed the effect and mechanism of the high-standard farmland construction policy on agricultural carbon emissions using a continuous differences-in-differences approach (DID) and mediation effect model. By measuring the agricultural carbon emissions of each province, this study found that national agricultural carbon emissions showed an inverted U-shaped trend, rising at the beginning, then declining, and peaking in 2015. Regions such as Henan, Shandong, Hebei, Jiangsu, and Anhui are at the forefront of agricultural carbon emissions nationwide, whereas regions such as Beijing, Shanghai, Tianjin, Hebei, and Shandong have higher rates of agricultural carbon emission reduction. The dynamic estimation results showed that the carbon reduction of the high-standard farmland construction policy had a lag effect, and the carbon reduction effect appeared in 2013 and continued to increase gradually. The results of the benchmark regression showed that a high-standard farmland construction policy significantly suppressed agricultural carbon emissions. On average, when all other conditions remained unchanged, implementing a high-standard farmland construction policy reduced agricultural carbon emissions significantly, i.e., by 10.1%. Robustness tests were conducted using the approach of substituting variables and considering the interference of other relevant policies. The results confirmed the positive effect of the high-standard farmland construction policy on reducing agricultural carbon emissions. The results of the mechanism analysis showed that agricultural chemical input intensity and agricultural socialized services played mediating roles in reducing agricultural carbon emissions through the construction of high-standard farmland. The construction of high-standard farmlands suppressed agricultural carbon emissions, mainly by reducing agricultural chemical input intensity and improving agricultural socialized services. Heterogeneity analysis revealed that the carbon reduction effect of the high-standard farmland construction policy mainly occurred in provinces with a high degree of land transfer and in non-food-producing areas. In contrast, it did not have a corresponding carbon reduction effect in provinces with a low degree of land transfer and in food-producing areas. Therefore, the government should strengthen the construction of high-standard farmlands and differentiate the implementation of high-standard farmland construction policies according to local conditions and classifications to give full play to the emission reduction effect. In addition, the government should pay great attention to the role of agricultural chemicalization and socialized agricultural services in carbon reduction effects.
  • loading
  • [1]
    PAN Y L, DONG F. Dynamic evolution and driving factors of new energy development: fresh evidence from China[J]. Technological Forecasting and Social Change, 2022, 176: 121475 doi: 10.1016/j.techfore.2022.121475
    [2]
    SUN J J, DONG F. Decomposition of carbon emission reduction efficiency and potential for clean energy power: evidence from 58 countries[J]. Journal of Cleaner Production, 2022, 363: 132312 doi: 10.1016/j.jclepro.2022.132312
    [3]
    原伟鹏, 孙慧, 王晶, 等. 中国城市减污降碳协同的时空演化及驱动力探析[J]. 经济地理, 2022, 42(10): 72−82

    YUAN W P, SUN H, WANG J, et al. Spatial-temporal evolution and driving forces of urban pollution and carbon reduction in China[J]. Economic Geography, 2022, 42(10): 72−82
    [4]
    许明. RCEP生效的出口贸易红利及美欧征收碳关税的应对[J]. 亚太经济, 2022(4): 54−61 doi: 10.16407/j.cnki.1000-6052.2022.04.006

    XU M. Export dividends from RCEP and the response to carbon tariffs imposed by the US and EU[J]. Asia-Pacific Economic Review, 2022(4): 54−61 doi: 10.16407/j.cnki.1000-6052.2022.04.006
    [5]
    YU B L, FANG D B, KLEIT A N, et al. Exploring the driving mechanism and the evolution of the low-carbon economy transition: lessons from OECD developed countries[J]. The World Economy, 2022, 45(9): 2766−2795 doi: 10.1111/twec.13263
    [6]
    CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198−209 doi: 10.1038/s43016-021-00225-9
    [7]
    YANG H, WANG X X, BIN P. Agriculture carbon-emission reduction and changing factors behind agricultural eco-efficiency growth in China[J]. Journal of Cleaner Production, 2022, 334: 130193 doi: 10.1016/j.jclepro.2021.130193
    [8]
    胡婉玲, 张金鑫, 王红玲. 中国农业碳排放特征及影响因素研究[J]. 统计与决策, 2020, 36(5): 56−62 doi: 10.13546/j.cnki.tjyjc.2020.05.012

    HU W L, ZHANG J X, WANG H L. Characteristics and influencing factors of agricultural carbon emission in China[J]. Statistics & Decision, 2020, 36(5): 56−62 doi: 10.13546/j.cnki.tjyjc.2020.05.012
    [9]
    田成诗, 陈雨. 中国省际农业碳排放测算及低碳化水平评价−基于衍生指标与TOPSIS法的运用[J]. 自然资源学报, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210

    TIAN C S, CHEN Y. China’s provincial agricultural carbon emissions measurement and low carbonization level evaluation: based on the application of derivative indicators and TOPSIS[J]. Journal of Natural Resources, 2021, 36(2): 395−410 doi: 10.31497/zrzyxb.20210210
    [10]
    吴昊玥, 黄瀚蛟, 何宇, 等. 中国农业碳排放效率测度、空间溢出与影响因素[J]. 中国生态农业学报(中英文), 2021, 29(10): 1762−1773

    WU H Y, HUANG H J, HE Y, et al. Measurement, spatial spillover and influencing factors of agricultural carbon emissions efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1762−1773
    [11]
    尚杰, 吉雪强, 石锐, 等. 中国农业碳排放效率空间关联网络结构及驱动因素研究[J]. 中国生态农业学报(中英文), 2022, 30(4): 543−557

    SHANG J, JI X Q, SHI R, et al. Structure and driving factors of spatial correlation network of agricultural carbon emission efficiency in China[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 543−557
    [12]
    吴昊玥, 何艳秋, 陈文宽, 等. 中国农业碳补偿率空间效应及影响因素研究−基于空间Durbin模型[J]. 农业技术经济, 2020(3): 110−123 doi: 10.13246/j.cnki.jae.2020.03.009

    WU H Y, HE Y Q, CHEN W K, et al. Spatial effect and influencing factors of China’s agricultural carbon compensation rate based on spatial durbin model[J]. Journal of Agrotechnical Economics, 2020(3): 110−123 doi: 10.13246/j.cnki.jae.2020.03.009
    [13]
    HE P P, ZHANG J B, LI W J. The role of agricultural green production technologies in improving low-carbon efficiency in China: necessary but not effective[J]. Journal of Environmental Management, 2021, 293: 112837 doi: 10.1016/j.jenvman.2021.112837
    [14]
    吉雪强, 李卓群, 张跃松. 农地流转对农业碳排放的影响及空间特性[J]. 资源科学, 2023, 45(1): 77−90

    JI X Q, LI Z Q, ZHANG Y S. Influence of rural land transfer on agricultural carbon emissions and its spatial characteristics[J]. Resources Science, 2023, 45(1): 77−90
    [15]
    WANG R R, ZHANG Y, ZOU C M. How does agricultural specialization affect carbon emissions in China?[J]. Journal of Cleaner Production, 2022, 370: 133463 doi: 10.1016/j.jclepro.2022.133463
    [16]
    LI J K, GAO M, LUO E G, et al. Does rural energy poverty alleviation really reduce agricultural carbon emissions? The case of China[J]. Energy Economics, 2023, 119: 106576 doi: 10.1016/j.eneco.2023.106576
    [17]
    谢会强, 吴晓迪. 城乡融合对中国农业碳排放效率的影响及其机制[J]. 资源科学, 2023, 45(1): 48−61

    XIE H Q, WU X D. Impact and its mechanism of urban-rural integration on the efficiency of agricultural carbon emissions in China[J]. Resources Science, 2023, 45(1): 48−61
    [18]
    ZHANG L, PANG J X, CHEN X P, et al. Carbon emissions, energy consumption and economic growth: evidence from the agricultural sector of China’s main grain-producing areas[J]. Science of the Total Environment, 2019, 665: 1017−1025 doi: 10.1016/j.scitotenv.2019.02.162
    [19]
    ZHANG Z, TIAN Y, CHEN Y H. Can agricultural credit subsidies affect county-level carbon intensity in China?[J]. Sustainable Production and Consumption, 2023, 38: 80−89 doi: 10.1016/j.spc.2023.03.028
    [20]
    DU Y Y, LIU H B, HUANG H, et al. The carbon emission reduction effect of agricultural policy— Evidence from China[J]. Journal of Cleaner Production, 2023, 406: 137005 doi: 10.1016/j.jclepro.2023.137005
    [21]
    张壮, 田云, 陈池波. 政策性农业保险能引导农业碳减排吗?[J]. 湖南农业大学学报(社会科学版), 2023, 24(2): 29−38 doi: 10.13331/j.cnki.jhau(ss).2023.02.004

    ZHANG Z, TIAN Y, CHEN C B. Can policy-supported agricultural insurance guide agricultural carbon emission reduction?[J]. Journal of Hunan Agricultural University (Social Sciences), 2023, 24(2): 29−38 doi: 10.13331/j.cnki.jhau(ss).2023.02.004
    [22]
    梁志会, 张露, 张俊飚. 土地整治与化肥减量−来自中国高标准基本农田建设政策的准自然实验证据[J]. 中国农村经济, 2021(4): 123−144

    LIANG Z H, ZHANG L, ZHANG J B. Land consolidation and fertilizer reduction: quasi-natural experimental evidence from China’s well-facilitated capital farmland construction[J]. Chinese Rural Economy, 2021(4): 123−144
    [23]
    金书秦, 林煜, 牛坤玉. 以低碳带动农业绿色转型: 中国农业碳排放特征及其减排路径[J]. 改革, 2021(5): 29−37

    JIN S Q, LIN Y, NIU K Y. Driving green transformation of agriculture with low carbon: characteristics of agricultural carbon emissions and its emission reduction path in China[J]. Reform, 2021(5): 29−37
    [24]
    郑庆宇, 尚旭东, 王煜. 耕地保护何以难: 目标、实践及对策−来自西部粮食主产区的观察[J]. 经济学家, 2023(4): 98−107

    ZHENG Q Y, SHANG X D, WANG Y. Why is it difficult to protect arable land: objectives, problems and countermeasures —Observation from the main grain-producing areas in the West[J]. Economist, 2023(4): 98−107
    [25]
    姜棪峰, 龙花楼, 唐郁婷. 土地整治与乡村振兴−土地利用多功能性视角[J]. 地理科学进展, 2021, 40(3): 487−497 doi: 10.18306/dlkxjz.2021.03.012

    JIANG Y F, LONG H L, TANG Y T. Land consolidation and rural vitalization: a perspective of land use multifunctionality[J]. Progress in Geography, 2021, 40(3): 487−497 doi: 10.18306/dlkxjz.2021.03.012
    [26]
    ZHONG L N, WANG J, ZHANG X, et al. Effects of agricultural land consolidation on ecosystem services: trade-offs and synergies[J]. Journal of Cleaner Production, 2020, 264: 121412 doi: 10.1016/j.jclepro.2020.121412
    [27]
    刘春芳, 刘立程, 何瑞东. 黄土丘陵区高标准农田建设的生态系统服务响应研究[J]. 中国人口·资源与环境, 2018, 28(12): 124−130

    LIU C F, LIU L C, HE R D. Ecosystem services response of well-facilitated farmland construction project in Loess Hilly Region[J]. China Population, Resources and Environment, 2018, 28(12): 124−130
    [28]
    ZHONG L N, WANG J, ZHANG X, et al. Effects of agricultural land consolidation on soil conservation service in the Hilly Region of Southeast China — Implications for land management[J]. Land Use Policy, 2020, 95: 104637 doi: 10.1016/j.landusepol.2020.104637
    [29]
    张天恩, 李子杰, 费坤, 等. 高标准农田建设对耕地质量的影响及灌排指标的贡献[J]. 农业资源与环境学报, 2022, 39(5): 978−989 doi: 10.13254/j.jare.2021.0332

    ZHANG T E, LI Z J, FEI K, et al. Effects of high-standard farmland construction on farmland quality and contribution of irrigation and drainage index[J]. Journal of Agricultural Resources and Environment, 2022, 39(5): 978−989 doi: 10.13254/j.jare.2021.0332
    [30]
    陈江华, 洪炜杰. 高标准农田建设促进了农地流转吗?[J]. 中南财经政法大学学报, 2022(4): 108−117

    CHEN J H, HONG W J. Does the construction of high standard farmland promote the transfer of farmland?[J]. Journal of Zhongnan University of Economics and Law, 2022(4): 108−117
    [31]
    祝伟, 王瑞梅. 经营规模、土地转入与化肥减量增效−基于全国4745个农户的调查数据[J]. 四川农业大学学报, 2023, 41(2): 372−379 doi: 10.16036/j.issn.1000-2650.202211195

    ZHU W, WANG R M. Farm size, land transfer and fertilizer reduction and efficiency: based on a survey data of 4745 rural households in China[J]. Journal of Sichuan Agricultural University, 2023, 41(2): 372−379 doi: 10.16036/j.issn.1000-2650.202211195
    [32]
    孙学涛. 高标准农田建设对农业社会化服务的影响[J]. 中南财经政法大学学报, 2023(3): 150−160 doi: 10.19639/j.cnki.issn1003-5230.2023.0028

    SUN X T. Impact of the construction of high standard farmland on agricultural socialization services[J]. Journal of Zhongnan University of Economics and Law, 2023(3): 150−160 doi: 10.19639/j.cnki.issn1003-5230.2023.0028
    [33]
    张志新, 周亚楠, 丁鑫. 高标准农田建设政策对农业绿色发展的影响研究[J]. 农林经济管理学报, 2023, 22(1): 113−122 doi: 10.16195/j.cnki.cn36-1328/f.2023.01.13

    ZHANG Z X, ZHOU Y N, DING X. Impact of well-facilitated capital farmland construction programs on green agricultural development[J]. Journal of Agro-Forestry Economics and Management, 2023, 22(1): 113−122 doi: 10.16195/j.cnki.cn36-1328/f.2023.01.13
    [34]
    颜光耀, 陈卫洪, 钱海慧. 农业技术效率对农业碳排放的影响−基于空间溢出效应与门槛效应分析[J]. 中国生态农业学报(中英文), 2023, 31(2): 226−240

    YAN G Y, CHEN W H, QIAN H H. Effects of agricultural technical efficiency on agricultural carbon emission: based on spatial spillover effect and threshold effect analysis[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 226−240
    [35]
    钱龙, 刘聪, 郑淋议, 等. 高标准农田建设如何影响农地流转[J]. 中国土地科学, 2023, 37(2): 62−70

    QIAN L, LIU C, ZHENG L Y, et al. How does high-standard farmland construction affect farmland transfer[J]. China Land Science, 2023, 37(2): 62−70
    [36]
    陈宇斌, 王森. 农业综合开发投资的农业碳减排效果评估−基于高标准基本农田建设政策的事件分析[J]. 农业技术经济, 2023(06): 67−80 doi: 10.13246/j.cnki.jae.20220301.001

    CHEN Y B, WANG S. Evaluation of agricultural carbon emission reduction effect of agricultural comprehensive development investment: event analysis based on high-standard farmland construction[J]. Journal of Agrotechnical Economics, 2023(06): 67−80 doi: 10.13246/j.cnki.jae.20220301.001
  • 附表1 区域土地流转水平和农业功能区分区.docx
    附表2 2007—2017年各地区农业碳排放情况.docx
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(7)

    Article Metrics

    Article views (170) PDF downloads(45) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return