Turn off MathJax
Article Contents
CAO M Y, ZHANG Y, YAN B B, WAN X F, SUN K, KANG C Z, WANG H Y, LYU C G, ZHANG Y, GUO L P. Reasons for promoting rhizosphere nutrient absorption and utilization of Atractylodes lancea by intercropping with maize[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20230361
Citation: CAO M Y, ZHANG Y, YAN B B, WAN X F, SUN K, KANG C Z, WANG H Y, LYU C G, ZHANG Y, GUO L P. Reasons for promoting rhizosphere nutrient absorption and utilization of Atractylodes lancea by intercropping with maize[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−12 doi: 10.12357/cjea.20230361

Reasons for promoting rhizosphere nutrient absorption and utilization of Atractylodes lancea by intercropping with maize

doi: 10.12357/cjea.20230361
Funds:  This study was supported by the National Natural Science Foundation of China (81891014) and China Agriculture Research System of MOF and MARA (CARS-21).
More Information
  • Corresponding author: ZHANG Yan, E-mail: zhangyan8669@126.com; GUO Lanping, E-mail: glp01@126.com
  • Received Date: 2023-06-30
  • Accepted Date: 2023-11-15
  • Available Online: 2023-12-01
  • Previous studies have found that intercropping with maize can alleviate the continuous cropping obstacle of Atractylodes lancea, and the change of nutrient conditions is one of the key factors. In order to explore the effect of A. lancea-maize intercropping on nutrient absorption and utilization in the rhizosphere of A. lancea, a two-year field experiment of different rhizosphere separation treatments in the A. lancea-maize intercropping was carried out. Four treatments were set up, which were A. lancea monoculture (A), A. lancea-maize intercropping without separation (AI), A. lancea-maize intercropping with nylon separation (AN) and A. lancea-maize intercropping with plastic film (AP). The biomass of A. lancea and the contents of four volatile oil components were measured at harvest. The contents of nitrogen, phosphorus and potassium in the rhizome of A. lancea, rhizosphere soil pH, organic matter and soil nutrient factors were compared and analyzed. The results showed that the fresh weight of rhizomes of A. lancea of AI treatment was significantly higher than those of A and AP treatments (P<0.05), which was 21.5% and 69.1% higher, respectively; while AN treatment was 10.7% and 54.2% higher than AI and AP, respectively. The content of β-eudesmol of AI treatment was significantly higher than that of A and AP treatments by 128.4% and 205.6%, respectively (P<0.05). The content of atractylodin of AI treatment was significantly higher than that in A and AP treatments by 875.0% and 97.7%, respectively; and that of AN treatment was significantly higher than that of A and AP treatments by 764.0% and 75.0%, respectively. The total content of four volatile oil components A. lancea of AI and AN treatment was significantly higher than that of A and AP treatments by 82.8%−210.3% (P<0.05), indicating that the underground rhizosphere interaction of A. lancea-maize intercropping played an important role in promoting the biomass and volatile oil accumulation of A. lancea rhizome. Compared with A and AP treatments, AI and AN treatments decreased the rhizosphere soil pH of A. lancea by 0.4%−6.3%, and the soil organic matter increased by 13.5%−48.1%; while AI treatment significantly increased alkali-hydrolyzable nitrogen content by 32.8% and 36.2%, respectively; AN treatment significantly increased available potassium content by 51.5% and 46.7%, available phosphorus content by 78.3% and 86.6%, respectively. It shows that the rhizosphere interaction of A. lancea and maize improve the rhizosphere acidification level of A. lancea and activate soil nitrogen, phosphorus and potassium compared with no rhizosphere interaction. Correlation analysis showed that atractylon was mainly positively correlated with nitrogen, phosphorus and potassium in rhizome of A. lancea; and nitrogen, phosphorus and potassium in rhizosphere soil; while atractylodin was mainly positively correlated with potassium in rhizome. Compared with A and AP treatments, AI treatment increased the phosphorus absorption efficiency of A. lancea by 23.4% and 30.0%, respectively. The nitrogen and potassium utilization efficiency was significantly increased by 131.3%−222.2% (P<0.05)under AI and AN treatments compared with A, indicating that the rhizosphere interaction of intercropping crops promote the phosphorus absorption, and improve the nitrogen and potassium nutrient utilization ability of A. lancea. In conclusion, in the A. lancea-maize intercropping system, the underground rhizosphere interaction (under AI and AN treatment) promoted the absorption and utilization of nutrients in the rhizomes of A. lancea compared with no rhizosphere interaction (under A and AP treatment), thereby increasing the yield of A. lancea and affecting the accumulation of volatile oil in the rhizomes of A. lancea. This study reveals that the underground rhizosphere interaction of A. lancea-maize intercropping is an important factor to promote the absorption and utilization of nutrients of A. lancea, and provides an important reference for the promotion of the ecological diversity planting mode of medicinal plants.
  • loading
  • [1]
    唐明明, 董楠, 包兴国, 等. 西北地区不同间套作模式养分吸收利用及其对产量优势的影响[J]. 中国农业大学学报, 2015, 20(5): 48−56

    TANG M M, DONG N, BAO X G, et al. Effects of nutrient uptake and utilization on yield of intercropping systems in Northwest China[J]. Journal of China Agricultural University, 2015, 20(5): 48−56
    [2]
    苏本营, 陈圣宾, 李永庚, 等. 间套作种植提升农田生态系统服务功能[J]. 生态学报, 2013, 33(14): 4505−4514 doi: 10.5846/stxb201204200574

    SU B Y, CHEN S B, LI Y G, et al. Intercropping enhances the farmland ecosystem services[J]. Acta Ecologica Sinica, 2013, 33(14): 4505−4514 doi: 10.5846/stxb201204200574
    [3]
    邓小燕. 玉米—大豆和玉米—甘薯套作模式下玉米磷素吸收利用特性研究[D]. 雅安: 四川农业大学, 2014

    DENG X Y. Study on phosphorus uptake and utilization of maize in maize-soybean and maize-sweet potato relay strip intercropping systems[D]. Ya’an: Sichuan Agricultural University, 2014
    [4]
    李隆, 李淑敏, 孙建好, 等. 多样性增加生产力的一种机制−蚕豆和玉米间套作对根际磷吸收的促进[J]. 中国基础科学, 2007, 9(4): 22,65

    LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. China Basic Science, 2007, 9(4): 22,65
    [5]
    黄武艺. 甘蔗间套种模式成绩斐然[J]. 农家之友, 2009(6): 14−16

    HUANG W Y. The intercropping model of sugarcane has made great achievements[J]. Friends of the Farm, 2009(6): 14−16
    [6]
    DUAN Y, SHANG X W, LIU G D, et al. The effects of tea plants-soybean intercropping on the secondary metabolites of tea plants by metabolomics analysis[J]. BMC Plant Biology, 2021, 21(1): 482 doi: 10.1186/s12870-021-03258-1
    [7]
    GITARI H I, KARANJA N N, GACHENE C K K, et al. Nitrogen and phosphorous uptake by potato (Solanum tuberosum L.) and their use efficiency under potato-legume intercropping systems[J]. Field Crops Research, 2018, 222: 78−84 doi: 10.1016/j.fcr.2018.03.019
    [8]
    李恩慧, 王玉慧, 杨慎骄, 等. 小麦间套作苜蓿对土壤养分及作物养分吸收效率的影响[J]. 中国草地学报, 2020, 42(5): 110−117 doi: 10.16742/j.zgcdxb.20190291

    LI E H, WANG Y H, YANG S J, et al. Effects of wheat-alfalfa intercropping system on soil nutrients and plant nutrient absorption efficiency[J]. Chinese Journal of Grassland, 2020, 42(5): 110−117 doi: 10.16742/j.zgcdxb.20190291
    [9]
    LI L, LI S M, SUN J H, et al. Diversity enhances agricultural productivity via rhizosphere phosphorus facilitation on phosphorus-deficient soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(27): 11192−11196
    [10]
    YU R P, YANG H, XING Y, et al. Belowground processes and sustainability in agroecosystems with intercropping[J]. Plant and Soil, 2022, 476(1): 263−288
    [11]
    钱韩玲, 朱启林, 周龙, 等. 间作促进作物磷吸收的氮素调控效应[J]. 农业资源与环境学报, 2019, 36(4): 471−479 doi: 10.13254/j.jare.2018.0108

    QIAN H L, ZHU Q L, ZHOU L, et al. Regulation effect of nitrogen application on promotion of phosphorus uptake of crops under intercropping[J]. Journal of Agricultural Resources and Environment, 2019, 36(4): 471−479 doi: 10.13254/j.jare.2018.0108
    [12]
    SALEHI A, MEHDI B, FALLAH S, et al. Productivity and nutrient use efficiency with integrated fertilization of buckwheat-fenugreek intercrops[J]. Nutrient Cycling in Agroecosystems, 2018, 110(3): 407−425 doi: 10.1007/s10705-018-9906-x
    [13]
    LU W T, SHEN X F, CHEN Y. Effects of intercropping peanut on soil nutrient status and microbial activity within young Camellia oleifera plantation[J]. Communications in Soil Science and Plant Analysis, 2019, 50(10): 1232−1238 doi: 10.1080/00103624.2019.1614600
    [14]
    YU M, WANG X C, LING F, et al. Atractylodes lancea volatile oils attenuated helicobacter pylori NCTC11637 growth and biofilm[J]. Microbial Pathogenesis, 2019, 135: 103641 doi: 10.1016/j.micpath.2019.103641
    [15]
    BAILLY C. Atractylenolides, essential components of Atractylodes-based traditional herbal medicines: Antioxidant, anti-inflammatory and anticancer properties[J]. European Journal of Pharmacology, 2021, 891: 173735 doi: 10.1016/j.ejphar.2020.173735
    [16]
    XU K, JIANG J S, FENG Z M, et al. Bioactive sesquiterpenoid and polyacetylene glycosides from Atractylodes lancea[J]. Journal of Natural Products, 2016, 79(6): 1567−1575 doi: 10.1021/acs.jnatprod.6b00066
    [17]
    杨东方, 姚雪峰, 蔡翠芳, 等. 苍术组织培养与栽培技术研究进展[J]. 山西中医, 2012, 28(4): 52−54

    YANG D F, YAO X F, CAI C F, et al. Advances in tissue culture and cultivation techniques of Atractylodes lancea[J]. Shanxi Journal of Traditional Chinese Medicine, 2012, 28(4): 52−54
    [18]
    郭兰萍, 黄璐琦, 胡娟, 等. 基于生物信息分析的苍术挥发油成分变异及其化学型的划分[J]. 资源科学, 2008, 30(5): 770−777

    GUO L P, HUANG L Q, HU J, et al. Variation rules and chemotype classification of Atractylodes lancea essential oil based on bio-information science[J]. Resources Science, 2008, 30(5): 770−777
    [19]
    黄璐. 怀地黄连作障碍及块根发育受阻机理研究[D]. 新乡: 河南师范大学, 2019

    HUANG L. Study on the mechanism of continuous cropping obstacles and blocked root development in Rehmannia glutinosa [D]. Xinxiang: Henan Normal University, 2019
    [20]
    王文庆. 平遥长山药连作障碍机理研究及其防治对策[D]. 太原: 山西大学, 2011

    WANG W Q. The Mechanisms research and countermeasures of continuous cropping barriers of Pingyao Chinese yam[D]. Taiyuan: Shanxi University, 2011
    [21]
    侯慧芝, 张绪成, 汤瑛芳, 等. 半干旱区全膜覆盖垄沟种植马铃薯/蚕豆间作的产量和水分效应[J]. 草业学报, 2016, 25(6): 71−80

    HOU H Z, ZHANG X C, TANG Y F, et al. Effects of potato-faba bean intercropping on crop productivity and soil water under a plastic mulch and ridge-furrow planting system in a semiarid area[J]. Acta Prataculturae Sinica, 2016, 25(6): 71−80
    [22]
    杨坚群. 玉米花生间作对缓解花生连作障碍的作用机理研究[D]. 泰安: 山东农业大学, 2019

    YANG J Q. Mechanism of maize and peanut intercropping on alleviating peanut continuous cropping[D]. Tai’an: Shandong Agricultural University, 2019
    [23]
    PENG Z, GUO X Z, XIANG Z X, et al. Maize intercropping enriches plant growth-promoting rhizobacteria and promotes both the growth and volatile oil concentration of Atractylodes lancea[J]. Frontiers in Plant Science, 2022, 13: 1029722 doi: 10.3389/fpls.2022.1029722
    [24]
    储成才, 王毅, 王二涛. 植物氮磷钾养分高效利用研究现状与展望[J]. 中国科学:生命科学, 2021, 51(10): 1415−1423 doi: 10.1360/SSV-2021-0163

    CHU C C, WANG Y, WANG E T. Improving the utilization efficiency of nitrogen, phosphorus and potassium: current situation and future perspectives[J]. Scientia Sinica (Vitae), 2021, 51(10): 1415−1423 doi: 10.1360/SSV-2021-0163
    [25]
    赵鑫, 蔡慢弟, 董倩倩, 等. 中低品位磷矿资源高效利用机制与途径研究进展[J]. 植物营养与肥料学报, 2018, 24(4): 1121−1130 doi: 10.11674/zwyf.17418

    ZHAO X, CAI M D, DONG Q Q, et al. Advances of mechanisms and technology pathway of efficient utilization of medium-low grade phosphate rock resources[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 1121−1130 doi: 10.11674/zwyf.17418
    [26]
    臧祎娜, 张德闪, 李海港, 等. 褪黑素调控根系生长和根际互作的机制研究进展[J]. 植物营养与肥料学报, 2019, 25(4): 671−682

    ZANG Y N, ZHANG D S, LI H G, et al. Progress in mechanism of melatonin regulation of root growth and rhizosphere interactions[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(4): 671−682
    [27]
    李强, 姚霞, 孙楷, 等. 不同光质对茅苍术生长、抗氧化酶活性及挥发油含量的影响[J]. 中国实验方剂学杂志, 2018, 24(10): 27−32

    LI Q, YAO X, SUN K, et al. Effect of different light quality on growth, anti-oxidative enzyme activities and volatile oil content of Atractylodes lancea[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2018, 24(10): 27−32
    [28]
    中华人民共和国农业部. 植物中氮、磷、钾的测定: NY/T 2017—2011[S]. 北京: 中国农业出版社, 2011

    Ministry of Agriculture of People’s Republic of China. NY/T 2017—2011 Determination of Nitrogen, Phosphorus and Potassium in Plants[S]. Beijing: China Agriculture Press, 2011
    [29]
    全国农业技术推广服务中心. 土壤分析技术规范[M]. 2版. 北京: 中国农业出版社, 2006: 13–84

    National Agricultural Technology Extension Service Center. Technical Specification for Soil Analysis[M]. 2nd Edition. Beijing: China Agriculture Press, 2006: 13–84
    [30]
    全国农业技术推广服务中心, 中国农业科学院农业资源与农业区划研究所, 华中农业大学. NY/T 1121.6—2006 土壤检测第 6 部分: 土壤有机质的测定[S]. 北京: 农业行业标准, 2006.

    National Agricultural Technology Extension Service Center, Institute of Agricultural Resources and Agricultural Regionalization of Chinese Academy of Agricultural Sciences, Huazhong Agricultural University. NY/T 1121.6—2006 Soil Testing Part 6: Method for Determination of Soil Organic Matter[S]. Beijing: Agricultural Industry Standards, 2006
    [31]
    中国林业科学研究院林业研究所. LY/T 1228—1999 森林土壤全氮的测定[S]. 北京: 中国林业科学研究院林业研究所, 1999

    Institute of Forestry, Chinese Academy of Forestry Sciences. LY/T 1228—1999 Determination of Total Nitrogen in Forest Soil[S]. Beijing: Institute of Forestry, Chinese Academy of Forestry Sciences, 1999
    [32]
    中国林业科学研究院林业研究所. LY/T 1232—1999 森林土壤全磷的测定[S]. 北京: 中国林业科学研究院林业研究所, 1999

    Institute of Forestry, Chinese Academy of Forestry Sciences. LY/T 1232—1999 Determination of Total Phosphorus in Forest Soil[S]. Beijing: Institute of Forestry, Chinese Academy of Forestry Sciences, 1999
    [33]
    中国林业科学研究院林业研究所. LY/T 1233—1999 森林土壤有效磷的测定[S]. 北京: 中国林业科学研究院林业研究所, 1999

    Institute of Forestry, Chinese Academy of Forestry Sciences. LY/T 1233—1999 Determination of Available Phosphorus in Forest Soil[S]. Beijing: Institute of Forestry, Chinese Academy of Forestry Sciences, 1999
    [34]
    全国农业技术推广服务中心, 中国农业大学, 杭州土壤肥料测试中心. NY/T 889—2004 土壤速效钾和缓效钾含量的测定[S]. 北京: 中国人民共和国农业部, 2005

    National Agricultural Technology Extension Service Center, China Agricultural University, Hangzhou Soil and Fertilizer Testing Center. NY/T 889—2004 Determination of Exchangeable Potassium and Non-exchangeable Potassium Content in Soil[S]. Beijing: Ministry of Agriculture of People’s Republic of China, 2005
    [35]
    XU Z, LI C J, ZHANG C C, et al. Intercropping maize and soybean increases efficiency of land and fertilizer nitrogen use: A meta-analysis[J]. Field Crops Research, 2020, 246: 107661 doi: 10.1016/j.fcr.2019.107661
    [36]
    ROOHI M, SALEEM ARIF M, GUILLAUME T, et al. Role of fertilization regime on soil carbon sequestration and crop yield in a maize-cowpea intercropping system on low fertility soils[J]. Geoderma, 2022, 428: 116152 doi: 10.1016/j.geoderma.2022.116152
    [37]
    ZHANG J, YIN B J, XIE Y H, et al. Legume-cereal intercropping improves forage yield, quality and degradability[J]. PLoS One, 2015, 10(12): e0144813 doi: 10.1371/journal.pone.0144813
    [38]
    祝蕾, 严辉, 刘培, 等. 药用植物根际微生物对其品质形成的影响及其作用机制的研究进展[J]. 中草药, 2021, 52(13): 4064−4073

    ZHU L, YAN H, LIU P, et al. Research progress on effects of rhizosphere microorganisms on quality formation of medicinal plants and their interaction mechanisms[J]. Chinese Traditional and Herbal Drugs, 2021, 52(13): 4064−4073
    [39]
    张宝华. 药用植物与根际微生物互作的研究进展[J]. 化工设计通讯, 2021, 47(5): 195−196 doi: 10.3969/j.issn.1003-6490.2021.05.092

    ZHANG B H. Research progress on the interaction between medicinal plants and rhizosphere microorganisms[J]. Chemical Engineering Design Communications, 2021, 47(5): 195−196 doi: 10.3969/j.issn.1003-6490.2021.05.092
    [40]
    郭秀芝, 彭政, 王铁霖, 等. 间套作体系下种间互作对药用植物影响的研究进展[J]. 中国中药杂志, 2020, 45(9): 2017−2022

    GUO X Z, PENG Z, WANG T L, et al. Research progress in effects of interspecific interaction on medicinal plants in intercropping system[J]. China Journal of Chinese Materia Medica, 2020, 45(9): 2017−2022
    [41]
    王琪, 王红兰, 孙辉, 等. 蚕豆间作对羌活次生代谢产物及根际土壤微生物多样性的影响[J]. 中国中药杂志, 2022, 47(10): 2597−2604 doi: 10.19540/j.cnki.cjcmm.20220117.102

    WANG Q, WANG H L, SUN H, et al. Effect of intercropping with Vicia faba on secondary metabolites and rhizosphere soil microbial diversity of Notopterygium incisum[J]. China Journal of Chinese Materia Medica, 2022, 47(10): 2597−2604 doi: 10.19540/j.cnki.cjcmm.20220117.102
    [42]
    LI B, LI Y Y, WU H M, et al. Root exudates drive interspecific facilitation by enhancing nodulation and N2 fixation[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(23): 6496−6501
    [43]
    MOHAMMADZADEH V, REZAEI-CHIYANEH E, MAHDAVIKIA H, et al. Effect of intercropping and bio-fertilizer application on the nutrient uptake and productivity of mung bean and marjoram[J]. Land, 2022, 11(10): 1825 doi: 10.3390/land11101825
    [44]
    董艳, 董坤, 汤利, 等. 小麦蚕豆间作对蚕豆根际微生物群落功能多样性的影响及其与蚕豆枯萎病发生的关系[J]. 生态学报, 2013, 33(23): 7445-7454

    DONG Y, DONG K, TANG L, et al. Relationship between rhizosphere microbial community functional diversity and faba bean fusarium wilt occurrence in wheat and faba bean intercropping system[J]. Acta Ecologica Sinica, 2013, 33(23): 7445-7454
    [45]
    于洪杰. 施磷与间作对番茄和分蘖洋葱根系分布与磷吸收的影响[D]. 哈尔滨: 东北农业大学, 2016

    YU H J. Effect of phosphate application and intercropping on tomato and tillered-onion’s root distribution and phosphorus uptake[D]. Harbin: Northeast Agricultural University, 2016
    [46]
    杨欢, 周颖, 陈平, 等. 玉米-豆科作物带状间套作对养分吸收利用及产量优势的影响[J]. 作物学报, 2022, 48(6): 1476−1487 doi: 10.3724/SP.J.1006.2022.13017

    YANG H, ZHOU Y, CHEN P, et al. Effects of nutrient uptake and utilization on yield of maize-legume strip intercropping system[J]. Acta Agronomica Sinica, 2022, 48(6): 1476−1487 doi: 10.3724/SP.J.1006.2022.13017
    [47]
    徐强, 谢宝英, 卢涛, 等. 线辣椒玉米套作的养分吸收利用及产量优势分析[J]. 园艺学报, 2010, 37(8): 1247−1256 doi: 10.16420/j.issn.0513-353x.2010.08.020

    XU Q, XIE B Y, LU T, et al. Studies on uptake and utilization of nitrogen, phosphorus and potassium and yield advantage in Capsicum/maize relay intercropping system[J]. Acta Horticulturae Sinica, 2010, 37(8): 1247−1256 doi: 10.16420/j.issn.0513-353x.2010.08.020
    [48]
    王瑞雪, 苏丽珍, 张连娅, 等. 玉米与大豆间作土壤生物学活性对磷有效性影响的定量解析[J]. 中国生态农业学报(中英文), 2022, 30(7): 1155−1163 doi: 10.12357/cjea.20210636

    WANG R X, SU L Z, ZHANG L Y, et al. Quantitative mechanism analysis of the improved P availability in red soil during maize/soybean intercropping[J]. Chinese Journal of Eco-Agriculture, 2022, 30(7): 1155−1163 doi: 10.12357/cjea.20210636
    [49]
    姜玉超. 玉米花生间作对土壤肥力特性的影响[D]. 洛阳: 河南科技大学, 2015

    JIANG Y C. Effects of maize-peanut intercropping on soil fertility characteristics[D]. Luoyang: Henan University of Science and Technology, 2015
    [50]
    ZHU S G, CHENG Z G, WANG J, et al. Soil phosphorus availability and utilization are mediated by plant facilitation via rhizosphere interactions in an intercropping system[J]. European Journal of Agronomy, 2023, 142: 126679 doi: 10.1016/j.eja.2022.126679
    [51]
    INAL A, GUNES A, ZHANG F, et al. Peanut/maize intercropping induced changes in rhizosphere and nutrient concentrations in shoots[J]. Plant Physiology and Biochemistry, 2007, 45(5): 350−356 doi: 10.1016/j.plaphy.2007.03.016
    [52]
    LI Q, CHEN J, WU L, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International journal of molecular sciences, 2018, 19(2): 622 doi: 10.3390/ijms19020622
    [53]
    WEI W, YE C, HUANG H C, et al. Appropriate nitrogen application enhances saponin synthesis and growth mediated by optimizing root nutrient uptake ability[J]. Journal of Ginseng Research, 2020, 44(4): 627−636 doi: 10.1016/j.jgr.2019.04.003
    [54]
    冯玄. 鱼腥草(Houttuynia cordata thunb)次生代谢产物与土壤特征的相关性[D]. 贵阳: 贵州师范大学, 2019

    FENG X. Secondary metabolites and rhizosphere soil characteristics of Houttuynia cordata Thunb[D]. Guiyang: Guizhou Normal University, 2019
    [55]
    王静, 王渭玲, 徐福利, 等. 氮磷钾对桔梗生长及次生代谢产物的影响[J]. 草业科学, 2012, 29(4): 586−591

    WANG J, WANG W L, XU F L, et al. Effects of nitrogen, phosphorus and potassium on the growth and secondary metabolites of Platycodon grandiflorum[J]. Pratacultural Science, 2012, 29(4): 586−591
    [56]
    张洁, 张莹, 贾小云, 等. 远志养分吸收规律及其与药效成分积累的关系[J]. 植物营养与肥料学报, 2019, 25(7): 1230−1238 doi: 10.11674/zwyf.18299

    ZHANG J, ZHANG Y, JIA X Y, et al. Nutrient uptake rules of Polygala tenuifolia and its relationship with accumulation of bioactive components[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(7): 1230−1238 doi: 10.11674/zwyf.18299
    [57]
    邢雪荣, 韩兴国, 陈灵芝. 植物养分利用效率研究综述[J]. 应用生态学报, 2000, 11(5): 785−790 doi: 10.3321/j.issn:1001-9332.2000.05.033

    XING X R, HAN X G, CHEN L Z. A review on research of plant nutrient use efficiency[J]. Chinese Journal of Applied Ecology, 2000, 11(5): 785−790 doi: 10.3321/j.issn:1001-9332.2000.05.033
    [58]
    周健民, 沈仁芳. 土壤学大辞典[M]. 北京: 科学出版社, 2013

    ZHOU J M, SHEN R F. Dictionary of Soil Science[M]. Beijing: Science Press, 2013
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(5)

    Article Metrics

    Article views (48) PDF downloads(3) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return