Turn off MathJax
Article Contents
TIAN H Y, LIU X, SU Z H. Spatial and temporal characteristics of ecological total factor productivity of grain in the Yangtze River Economic Belt[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230418
Citation: TIAN H Y, LIU X, SU Z H. Spatial and temporal characteristics of ecological total factor productivity of grain in the Yangtze River Economic Belt[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−11 doi: 10.12357/cjea.20230418

Spatial and temporal characteristics of ecological total factor productivity of grain in the Yangtze River Economic Belt

doi: 10.12357/cjea.20230418
Funds:  The study was supported by the National Social Science Foundation of China (22BMZ011).
More Information
  • Corresponding author: E-mail: lx15927206266@163.com
  • Received Date: 2023-08-01
  • Accepted Date: 2023-10-10
  • Available Online: 2023-11-25
  • Environmental problems caused by increasing agricultural non-point source pollution and agricultural carbon emissions are one of the main challenges to sustainable agricultural development. Given the importance of grain production in agriculture, promoting low-carbon and green grain production is critical for coping with agricultural environmental threats. The Yangtze River Economic Belt is the core area of grain production in China; therefore, accurately measuring the ecological total factor productivity of grain in the Yangtze River Economic Belt and systematically analyzing its temporal and spatial evolution characteristics can provide a data basis for promoting the sustainable development of agriculture in this region and realizing the goal of protecting the Yangtze River. Based on the grain production data of 110 prefecture-level cities in the Yangtze River Economic Belt from 2011 to 2020, this study first measured the agricultural carbon emissions, agricultural non-point source pollution, and ecological value of grain cultivation, then constructed a calculation model that included both desired and non-desired outputs to measure the ecological total factor productivity of grain and finally applied the super-efficient Slacks-Based Measure (SBM) model and the global Malmquist Luenberger total factor production index to calculate and analyze the ecological total factor productivity of grains in the Yangtze River Economic Belt. The results show that: 1) the ecological total factor productivity of grain in the Yangtze River Economic Belt showed an overall growth trend from 2012 to 2020, with an average annual growth rate of 0.98%. The decomposition index of the ecological total factor productivity of grain showed that the technical efficiency was 0.9998, less than 1, whereas the technical progress index was 1.0273, greater than 1. The decomposition index indicated that the growth of the ecological total factor productivity of grain in the Yangtze River Economic Belt relied mainly on technical progress rather than technical efficiency. 2) From the perspective of spatiotemporal characterization, the ecological total factor productivity of grain in all prefecture-level cities in the Yangtze River Economic Belt achieved a more obvious improvement from 2012 to 2020, indicating that the green and sustainable development of grain in this region had achieved relatively good results. In terms of the decomposition indicators of the ecological total factor productivity of grain, the technical efficiency of all prefecture-level cities did not show a clear pattern, whereas the technical progress indexes of each prefecture-level city showed a continuous improvement trend. 3) In terms of regional comparison, the ecological total factor productivity of grains in the upstream area of the Yangtze River was the highest during the study period, reaching 1.0189, followed by the midstream region (1.0111); the lowest was in the downstream region (1.0014). Nevertheless, the ecological total factor productivity of grains increased in all three regions over time. Therefore, in the process of promoting sustainable grain production in the Yangtze River Economic Belt, it is essential to attach great importance to the role of technical progress and compensate for the shortcomings of technical efficiency as soon as possible.
  • loading
  • [1]
    唐健飞, 刘剑玲. 省域农业可持续发展水平评价及其耦合协调分析−以长江经济带11省市为例[J]. 经济地理, 2022, 42(12): 179−185

    TANG J F, LIU J L. Evaluation and coupling coordination analysis of provincial agricultural sustainable development: a case of 11 provinces in the Yangtze River economic belt[J]. Economic Geography, 2022, 42(12): 179−185
    [2]
    李裕瑞, 杨乾龙, 曹智. 长江经济带农业发展的现状特征与模式转型[J]. 地理科学进展, 2015, 34(11): 1458−1469 doi: 10.18306/dlkxjz.2015.11.013

    LI Y R, YANG Q L, CAO Z. Current status and pattern transformation of agricultural development in the Yangtze River Economic Belt[J]. Progress in Geography, 2015, 34(11): 1458−1469 doi: 10.18306/dlkxjz.2015.11.013
    [3]
    虞孝感, 王合生, 朱英明. 长江经济带农业发展的态势分析[J]. 农业现代化研究, 1998, 19(5): 299−302

    YU X G, WANG H S, ZHU Y M. Situation analysis of agricultural development in Yangtze River Economic Belt[J]. Research of Agricultural Modernization, 1998, 19(5): 299−302
    [4]
    周静. 长江经济带农业绿色发展评价、区域差异分析及优化路径[J]. 农村经济, 2021(12): 99−108

    ZHOU J. Evaluation, regional difference analysis and optimization path of agricultural green development in Yangtze River Economic Belt[J]. Rural Economy, 2021(12): 99−108
    [5]
    肖琴, 周振亚, 罗其友. 新时期长江经济带农业高质量发展: 问题与对策[J]. 中国农业资源与区划, 2019, 40(12): 72−80

    XIAO Q, ZHOU Z Y, LUO Q Y. High-quality development of agriculture in the Yangtze River Economic Belt in the new era: problems and countermeasures[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2019, 40(12): 72−80
    [6]
    OSKAM A. Productivity measurement, incorporating environmental effects of agricultural production[J]. Developments in Agricultural Economics, 1991, 7(2): 186−204
    [7]
    BALL V E, FÄRE R, GROSSKOPF S, et al. Accounting for bads in the measurement of productivity growth: a cost indirect Malmquist productivity measure and it application to US agriculture[J]. Osman Zaim, 2001, 10(1): 5−8
    [8]
    NANERE M, FRASER I, QUAZI A, et al. Environmentally adjusted productivity measurement: an Australian case study[J]. Journal of Environmental Management, 2007, 85(2): 350−362 doi: 10.1016/j.jenvman.2006.10.004
    [9]
    MOGHADDASI R, POUR A A. Energy consumption and total factor productivity growth in Iranian agriculture[J]. Energy Reports, 2016, 2: 218−220 doi: 10.1016/j.egyr.2016.08.004
    [10]
    田红宇, 祝志勇. 农村劳动力转移、经营规模与粮食生产环境技术效率[J]. 华南农业大学学报(社会科学版), 2018, 17(5): 69−81

    TIAN H Y, ZHU Z Y. Rural labor migration, scale of operation and environmental technical efficiency of grain production[J]. Journal of South China Agricultural University (Social Science Edition), 2018, 17(5): 69−81
    [11]
    吴海霞, 郝含涛, 葛岩. 粮食主产区政策对农业环境全要素生产率的效应评估[J]. 资源科学, 2022, 44(2): 334−349

    WU H X, HAO H T, GE Y. Effect evaluation of the main grain producing area policy on agricultural environmental total factor productivity[J]. Resources Science, 2022, 44(2): 334−349
    [12]
    杨小娟, 陈耀, 高瑞宏. 甘肃省农业环境效率及碳排放约束下农业全要素生产率测算研究[J]. 中国农业资源与区划, 2021, 42(8): 13−20

    YANG X J, CHEN Y, GAO R H. Evaluation of agricultural environment efficiency and agricultural total factor productivity in Gansu Province under carbon emissions constraint[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2021, 42(8): 13−20
    [13]
    王聪聪, 周绩宏, 王俊芹. 中国苹果绿色全要素生产率测算与产区差异[J]. 中国农业资源与区划, 2022, 43(11): 10−19

    WANG C C, ZHOU J H, WANG J Q. Measurement of green total factor productivity and regional differences of apple in China[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2022, 43(11): 10−19
    [14]
    郭海红, 刘新民. 中国农业绿色全要素生产率的时空分异及收敛性[J]. 数量经济技术经济研究, 2021, 38(10): 65−84

    GUO H H, LIU X M. Spatial and temporal differentiation and convergence of China’s agricultural green total factor productivity[J]. The Journal of Quantitative & Technical Economics, 2021, 38(10): 65−84
    [15]
    郑云. 中国农业全要素生产率变动、区域差异及其影响因素分析[J]. 经济经纬, 2011, 28(2): 55−59

    ZHENG Y. An analysis of Chinese agricultural total factor productivity variance, regional difference and their influencing factors[J]. Economic Survey, 2011, 28(2): 55−59
    [16]
    李谷成, 范丽霞, 成刚, 等. 农业全要素生产率增长: 基于一种新的窗式DEA生产率指数的再估计[J]. 农业技术经济, 2013(5): 4−17

    LI G C, FAN L X, CHENG G, et al. Agricultural total factor productivity growth: re-estimation based on a new window DEA productivity index[J]. Journal of Agrotechnical Economics, 2013(5): 4−17
    [17]
    陈卫平. 中国农业生产率增长、技术进步与效率变化: 1990—2003年[J]. 中国农村观察, 2006(1): 18−23,38,80

    CHEN W P. Productivity growth, technical progress and efficiency change in Chinese agriculture: 1990–2003[J]. China Rural Survey, 2006(1): 18−23,38,80
    [18]
    赵文, 程杰. 中国农业全要素生产率的重新考察−对基础数据的修正和两种方法的比较[J]. 中国农村经济, 2011(10): 4−15,35

    ZHAO W, CHENG J. Re-examination of agricultural total factor productivity in China — Revision of basic data and comparison of two methods[J]. Chinese Rural Economy, 2011(10): 4−15,35
    [19]
    辛宝贵, 高菲菲. 生态文明试点有助于生态全要素生产率提升吗?[J]. 中国人口·资源与环境, 2021, 31(5): 152−162

    XIN B G, GAO F F. Is the ecological civilization pilot reform conducive to the improvement of ecological total factor productivity?[J]. China Population, Resources and Environment, 2021, 31(5): 152−162
    [20]
    杨万平, 张振亚. 黄河流域与长江经济带生态全要素生产率对比研究[J]. 管理学刊, 2020, 33(5): 26−37

    YANG W P, ZHANG Z Y. A comparative study of the ecological total factor productivities in Yellow River Basin and Yangtze River Economic Belt[J]. Journal of Management, 2020, 33(5): 26−37
    [21]
    周应恒, 杨宗之. 生态价值视角下中国省域粮食绿色全要素生产率时空特征分析[J]. 中国生态农业学报(中英文), 2021, 29(10): 1786−1799

    ZHOU Y H, YANG Z Z. Temporal and spatial characteristics of China’s provincial green total factor productivity of grains from the ecological value perspective[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1786−1799
    [22]
    李自强, 叶伟娇, 梅冬, 等. 环境规制视角下农业基础设施对粮食生态全要素生产率的影响[J]. 中国生态农业学报(中英文), 2022, 30(11): 1862−1876

    LI Z Q, YE W J, MEI D, et al. Impacts of agricultural infrastructure on ecology total factor productivity of grain from the perspective of environmental regulation[J]. Chinese Journal of Eco-Agriculture, 2022, 30(11): 1862−1876
    [23]
    JORGENSON D W, GRILICHES Z. The explanation of productivity change[J]. The Review of Economic Studies, 1967, 34(3): 249 doi: 10.2307/2296675
    [24]
    HULTEN C R, SCHWAB R M. Public capital formation and the growth of regional manufacturing industries[J]. National Tax Journal, 1991, 44(4.1): 121−134 doi: 10.1086/NTJ41788927
    [25]
    TONE K. A slacks-based measure of super-efficiency in data envelopment analysis[J]. European Journal of Operational Research, 2002, 143(1): 32−41 doi: 10.1016/S0377-2217(01)00324-1
    [26]
    OH D H. A global Malmquist-Luenberger productivity index[J]. Journal of Productivity Analysis, 2010, 34(3): 183−197 doi: 10.1007/s11123-010-0178-y
    [27]
    马文杰. 中国粮食综合生产能力研究[M]. 北京: 科学出版社, 2010

    MA W J. Study on the Overall Grain Production Capability in China[M]. Beijing: Science Press, 2010
    [28]
    COSTANZA R, D’ARGE R, DE GROOT R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253−260 doi: 10.1038/387253a0
    [29]
    谢高地, 张彩霞, 张雷明, 等. 基于单位面积价值当量因子的生态系统服务价值化方法改进[J]. 自然资源学报, 2015, 30(8): 1243−1254 doi: 10.11849/zrzyxb.2015.08.001

    XIE G D, ZHANG C X, ZHANG L M, et al. Improvement of the evaluation method for ecosystem service value based on per unit area[J]. Journal of Natural Resources, 2015, 30(8): 1243−1254 doi: 10.11849/zrzyxb.2015.08.001
    [30]
    李波, 张俊飚, 李海鹏. 中国农业碳排放时空特征及影响因素分解[J]. 中国人口·资源与环境, 2011, 21(8): 80−86

    LI B, ZHANG J B, LI H P. Research on spatial-temporal characteristics and affecting factors decomposition of agricultural carbon emission in China[J]. China Population, Resources and Environment, 2011, 21(8): 80−86
    [31]
    Dubey, A. and L.Rattan Carbon Footprint and Sustainability of Agricultural Production Systems in Punjab, India, and Ohio, USA[J]. Journal of Crop Improvement, 2009, 23(4): 332−350
    [32]
    赖斯芸, 杜鹏飞, 陈吉宁. 基于单元分析的非点源污染调查评估方法[J]. 清华大学学报(自然科学版), 2004, 44(9): 1184−1187

    LAI S Y, DU P F, CHEN J N. Evaluation of non-point source pollution based on unit analysis[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(9): 1184−1187
    [33]
    韩海彬, 张莉. 农业信息化对农业全要素生产率增长的门槛效应分析[J]. 中国农村经济, 2015(8): 11−21

    HAN H B, ZHANG L. Analysis of the threshold effect of agricultural informatization on the growth of agricultural total factor productivity[J]. China Rural Economy, 2015(8): 11−21
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(4)

    Article Metrics

    Article views (78) PDF downloads(10) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return