Turn off MathJax
Article Contents
XUE J M, XU M G, ZHANG J J. Proceedings in carbon footprint research of food systems[J]. Chinese Journal of Eco-Agriculture, 2023, 32(0): 1−10 doi: 10.12357/cjea.20230445
Citation: XUE J M, XU M G, ZHANG J J. Proceedings in carbon footprint research of food systems[J]. Chinese Journal of Eco-Agriculture, 2023, 32(0): 1−10 doi: 10.12357/cjea.20230445

Proceedings in carbon footprint research of food systems

doi: 10.12357/cjea.20230445
Funds:  This study was supported by the Science and Technology Major Special Plan Project of Shanxi Province (202101140601026), the National Key Research and Development Program of China (2021YFD1901100), and the Earmarked Fund for Modern Agro-industry Technology Research System of Shanxi Province (2023CYJSTX13).
More Information
  • Corresponding author: E-mail: zhangjianjie@yeah.net
  • Received Date: 2023-08-24
  • Accepted Date: 2023-12-04
  • Available Online: 2023-12-22
  • Carbon footprint of food systems is one of the important research fields in response to climate change, and it is also a key method to measure carbon emission in agricultural production. The study of carbon footprint of food systems is helpful to accurately understand the characteristics and rules of carbon emissions in agricultural production, and provides scientific basis for formulating strategies and realization paths towards reduction of agricultural carbon emission, which is of great significance for the achievement of green development of agriculture. In recent years, the domestic and overseas studies on the carbon footprint of farming, animal husbandry and food consumption link have continued to deepen, providing important scientific support for reduction of greenhouse gas emission and construction of more sustainable food systems. However, the research in this field is continuously progressing, and there are still many scientific problems to be solved in the future. This paper reviews the concept, research significance, main methods, current research progress at home and abroad, as well as future research difficulties and hotspots of carbon footprint. In terms of research boundary, the future carbon footprint research should be conducted from the perspective of sustainable food system and to quantify agricultural carbon footprint in the view of the whole "crop-animal husbandry-food processing-food consumption" chain, taking into account the carbon emission of rural residents' daily life. In the research object, pay attention to coordinate the relationship of multi-interest subjects, promote the overall synergy; In terms of research methods, it is suggested to consider the carbon sink function of soil and farmland ecosystem, and establish a monitoring system of carbon footprint with complete indexes and parameters. Regarding the reduction of carbon emission, attention should be paid not only to technological innovations, but also to lifestyle change and policy regulation. This study helps better understand the influence of food system on environment and climate, and provides scientific basis for the promotion of agricultural green development and policymaking on rural revitalization.
  • loading
  • [1]
    Intergovernmental Panel on Climate Change. Climate Change 2007: The Physical Scientific Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2017
    [2]
    张广斌, 马静, 徐华, 等. 中国农田非CO2温室气体减排的研究现状与建议[J]. 中国科学院院刊, 2023, 38(3): 504−517

    ZHANG G B, MA J, XU H, et al. Status quo of research and suggestions on reduction of non-CO2 greenhouse gas emission from Chinese farmland[J]. Bulletin of Chinese Academy of Sciences, 2023, 38(3): 504−517
    [3]
    金欣鹏, 柏兆海, 马林. 中国食物系统温室气体排放与吸收研究进展[J]. 中国生态农业学报(中英文), 2023, 31(2): 177−193

    JIN X P, BAI Z H, MA L. Research progress of greenhouse gas emissions and sequestration of the Chinese food system[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 177−193
    [4]
    FUJIMORI S, WU W C, DOELMAN J, et al. Land-based climate change mitigation measures can affect agricultural markets and food security[J]. Nature Food, 2022, 3(2): 110−121 doi: 10.1038/s43016-022-00464-4
    [5]
    WANG H N, YING Y S, ZHANG X Y, et al. Carbon footprint analysis for mechanization of maize production based on life cycle assessment: A case study in Jilin Province, China[J]. Sustainability, 2015, 7(11): 15772−15784 doi: 10.3390/su71115772
    [6]
    Intergovernmental Panel on Climate Change (IPCC). Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the IPCC[M]. New York: Cambridge University Press, 2006
    [7]
    张丹. 中国粮食作物碳足迹及减排对策分析[D]. 北京: 中国农业大学, 2017

    ZHANG D. Carbon footprint and low carbon strategy for grain production in China[D]. Beijing: China Agricultural University, 2017
    [8]
    董红敏, 李玉娥, 陶秀萍, 等. 中国农业源温室气体排放与减排技术对策[J]. 农业工程学报, 2008, 24(10): 269−273 doi: 10.3321/j.issn:1002-6819.2008.10.055

    DONG H M, LI Y, TAO X P, et al. China greenhouse gas emissions from agricultural activities and its mitigation strategy[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(10): 269−273 doi: 10.3321/j.issn:1002-6819.2008.10.055
    [9]
    JAISWAL B, AGRAWAL M. Carbon footprints of agriculture sector[M]//MUTHU S S. Carbon Footprints. Singapore: Springer, 2020: 81–99
    [10]
    WIEDMANN T, MINX J. A definition of ‘Carbon Footprint’[R] // PERTSOVA C C. Ecological Economics Research Trends. Hauppauge: NovaScience Publishers, 2008: 1–11
    [11]
    CLAVREUL J, BUTNAR I, RUBIO V, et al. Intra- and inter-year variability of agricultural carbon footprints — A case study on field-grown tomatoes[J]. Journal of Cleaner Production, 2017, 158: 156−164 doi: 10.1016/j.jclepro.2017.05.004
    [12]
    COSTA M P, SCHOENEBOOM J C, OLIVEIRA S A, et al. A socio-eco-efficiency analysis of integrated and non-integrated crop-livestock-forestry systems in the Brazilian Cerrado based on LCA[J]. Journal of Cleaner Production, 2018, 171: 1460−1471 doi: 10.1016/j.jclepro.2017.10.063
    [13]
    CHEN X H, XU X Z, LU Z Y, et al. Carbon footprint of a typical pomelo production region in China based on farm survey data[J]. Journal of Cleaner Production, 2020, 277: 124041 doi: 10.1016/j.jclepro.2020.124041
    [14]
    LI Q, GAO M F, LI J G. Carbon emissions inventory of farm size pig husbandry combining Manure-DNDC model and IPCC coefficient methodology[J]. Journal of Cleaner Production, 2021, 320: 128854 doi: 10.1016/j.jclepro.2021.128854
    [15]
    CRIPPA M, SOLAZZO E, GUIZZARDI D, et al. Food systems are responsible for a third of global anthropogenic GHG emissions[J]. Nature Food, 2021, 2(3): 198−209 doi: 10.1038/s43016-021-00225-9
    [16]
    赵婷. 甘肃省农业碳足迹研究[D]. 兰州: 兰州大学, 2013

    ZHAO T. Study on agricultural carbon footprint in Gansu[D]. Lanzhou: Lanzhou University, 2013
    [17]
    葛晓华, 苏旭东, 袁进, 等. 工业领域碳足迹研究进展[J]. 生态经济, 2013, 29(5): 120−125 doi: 10.3969/j.issn.1671-4407.2013.05.024

    GE X H, SU X D, YUAN J, et al. Research progress of carbon footprinting in the industry sector[J]. Ecological Economy, 2013, 29(5): 120−125 doi: 10.3969/j.issn.1671-4407.2013.05.024
    [18]
    黄跃群, 刘耀儒, 许文彬, 等. 水利水电工程全生命周期碳排放研究——以犬木塘工程为例[J]. 清华大学学报(自然科学版), 2022, 62(8): 1366−1373

    HUANG Y Q, LIU Y R, XU W B, et al. Life cycle carbon emissions of water reservoir and hydroelectric projects: A case study of the Quanmutang Project[J]. Journal of Tsinghua University (Science and Technology), 2022, 62(8): 1366−1373
    [19]
    毛国华. 基于LCA的农产品碳足迹评价及碳标签评测方法研究[D]. 太原: 太原理工大学, 2017

    MAO G H. Carbon footprint evaluation of agricultural products based on LCA and research of carbon tag evaluation method[D]. Taiyuan: Taiyuan University of Technology, 2017
    [20]
    耿涌, 董会娟, 郗凤明, 等. 应对气候变化的碳足迹研究综述[J]. 中国人口·资源与环境, 2010, 20(10): 6−12

    GENG Y, DONG H J, XI F M, et al. A review of the research on carbon footprint responding to climate change[J]. China Population, Resources and Environment, 2010, 20(10): 6−12
    [21]
    SUH S, NAKAMURA S. Five years in the area of input-output and hybrid LCA[J]. The International Journal of Life Cycle Assessment, 2007, 12(6): 351−352 doi: 10.1065/lca2007.08.358
    [22]
    LIN T, YU Y J, BAI X M, et al. Greenhouse gas emissions accounting of urban residential consumption: a household survey based approach[J]. PLoS One, 2013, 8(2): e55642 doi: 10.1371/journal.pone.0055642
    [23]
    叶红, 潘玲阳, 陈峰, 等. 城市家庭能耗直接碳排放影响因素——以厦门岛区为例[J]. 生态学报, 2010, 30(14): 3802−3811

    YE H, PAN L Y, CHEN F, et al. Direct carbon emission from urban residential energy consumption: a case study of Xiamen, China[J]. Acta Ecologica Sinica, 2010, 30(14): 3802−3811
    [24]
    秦树平, 胡春胜, 张玉铭, 等. 氮足迹研究进展[J]. 中国生态农业学报, 2011, 19(2): 462−467 doi: 10.3724/SP.J.1011.2011.00462

    QIN S P, HU C S, ZHANG Y M, et al. Advances in nitrogen footprint research[J]. Chinese Journal of Eco-Agriculture, 2011, 19(2): 462−467 doi: 10.3724/SP.J.1011.2011.00462
    [25]
    童庆蒙, 沈雪, 张露, 等. 基于生命周期评价法的碳足迹核算体系: 国际标准与实践[J]. 华中农业大学学报(社会科学版), 2018(1): 46−57,158

    TONG Q M, SHEN X, ZHANG L, et al. Standard system of accounting footprint based on life cycle assessment method: International standards and practices[J]. Journal of Huazhong Agricultural University (Social Sciences Edition), 2018(1): 46−57,158
    [26]
    ZHANG D, SHEN J B, ZHANG F S, et al. Carbon footprint of grain production in China[J]. Scientific Reports, 2017, 7: 4126 doi: 10.1038/s41598-017-04182-x
    [27]
    BURATTI C, FANTOZZI F, BARBANERA M, et al. Carbon footprint of conventional and organic beef production systems: An Italian case study[J]. Science of the Total Environment, 2017, 576: 129−137 doi: 10.1016/j.scitotenv.2016.10.075
    [28]
    ZHANG W S, HE X M, ZHANG Z D, et al. Carbon footprint assessment for irrigated and rainfed maize ( Zea mays L. ) production on the Loess Plateau of China[J]. Biosystems Engineering, 2018, 167: 75−86 doi: 10.1016/j.biosystemseng.2017.12.008
    [29]
    CHEN X W, CHEN Y, LIU X X, et al. Investigating historical dynamics and mitigation scenarios of anthropogenic greenhouse gas emissions from pig production system in China[J]. Journal of Cleaner Production, 2021, 296: 126572 doi: 10.1016/j.jclepro.2021.126572
    [30]
    王微, 林剑艺, 崔胜辉, 等. 碳足迹分析方法研究综述[J]. 环境科学与技术, 2010, 33(7): 71−78

    WANG W, LIN J Y, CUI S H, et al. An overview of carbon footprint analysis[J]. Environmental Science & Technology, 2010, 33(7): 71−78
    [31]
    SUN M X, CHEN G W, XU X B, et al. Reducing carbon footprint inequality of household consumption in rural areas: analysis from five representative provinces in China[J]. Environmental Science & Technology, 2021, 55(17): 11511−11520
    [32]
    CONNOLLY M, SHAN Y L, BRUCKNER B, et al. Urban and rural carbon footprints in developing countries[J]. Environmental Research Letters, 2022, 17(8): 084005 doi: 10.1088/1748-9326/ac7c2a
    [33]
    姜振辉, 杨旭, 刘益珍, 等. 春玉米-晚稻与早稻-晚稻种植模式碳足迹比较[J]. 生态学报, 2019, 39(21): 8091−8099

    JIANG Z H, YANG X, LIU Y Z, et al. Comparison of carbon footprint between spring maize-late rice and early rice-late rice cropping system[J]. Acta Ecologica Sinica, 2019, 39(21): 8091−8099
    [34]
    张丹, 成升魁, 高利伟, 等. 城市餐饮业食物浪费碳足迹——以北京市为例[J]. 生态学报, 2016, 36(18): 5937−5948

    ZHANG D, CHENG S K, GAO L W, et al. The carbon footprint of catering industry food waste: a Beijing case study[J]. Acta Ecologica Sinica, 2016, 36(18): 5937−5948
    [35]
    CLUNE S, CROSSIN E, VERGHESE K. Systematic review of greenhouse gas emissions for different fresh food categories[J]. Journal of Cleaner Production, 2017, 140: 766−783 doi: 10.1016/j.jclepro.2016.04.082
    [36]
    BAI Z H, MA W Q, MA L, et al. China’s livestock transition: Driving forces, impacts, and consequences[J]. Science Advances, 2018, 4(7): eaar8534 doi: 10.1126/sciadv.aar8534
    [37]
    ARRIETA E M, GONZÁLEZ A D. Energy and carbon footprints of chicken and pork from intensive production systems in Argentina[J]. Science of the Total Environment, 2019, 673: 20−28 doi: 10.1016/j.scitotenv.2019.04.002
    [38]
    BIALA J, LOVRICK N, ROWLINGS D, et al. Greenhouse-gas emissions from stockpiled and composted dairy-manure residues and consideration of associated emission factors[J]. Animal Production Science, 2016, 56(9): 1432 doi: 10.1071/AN16009
    [39]
    FILLINGHAM M A, VANDERZAAG A C, BURTT S, et al. Greenhouse gas and ammonia emissions from production of compost bedding on a dairy farm[J]. Waste Management, 2017, 70: 45−52 doi: 10.1016/j.wasman.2017.09.013
    [40]
    NAZMUL ISLAM K M, KENWAY S J, RENOUF M A, et al. A review of the water-related energy consumption of the food system in nexus studies[J]. Journal of Cleaner Production, 2021, 279: 123414 doi: 10.1016/j.jclepro.2020.123414
    [41]
    BEACH R H, DEANGELO B J, ROSE S, et al. Mitigation potential and costs for global agricultural greenhouse gasemissions[J]. Agricultural Economics, 2008, 38(2): 109−115
    [42]
    CAI Z C, TSURUTA H, MINAMI K. Methane emission from rice fields in China: measurements and influencing factors[J]. Journal of Geophysical Research:Atmospheres, 2000, 105(D13): 17231−17242 doi: 10.1029/2000JD900014
    [43]
    ALVAREZ R. A review of nitrogen fertilizer and conservation tillage effects on soil organic carbon storage[J]. Soil Use and Management, 2005, 21(1): 38−52 doi: 10.1111/j.1475-2743.2005.tb00105.x
    [44]
    WITT C, CASSMAN K G, OLK D C, et al. Crop rotation and residue management effects on carbon sequestration, nitrogen cycling and productivity of irrigated rice systems[J]. Plant and Soil, 2000, 225(1): 263−278
    [45]
    XUE J F, LIU S L, CHEN Z D, et al. Assessment of carbon sustainability under different tillage systems in a double rice cropping system in Southern China[J]. The International Journal of Life Cycle Assessment, 2014, 19(9): 1581−1592 doi: 10.1007/s11367-014-0768-4
    [46]
    ORTIZ-GONZALO D, VAAST P, OELOFSE M, et al. Farm-scale greenhouse gas balances, hotspots and uncertainties in smallholder crop-livestock systems in Central Kenya[J]. Agriculture, Ecosystems & Environment, 2017, 248: 58–70
    [47]
    YAN M, CHENG K, LUO T, et al. Carbon footprint of crop production and the significance for greenhouse gas reduction in the agriculture sector of China[M]//SANYÉ-MENGUAL E, GARACÍA LOZANO R. Assessment of Carbon Footprint in Different Industrial Sectors, Volume 1. Singapore: Springer, 2014: 247–264
    [48]
    崔艺凡. 种养结合模式及影响因素分析——以玉米种植与奶牛养殖为例[D]. 北京: 中国农业科学院, 2017

    CUI Y F. Analysis on the models and key factors of combination with corn planting and cow breeding[D]. Beijing: Chinese Academy of Agricultural Sciences, 2017
    [49]
    LI Z J, SUI P, WANG X L, et al. Comparison of net GHG emissions between separated system and crop-swine integrated system in the North China Plain[J]. Journal of Cleaner Production, 2017, 149: 653−664 doi: 10.1016/j.jclepro.2017.02.113
    [50]
    ZHU J Y, LUO Z Y, SUN T T, et al. Cradle-to-grave emissions from food loss and waste represent half of total greenhouse gas emissions from food systems[J]. Nature Food, 2023, 4(3): 247−256 doi: 10.1038/s43016-023-00710-3
    [51]
    ZHU Y Y, ZHANG Y, ZHU X H. The evolution process, characteristics and adjustment of Chinese dietary guidelines: A global perspective[J]. Resources, Conservation and Recycling, 2023, 193: 106964 doi: 10.1016/j.resconrec.2023.106964
    [52]
    MA L, BAI Z H, MA W Q, et al. Exploring future food provision scenarios for China[J]. Environmental Science & Technology, 2019, 53(3): 1385−1393
    [53]
    SASMITO S D, BASYUNI M, KRIDALAKSANA A, et al. Challenges and opportunities for achieving sustainable development goals through restoration of Indonesia’s mangroves[J]. Nature Ecology & Evolution, 2023, 7(1): 62−70
    [54]
    周志花. 利用LCA法核算农作物生产碳足迹[D]. 北京: 中国农业科学院, 2018

    ZHOU Z H. Estimates of carbon footprint of crop production by life cycle assessment (LCA) method[D]. Beijing: Chinese Academy of Agricultural Sciences, 2018
    [55]
    JIANG Z H, ZHONG Y M, YANG J P, et al. Effect of nitrogen fertilizer rates on carbon footprint and ecosystem service of carbon sequestration in rice production[J]. Science of the Total Environment, 2019, 670: 210−217 doi: 10.1016/j.scitotenv.2019.03.188
    [56]
    李晓立, 何堂庆, 张晨曦, 等. 等氮量条件下有机肥替代化肥对玉米农田温室气体排放的影响[J]. 中国农业科学, 2022, 55(5): 948−961

    LI X L, HE T Q, ZHANG C X, et al. Effect of organic fertilizer replacing chemical fertilizers on greenhouse gas emission under the conditions of same nitrogen fertilizer input in maize farmland[J]. Scientia Agricultura Sinica, 2022, 55(5): 948−961
    [57]
    李萍, 郝兴宇, 宗毓铮, 等. 不同耕作措施对雨养冬小麦碳足迹的影响[J]. 中国生态农业学报, 2017, 25(6): 839−847 doi: 10.13930/j.cnki.cjea.160981

    LIPING, HAO X Y, ZONG Y Z, et al. Effect of tillage practice on carbon footprint of rainfed winter wheat[J]. Chinese Journal of Eco-Agriculture, 2017, 25(6): 839−847 doi: 10.13930/j.cnki.cjea.160981
    [58]
    姜超强, 李晨, 朱启法, 等. 皖南不同种植模式碳汇效应及经济效益评价[J]. 生态环境学报, 2022, 31(7): 1285−1292 doi: 10.16258/j.cnki.1674-5906.2022.07.001

    JIANG C Q, LI C, ZHU Q F, et al. Evaluation of carbon sink and economic benefit in different planting patterns in southern Anhui[J]. Ecology and Environmental Sciences, 2022, 31(7): 1285−1292 doi: 10.16258/j.cnki.1674-5906.2022.07.001
    [59]
    曾昭海. 豆科作物与禾本科作物轮作研究进展及前景[J]. 中国生态农业学报, 2018, 26(1): 57−61 doi: 10.13930/j.cnki.cjea.171058

    ZENG Z H. Progress and perspective of legume-gramineae rotations[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 57−61 doi: 10.13930/j.cnki.cjea.171058
    [60]
    HOU L T, YANG Y S, ZHANG X Y, et al. Carbon footprint for wheat and maize production modulated by farm size: a study in the North China Pain[J]. International Journal of Climate Change Strategies and Management, 2021, 13(3): 302−319 doi: 10.1108/IJCCSM-10-2020-0110
    [61]
    ARUNRAT N, PUMIJUMNONG N, SEREENONCHAI S, et al. Comparison of GHG emissions and farmers’ profit of large-scale and individual farming in rice production across four regions of Thailand[J]. Journal of Cleaner Production, 2021, 278: 123945 doi: 10.1016/j.jclepro.2020.123945
    [62]
    BAI Z H, LI X X, LU J, et al. Livestock housing and manure storage need to be improved in China[J]. Environmental Science & Technology, 2017, 51(15): 8212−8214
    [63]
    SPRINGMANN M, CLARK M, MASON-D’CROZ D, et al. Options for keeping the food system within environmental limits[J]. Nature, 2018, 562(7728): 519−525 doi: 10.1038/s41586-018-0594-0
    [64]
    GODFRAY H C J, AVEYARD P, GARNETT T, et al. Meat consumption, health, and the environment[J]. Science, 2018, 361(6399): eaam5324 doi: 10.1126/science.aam5324
    [65]
    BA S D, QU Q B, ZHANG K Q, et al. Meta-analysis of greenhouse gas and ammonia emissions from dairy manure composting[J]. Biosystems Engineering, 2020, 193: 126−137 doi: 10.1016/j.biosystemseng.2020.02.015
    [66]
    SOBHI M, ZHENG J B, LI B W, et al. Carbon footprint of dairy manure management chains in response to nutrient recovery by aerobic pre-treatment[J]. Journal of Environmental Management, 2023, 328: 116975 doi: 10.1016/j.jenvman.2022.116975
    [67]
    CHEN X W, LIN J J, TAN K M, et al. Cooperation between specialized cropping and livestock farms at local level reduces carbon footprint of agricultural system: A case study of recoupling maize-cow system in South China[J]. Agriculture, Ecosystems & Environment, 2023, 348: 108406
    [68]
    陈晓炜, 王小龙. 种养循环农作制度碳足迹评估——以鲜食玉米-奶牛-粪便还田循环模式为例[J]. 中国农业科学, 2023, 56(2): 314−332

    CHEN X W, WANG X L. Accounting framework of carbon footprint on integrated cropping breeding farming system: a case on maize-cow-recycling manure model[J]. Scientia Agricultura Sinica, 2023, 56(2): 314−332
    [69]
    BAI Z H, LEE M R F, MA L, et al. Global environmental costs of China’s thirst for milk[J]. Global Change Biology, 2018, 24(5): 2198−2211 doi: 10.1111/gcb.14047
    [70]
    PARODI A, LEIP A, DE BOER I J M, et al. The potential of future foods for sustainable and healthy diets[J]. Nature Sustainability, 2018, 1(12): 782−789 doi: 10.1038/s41893-018-0189-7
    [71]
    SONG G B, LI M J, SEMAKULA H M, et al. Food consumption and waste and the embedded carbon, water and ecological footprints of households in China[J]. Science of the Total Environment, 2015, 529: 191−197 doi: 10.1016/j.scitotenv.2015.05.068
    [72]
    TILMAN D, CLARK M. Global diets link environmental sustainability and human health[J]. Nature, 2014, 515(7528): 518−522 doi: 10.1038/nature13959
    [73]
    YIN Y L, HE K, CHEN Z, et al. Agricultural green development to coordinate food security and carbon reduction in the context of China's dual carbon goals[J]. Frontiers of Agricultural Science and Engineering, 2023, 10(2): 262−272
    [74]
    PASTOR A V, PALAZZO A, HAVLIK P, et al. The global nexus of food-trade-water sustaining environmental flows by 2050[J]. Nature Sustainability, 2019, 2(6): 499−507 doi: 10.1038/s41893-019-0287-1
    [75]
    CHEN C C, LIU G Y, MENG F X, et al. Energy consumption and carbon footprint accounting of urban and rural residents in Beijing through Consumer Lifestyle Approach[J]. Ecological Indicators, 2019, 98: 575−586 doi: 10.1016/j.ecolind.2018.11.049
    [76]
    OTTELIN J, HEINONEN J, NÄSSÉN J, et al. Household carbon footprint patterns by the degree of urbanisation in Europe[J]. Environmental Research Letters, 2019, 14(11): 114016 doi: 10.1088/1748-9326/ab443d
    [77]
    WIEDENHOFER D, GUAN D B, LIU Z, et al. Unequal household carbon footprints in China[J]. Nature Climate Change, 2017, 7(1): 75−80 doi: 10.1038/nclimate3165
    [78]
    CHENG K, YAN M, NAYAK D, et al. Carbon footprint of crop production in China: an analysis of National Statistics data[J]. The Journal of Agricultural Science, 2015, 153(3): 422−431 doi: 10.1017/S0021859614000665
    [79]
    胡永浩, 张昆扬, 胡南燕, 等. 中国农业碳排放测算研究综述[J]. 中国生态农业学报(中英文), 2023, 31(2): 163−176

    HU Y H, ZHANG K Y, HU N Y, et al. Review on measurement of agricultural carbon emission in China[J]. Chinese Journal of Eco-Agriculture, 2023, 31(2): 163−176
    [80]
    周璞, 侯华丽, 张惠, 等. 碳中和背景下提升土壤碳汇能力的前景与实施建议[J]. 环境保护, 2021, 49(16): 63−67 doi: 10.14026/j.cnki.0253-9705.2021.16.014

    ZHOU P, HOU H L, ZHANG H, et al. The development prospects and implementation suggestions of increasing soil carbon storage in the context of carbon neutrality[J]. Environmental Protection, 2021, 49(16): 63−67 doi: 10.14026/j.cnki.0253-9705.2021.16.014
    [81]
    WANG L Z, XUE B, YAN T H. Greenhouse gas emissions from pig and poultry production sectors in China from 1960 to 2010[J]. Journal of Integrative Agriculture, 2017, 16(1): 221−228 doi: 10.1016/S2095-3119(16)61372-2
    [82]
    《农业农村减排固碳实施方案》发布[J]. 农村新技术, 2022(8): 42

    The Implementation Plan of Emission Reduction and Carbon Fixation in Agriculture and Rural Areas was released[J]. China Agri-Production News, 2022(8): 42
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (31) PDF downloads(11) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return