Turn off MathJax
Article Contents
ZHU Z H, ZHANG J, GAO X D, TAO Z, MA N, XU Y D. Review of soil carbon cycling processes involving microplastics[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20230460
Citation: ZHU Z H, ZHANG J, GAO X D, TAO Z, MA N, XU Y D. Review of soil carbon cycling processes involving microplastics[J]. Chinese Journal of Eco-Agriculture, 2023, 31(0): 1−9 doi: 10.12357/cjea.20230460

Review of soil carbon cycling processes involving microplastics

doi: 10.12357/cjea.20230460
Funds:  This study was supported by the National Natural Science Foundation of China (42207383), the Scientific Research Funds Project of Education Department of Liaoning Province (LJKZ0662), and the National Key R&D Program of China (2021YFD1500202).
More Information
  • Corresponding author: E-mail: yingdexu@126.com
  • Received Date: 2023-08-22
  • Accepted Date: 2023-09-27
  • Rev Recd Date: 2023-10-02
  • Available Online: 2023-10-15
  • Soil organic carbon (SOC) sequestration is a key process driving soil fertility evolution and carbon (C) balance in terrestrial ecosystem. The impacts of microplastics on soil properties and processes have received increasing attention due to their persistence and ecological risks in soil ecosystem. However, the role and effect of microplastics on SOC cycling are still unclear. Microplastics can affect the sequestration and mineralization of SOC by indirectly influencing soil physical and chemical properties, and directly participating in the soil C cycle, which further exacerbates the uncertainty of the SOC cycle process. Based on this background, this study outlined the development of SOC sequestration pathways, summarized the sources of microplastics in soils, explained the effects of microplastics on different soil C pools, and deeply discussed the possible mechanisms of microplastics regulating the soil C cycle. Finally, we summarized and prospected the research on SOC cycle involving microplastics. The results showed that microplastics could impact SOC balance by affecting the formation and destruction of soil physical structure, microbial community structure diversity, enzyme activity and functional genes, biofilm formation, animal reproduction and growth, plant growth and root deposition. Meanwhile, microplastics could directly affect SOC cycle by participating in the entire soil biogeochemical cycle. However, related research is still in its infancy, and how to choose scientific methods to distinguish and couple microplastic turnover and SOC cycle is difficult. In future research, it is necessary to further distinguish the contribution potential of microplastic-derived C in different SOC pools, to explore the coupling mechanism of microplastics directly and indirectly affecting the SOC cycle, and to carry out research on the participation of microplastics in the process of SOC cycle under the influence of multi factors through the embedding and improvement of advanced soil study methods, as well as the innovation and crossover of research ideas.
  • loading
  • [1]
    RILLIG M C, LEHMANN A. Microplastic in terrestrial ecosystems[J]. Science, 2020, 368(6498): 1430−1431 doi: 10.1126/science.abb5979
    [2]
    COLTON Jr J B, BURNS B R, KNAPP F D. Plastic particles in surface waters of the northwestern Atlantic[J]. Science, 1974, 185(4150): 491−497 doi: 10.1126/science.185.4150.491
    [3]
    RILLIG M C. Microplastic in terrestrial ecosystems and the soil?[J]. Environmental Science & Technology, 2012, 46(12): 6453−6454
    [4]
    HORTON A A, SVENDSEN C, WILLIAMS R J, et al. Large microplastic particles in sediments of tributaries of the River Thames, UK-Abundance, sources and methods for effective quantification[J]. Marine Pollution Bulletin, 2017, 114(1): 218−226 doi: 10.1016/j.marpolbul.2016.09.004
    [5]
    COTRUFO M F, WALLENSTEIN M D, BOOT C M, et al. The Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter decomposition with soil organic matter stabilization: do labile plant inputs form stable soil organic matter?[J]. Global Change Biology, 2013, 19(4): 988−995 doi: 10.1111/gcb.12113
    [6]
    WANG X, XING Y, LV M J, et al. Recent advances on the effects of microplastics on elements cycling in the environment[J]. Science of the Total Environment, 2022, 849: 157884 doi: 10.1016/j.scitotenv.2022.157884
    [7]
    PADARIAN J, STOCKMANN U, MINASNY B, et al. Monitoring changes in global soil organic carbon stocks from space[J]. Remote Sensing of Environment, 2022, 281: 113260 doi: 10.1016/j.rse.2022.113260
    [8]
    CAMENZIND T, MASON-JONES K, MANSOUR I, et al. Formation of necromass-derived soil organic carbon determined by microbial death pathways[J]. Nature Geoscience, 2023, 16(2): 115−122 doi: 10.1038/s41561-022-01100-3
    [9]
    徐英德. 基于保护性农业的土壤固碳过程研究进展[J]. 中国生态农业学报(中英文), 2022, 30(4): 658−670

    XU Y D. Conservation agriculture-mediated soil carbon sequestration: a review[J]. Chinese Journal of Eco-Agriculture, 2022, 30(4): 658−670
    [10]
    MARTIN J P, HAIDER K. Microbial activity in relation to soil humus formation[J]. Soil Science, 1971, 111(1): 54−63 doi: 10.1097/00010694-197101000-00007
    [11]
    KONONOVA M M. Soil Organic Matter, Its Nature, Its Role in Soil Formation and in Soil Fertility[M]. Oxford: Pergamon Press, 1967, 18(1): 92
    [12]
    HATCHER P G, WAGGONER D C, CHEN H M. Evidence for the existence of humic acids in peat soils based on solid-state 13C NMR[J]. Journal of Environmental Quality, 2019, 48(6): 1571−1577 doi: 10.2134/jeq2019.02.0083
    [13]
    COTRUFO M F, SOONG J L, HORTON A J, et al. Formation of soil organic matter via biochemical and physical pathways of litter mass loss[J]. Nature Geoscience, 2015, 8(10): 776−779 doi: 10.1038/ngeo2520
    [14]
    LIANG C, SCHIMEL J P, JASTROW J D. The importance of anabolism in microbial control over soil carbon storage[J]. Nature Microbiology, 2017, 2: 17105 doi: 10.1038/nmicrobiol.2017.105
    [15]
    YANG J, LI L Z, LI R J, et al. Microplastics in an agricultural soil following repeated application of three types of sewage sludge: a field study[J]. Environmental Pollution, 2021, 289: 117943 doi: 10.1016/j.envpol.2021.117943
    [16]
    骆永明, 周倩, 章海波, 等. 重视土壤中微塑料污染研究 防范生态与食物链风险[J]. 中国科学院院刊, 2018, 33(10): 1021−1030

    LUO Y M, ZHOU Q, ZHANG H B, et al. Pay attention to research on microplastic pollution in soil for prevention of ecological and food chain risks[J]. Bulletin of Chinese Academy of Sciences, 2018, 33(10): 1021−1030
    [17]
    WONG J K H, LEE K K, TANG K H D, et al. Microplastics in the freshwater and terrestrial environments: Prevalence, fates, impacts and sustainable solutions[J]. Science of the Total Environment, 2020, 719: 137512 doi: 10.1016/j.scitotenv.2020.137512
    [18]
    XIONG X, ZHANG K, CHEN X C, et al. Sources and distribution of microplastics in China’s largest inland lake—Qinghai Lake[J]. Environmental Pollution, 2018, 235: 899−906 doi: 10.1016/j.envpol.2017.12.081
    [19]
    VIAROLI S, LANCIA M, RE V. Microplastics contamination of groundwater: Current evidence and future perspectives. A review[J]. Science of the Total Environment, 2022, 824: 153851 doi: 10.1016/j.scitotenv.2022.153851
    [20]
    GATIDOU G, ARVANITI O S, STASINAKIS A S. Review on the occurrence and fate of microplastics in Sewage Treatment Plants[J]. Journal of Hazardous Materials, 2019, 367: 504−512 doi: 10.1016/j.jhazmat.2018.12.081
    [21]
    LI X W, CHEN L B, MEI Q Q, et al. Microplastics in sewage sludge from the wastewater treatment plants in China[J]. Water Research, 2018, 142: 75−85 doi: 10.1016/j.watres.2018.05.034
    [22]
    DRIS R, GASPERI J, SAAD M, et al. Synthetic fibers in atmospheric fallout: A source of microplastics in the environment?[J]. Marine Pollution Bulletin, 2016, 104(1/2): 290−293
    [23]
    EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Atmospheric transport is a major pathway of microplastics to remote regions[J]. Nature Communications, 2020, 11(1): 3381 doi: 10.1038/s41467-020-17201-9
    [24]
    AVES A R, REVELL L E, GAW S, et al. First evidence of microplastics in Antarctic snow[J]. The Cryosphere, 2022, 16(6): 2127−2145 doi: 10.5194/tc-16-2127-2022
    [25]
    GAO B, YAO H Y, LI Y Y, et al. Microplastic addition alters the microbial community structure and stimulates soil carbon dioxide emissions in vegetable-growing soil[J]. Environmental Toxicology and Chemistry, 2021, 40(2): 352−365 doi: 10.1002/etc.4916
    [26]
    BOOTS B, RUSSELL C W, GREEN D S. Effects of microplastics in soil ecosystems: above and below ground[J]. Environmental Science & Technology, 2019, 53(19): 11496−11506
    [27]
    LI X N, YAO S, WANG Z Y, et al. Polyethylene microplastic and biochar interactively affect the global warming potential of soil greenhouse gas emissions[J]. Environmental Pollution, 2022, 315: 120433 doi: 10.1016/j.envpol.2022.120433
    [28]
    NG E L, LIN S Y, DUNGAN A M, et al. Microplastic pollution alters forest soil microbiome[J]. Journal of Hazardous Materials, 2021, 409: 124606 doi: 10.1016/j.jhazmat.2020.124606
    [29]
    LIU Y, HU W, HUANG Q, et al. Plastic mulch debris in rhizosphere: interactions with soil-microbe-plant systems[J]. Science of the Total Environment, 2022, 807: 151435 doi: 10.1016/j.scitotenv.2021.151435
    [30]
    LI R F, XI B D, TAN W B, et al. Spatiotemporal heterogeneous effects of microplastics input on soil dissolved organic matter (DOM) under field conditions[J]. Science of the Total Environment, 2022, 847: 157605 doi: 10.1016/j.scitotenv.2022.157605
    [31]
    CHEN M, ZHAO X, WU D, et al. Addition of biodegradable microplastics alters the quantity and chemodiversity of dissolved organic matter in latosol[J]. Science of the Total Environment, 2022, 816: 151960 doi: 10.1016/j.scitotenv.2021.151960
    [32]
    ZHANG Y X, LI X, XIAO M, et al. Effects of microplastics on soil carbon dioxide emissions and the microbial functional genes involved in organic carbon decomposition in agricultural soil[J]. Science of the Total Environment, 2022, 806: 150714 doi: 10.1016/j.scitotenv.2021.150714
    [33]
    LIU H F, YANG X M, LIU G B, et al. Response of soil dissolved organic matter to microplastic addition in Chinese loess soil[J]. Chemosphere, 2017, 185: 907−917 doi: 10.1016/j.chemosphere.2017.07.064
    [34]
    ZHOU J, JIA R, BROWN R W, et al. The long-term uncertainty of biodegradable mulch film residues and associated microplastics pollution on plant-soil health[J]. Journal of Hazardous Materials, 2023, 442: 130055 doi: 10.1016/j.jhazmat.2022.130055
    [35]
    ZHANG G S, LIU Y F. The distribution of microplastics in soil aggregate fractions in southwestern China[J]. Science of the Total Environment, 2018, 642: 12−20 doi: 10.1016/j.scitotenv.2018.06.004
    [36]
    RILLIG M C, INGRAFFIA R, DE SOUZA MACHADO A A. Microplastic incorporation into soil in agroecosystems[J]. Frontiers in Plant Science, 2017, 8: 1805 doi: 10.3389/fpls.2017.01805
    [37]
    KOSKEI K, MUNYASYA A N, WANG Y B, et al. Effects of increased plastic film residues on soil properties and crop productivity in agro-ecosystem[J]. Journal of Hazardous Materials, 2021, 414: 125521 doi: 10.1016/j.jhazmat.2021.125521
    [38]
    WANG Z C, LI W L, LI W P, et al. Effects of microplastics on the water characteristic curve of soils with different textures[J]. Chemosphere, 2023, 317: 137762 doi: 10.1016/j.chemosphere.2023.137762
    [39]
    QI Y L, OSSOWICKI A, YANG X M, et al. Effects of plastic mulch film residues on wheat rhizosphere and soil properties[J]. Journal of Hazardous Materials, 2020, 387: 121711 doi: 10.1016/j.jhazmat.2019.121711
    [40]
    BROWN R W, CHADWICK D R, ZANG H D, et al. Bioplastic (PHBV) addition to soil alters microbial community structure and negatively affects plant-microbial metabolic functioning in maize[J]. Journal of Hazardous Materials, 2023, 441: 129959 doi: 10.1016/j.jhazmat.2022.129959
    [41]
    ZHOU J, GUI H, BANFIELD C C, et al. The microplastisphere: Biodegradable microplastics addition alters soil microbial community structure and function[J]. Soil Biology and Biochemistry, 2021, 156: 108211 doi: 10.1016/j.soilbio.2021.108211
    [42]
    WANG F Y, ZHANG X Q, ZHANG S Q, et al. Interactions of microplastics and cadmium on plant growth and arbuscular mycorrhizal fungal communities in an agricultural soil[J]. Chemosphere, 2020, 254: 126791 doi: 10.1016/j.chemosphere.2020.126791
    [43]
    HODSON M E, DUFFUS-HODSON C A, CLARK A, et al. Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates[J]. Environmental Science & Technology, 2017, 51(8): 4714−4721
    [44]
    CHEN H P, WANG Y H, SUN X, et al. Mixing effect of polylactic acid microplastic and straw residue on soil property and ecological function[J]. Chemosphere, 2020, 243: 125271 doi: 10.1016/j.chemosphere.2019.125271
    [45]
    EVANGELIOU N, GRYTHE H, KLIMONT Z, et al. Microbial degradation of microplastics by enzymatic processes: a review[J]. Environmental Chemistry Letters, 2021, 19(4): 3057−3073 doi: 10.1007/s10311-021-01197-9
    [46]
    ZANG H D, ZHOU J, MARSHALL M R, et al. Microplastics in the agroecosystem: Are they an emerging threat to the plant-soil system?[J]. Soil Biology and Biochemistry, 2020, 148: 107926 doi: 10.1016/j.soilbio.2020.107926
    [47]
    ZHANG J R, REN S Y, XU W, et al. Effects of plastic residues and microplastics on soil ecosystems: A global meta-analysis[J]. Journal of Hazardous Materials, 2022, 435: 129065 doi: 10.1016/j.jhazmat.2022.129065
    [48]
    RUMMEL C D, JAHNKE A, GOROKHOVA E, et al. Impacts of biofilm formation on the fate and potential effects of microplastic in the aquatic environment[J]. Environmental Science & Technology Letters, 2017, 4(7): 258−267
    [49]
    JIANG P L, ZHAO S Y, ZHU L X, et al. Microplastic-associated bacterial assemblages in the intertidal zone of the Yangtze Estuary[J]. Science of the Total Environment, 2018, 624: 48−54 doi: 10.1016/j.scitotenv.2017.12.105
    [50]
    BAO R Q, CHENG Z R, HOU Y P, et al. Secondary microplastics formation and colonized microorganisms on the surface of conventional and degradable plastic granules during long-term UV aging in various environmental media[J]. Journal of Hazardous Materials, 2022, 439: 129686 doi: 10.1016/j.jhazmat.2022.129686
    [51]
    VAN BAALEN M, HUNEMAN P. Organisms as ecosystems/ecosystems as organisms[J]. Biological Theory, 2014, 9(4): 357−360 doi: 10.1007/s13752-014-0194-7
    [52]
    FARRELL P, NELSON K. Trophic level transfer of microplastic: Mytilus edulis (L.) to Carcinus maenas (L.)[J]. Environmental Pollution, 2013, 177: 1−3 doi: 10.1016/j.envpol.2013.01.046
    [53]
    LI T T, LU M T, XU B H, et al. Multiple perspectives reveal the gut toxicity of polystyrene microplastics on Eisenia fetida: insights into community signatures of gut bacteria and their translocation[J]. Science of the Total Environment, 2022, 838: 156352 doi: 10.1016/j.scitotenv.2022.156352
    [54]
    CHEN K Y, TANG R G, LUO Y M, et al. Transcriptomic and metabolic responses of earthworms to contaminated soil with polypropylene and polyethylene microplastics at environmentally relevant concentrations[J]. Journal of Hazardous Materials, 2022, 427: 128176 doi: 10.1016/j.jhazmat.2021.128176
    [55]
    HUERTA L E, GERTSEN H, GOOREN H, et al. Incorporation of microplastics from litter into burrows of Lumbricus terrestris[J]. Environmental Pollution, 2017, 220: 523−531 doi: 10.1016/j.envpol.2016.09.096
    [56]
    LWANGA E H, GERTSEN H, GOOREN H, et al. Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae)[J]. Environmental Science & Technology, 2016, 50(5): 2685−2691
    [57]
    陈云峰, 韩雪梅, 李钰飞, 等. 线虫区系分析指示土壤食物网结构和功能研究进展[J]. 生态学报, 2014, 34(5): 1072−1084

    CHEN Y F, HAN X M, LI Y F, et al. Approach of nematode fauna analysis indicate the structure and function of soil food web[J]. Acta Ecologica Sinica, 2014, 34(5): 1072−1084
    [58]
    LEI L L, WU S Y, LU S B, et al. Microplastic particles cause intestinal damage and other adverse effects in zebrafish Danio rerio and nematode Caenorhabditis elegans[J]. Science of the Total Environment, 2018, 619/620: 1−8 doi: 10.1016/j.scitotenv.2017.11.103
    [59]
    KIM H M, LEE D K, LONG N P, et al. Uptake of nanopolystyrene particles induces distinct metabolic profiles and toxic effects in Caenorhabditis elegans[J]. Environmental Pollution, 2019, 246: 578−586 doi: 10.1016/j.envpol.2018.12.043
    [60]
    KIYAMA Y, MIYAHARA K, OHSHIMA Y. Active uptake of artificial particles in the nematode Caenorhabditis elegans[J]. Journal of Experimental Biology, 2012, 215(7): 1178−1183 doi: 10.1242/jeb.067199
    [61]
    BOYERO L, LÓPEZ-ROJO N, BOSCH J, et al. Microplastics impair amphibian survival, body condition and function[J]. Chemosphere, 2020, 244: 125500 doi: 10.1016/j.chemosphere.2019.125500
    [62]
    ZHAO S L, ZHANG Z Q, CHEN L, et al. Review on migration, transformation and ecological impacts of microplastics in soil[J]. Applied Soil Ecology, 2022, 176: 104486 doi: 10.1016/j.apsoil.2022.104486
    [63]
    QI Y L, YANG X M, PELAEZ A M, et al. Macro- and micro- plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth[J]. Science of the Total Environment, 2018, 645: 1048−1056 doi: 10.1016/j.scitotenv.2018.07.229
    [64]
    BOSKER T, BOUWMAN L J, BRUN N R, et al. Microplastics accumulate on pores in seed capsule and delay germination and root growth of the terrestrial vascular plant Lepidium sativum[J]. Chemosphere, 2019, 226: 774−781 doi: 10.1016/j.chemosphere.2019.03.163
    [65]
    DE SOUZA MACHADO A A, LAU C W, KLOAS W, et al. Microplastics can change soil properties and affect plant performance[J]. Environmental Science & Technology, 2019, 53(10): 6044−6052
    [66]
    LOZANO Y M, RILLIG M C. Legacy effect of microplastics on plant-soil feedbacks[J]. Frontiers in Plant Science, 2022, 13: 965576 doi: 10.3389/fpls.2022.965576
    [67]
    ZHAO S Y, ZHU L X, LI D J. Microscopic anthropogenic litter in terrestrial birds from Shanghai, China: Not only plastics but also natural fibers[J]. Science of the Total Environment, 2016, 550: 1110−1115 doi: 10.1016/j.scitotenv.2016.01.112
    [68]
    LI L Z, LUO Y M, LI R J, et al. Effective uptake of submicrometre plastics by crop plants via a crack-entry mode[J]. Nature Sustainability, 2020, 3(11): 929−937 doi: 10.1038/s41893-020-0567-9
    [69]
    LOZANO Y M, RILLIG M C. Effects of microplastic fibers and drought on plant communities[J]. Environmental Science & Technology, 2020, 54(10): 6166−6173
    [70]
    RILLIG M C, BONKOWSKI M. Microplastic and soil protists: A call for research[J]. Environmental Pollution, 2018, 241: 1128−1131 doi: 10.1016/j.envpol.2018.04.147
    [71]
    NELSON T F, BAUMGARTNER R, JAGGI M, et al. Biodegradation of poly (butylene succinate) in soil laboratory incubations assessed by stable carbon isotope labelling[J]. Nature Communications, 2022, 13(1): 5691 doi: 10.1038/s41467-022-33064-8
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (192) PDF downloads(65) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return