Volume 33 Issue 1
Jan.  2025
Turn off MathJax
Article Contents
LIU H, MA Z H, LIU W F, WAN M H, MA F L, WU N, LIU J L. Effects of different tillage practices with organic fertilizers on rhizosphere soil microbial communities of maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2025, 33(1): 25−39. DOI: 10.12357/cjea.20240308
Citation: LIU H, MA Z H, LIU W F, WAN M H, MA F L, WU N, LIU J L. Effects of different tillage practices with organic fertilizers on rhizosphere soil microbial communities of maize in saline-alkali soils[J]. Chinese Journal of Eco-Agriculture, 2025, 33(1): 25−39. DOI: 10.12357/cjea.20240308

Effects of different tillage practices with organic fertilizers on rhizosphere soil microbial communities of maize in saline-alkali soils

Funds: This study was supported by the National Key Research and Development Program of China (2021YFD1900603), and the Key Research and Development Program of Ningxia (2019BFG02015).
More Information
  • Corresponding author:

    LIU Jili, E-mail: tim11082003@163.com

  • Received Date: May 29, 2024
  • Accepted Date: September 26, 2024
  • Available Online: September 26, 2024
  • This study aimed to investigate the effects of different tillage practices with organic fertilizers on the chemical properties and microbial community structure of maize rhizosphere soil in saline-alkaline soil, to identify the most suitable combination of tillage practices and organic fertilizer application, to provide an important basis for improving saline-alkaline soil, and to understand the microbial community characteristics of maize rhizosphere soil. In this study, a split-zone experimental design was adopted, with two tillage practices in the main zone — CT (conventional tillage) and DV (vertical deep rotary tillage), and four levels of organic fertilizer application in the secondary zones — O1 (0 kg∙hm−2), O2 (7 500 kg∙hm−2), O3 (15 000 kg∙hm−2), and O4 (22 500 kg∙hm−2), to investigate the effects of different tillage practices combined with organic fertilizer on the rhizosphere of maize in saline-alkaline soils. Organic fertilizers influence the chemical properties and microbial community structure of maize on rhizosphere soil in saline-alkaline soil. The results demonstrated that the pH and total salt content of maize rhizosphere soils were significantly reduced by 3.94%−9.20% and 6.31%−25.96% under DVO3 and DVO4 treatments, respectively, compared to other treatments. The contents of organic matter, alkali-hydrolyzable nitrogen, available phosphorus, and available potassium significantly increased by 5.29%−45.24%, 4.71%−24.34%, 13.63%−32.67%, and 10.77%−34.25%, respectively, under DVO3 and DVO4 treatments than other treatments. The maize yield significantly increased by 2.51%−22.23% compared to other treatments and the differences between DVO3 and DVO4 treatments were not significant. Compared with the other treatments, the richness and diversity of the microbial community in the maize rhizosphere soil were significantly enhanced under the DVO3 and DVO4 treatments, with minimal differences between these two treatments. In addition, DVO3 and DVO4 treatments significantly increased the relative abundance of Protbacterial dominant phylum of Proteobacteria and Bacteroidetes, and Ascomycota and Basidiomycota of the fungal dominant plylum, as well as the relative abundance of Ohtaekwangia, Gp6, and Gp7 of the bacterial dominant genus, and Ascobolus, Filobasidium, and Botryotrichum of the fungal dominant genus; the differences between the DVO3 and DVO4 treatments were not significant. The relative abundances of these phyla and genera were positively correlated with the organic matter and fast-acting nutrient content of the maize rhizosphere soil. In summary, vertical deep rotary tillage with 15 000–22 500 kg∙hm–2 organic fertilizers can significantly reduce the pH and total salt content of saline soils, increase the content of quick-acting nutrients and organic matter, and improve microbial abundance and diversity, which is conducive to soil improvement and nutrient cycling in saline soils.

  • loading
  • [1]
    ZHANG W W, WANG C, XUE R, et al. Effects of salinity on the soil microbial community and soil fertility[J]. Journal of Integrative Agriculture, 2019, 18(6): 1360−1368 doi: 10.1016/S2095-3119(18)62077-5
    [2]
    LI J Y, WANG J M. Integrated life cycle assessment of improving saline-sodic soil with flue gas desulfurization gypsum[J]. Journal of Cleaner Production, 2018, 202: 332−341 doi: 10.1016/j.jclepro.2018.08.062
    [3]
    XIONG S Y, XIONG Z X, WANG P W. Soil salinity in the irrigated area of the Yellow River in Ningxia, China[J]. Arid Soil Research and Rehabilitation, 1996, 10(1): 95−101 doi: 10.1080/15324989609381423
    [4]
    MEENA M D, YADAV R K, NARJARY B, et al. Municipal solid waste (MSW): Strategies to improve salt affected soil sustainability: A review[J]. Waste Management, 2019, 84: 38−53 doi: 10.1016/j.wasman.2018.11.020
    [5]
    PANKE-BUISSE K, POOLE A C, GOODRICH J K, et al. Selection on soil microbiomes reveals reproducible impacts on plant function[J]. The ISME Journal, 2015, 9(4): 980−989 doi: 10.1038/ismej.2014.196
    [6]
    LI S M, FAN W, XU G, et al. Bio-organic fertilizers improve Dendrocalamus farinosus growth by remolding the soil microbiome and metabolome[J]. Frontiers in Microbiology, 2023, 14: 1117355 doi: 10.3389/fmicb.2023.1117355
    [7]
    ZOU W X, LANG M, ZHANG L, et al. Ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea dominate nitrification in a nitrogen-fertilized calcareous soil[J]. Science of the Total Environment, 2022, 811: 151402 doi: 10.1016/j.scitotenv.2021.151402
    [8]
    MEENA M D, JOSHI P K, NARJARY B, et al. Effects of municipal solid waste compost, rice-straw compost and mineral fertilisers on biological and chemical properties of a saline soil and yields in a mustard-pearl millet cropping system[J]. Soil Research, 2016, 54(8): 958 doi: 10.1071/SR15342
    [9]
    YUE Y, SHAO T Y, LONG X H, et al. Microbiome structure and function in rhizosphere of Jerusalem artichoke grown in saline land[J]. Science of the Total Environment, 2020, 724: 138259 doi: 10.1016/j.scitotenv.2020.138259
    [10]
    ZHANG D, LI D X, WANG H G, et al. Tillage practices offset wheat yield reductions under limited irrigation regime in the North China Plain[J]. Soil and Tillage Research, 2023, 230: 105687 doi: 10.1016/j.still.2023.105687
    [11]
    ZHANG X, DAVIDSON E A, MAUZERALL D L, et al. Managing nitrogen for sustainable development[J]. Nature, 2015, 528(7580): 51−59 doi: 10.1038/nature15743
    [12]
    LI W X, YANG J S, TANG C, et al. The temporal-spatial dynamic distributions of soil water and salt under deep vertical rotary tillage on coastal saline soil[J]. Water, 2022, 14(21): 3370 doi: 10.3390/w14213370
    [13]
    李旭霖, 刘庆花, 柳新伟, 等. 不同改良剂对滨海盐碱地的改良效果[J]. 水土保持通报, 2015, 35(2): 219−224

    LI X L, LIU Q H, LIU X W, et al. Improving effect of different amendment treatments in coastal saline-alkali soil[J]. Bulletin of Soil and Water Conservation, 2015, 35(2): 219−224
    [14]
    张向前, 杨文飞, 徐云姬. 中国主要耕作方式对旱地土壤结构及养分和微生态环境影响的研究综述[J]. 生态环境学报, 2019, 28(12): 2464−2472

    ZHANG X Q, YANG W F, XU Y J. Effects of main tillage methods on soil structure, nutrients and micro-ecological environment of upland in China: A review[J]. Ecology and Environmental Sciences, 2019, 28(12): 2464−2472
    [15]
    李秀英, 赵秉强, 李絮花, 等. 不同施肥制度对土壤微生物的影响及其与土壤肥力的关系[J]. 中国农业科学, 2005, 38(8): 1591−1599 doi: 10.3321/j.issn:0578-1752.2005.08.014

    LI X Y, ZHAO B Q, LI X H, et al. Effects of different fertilization systems on soil microbe and its relation to soil fertility[J]. Scientia Agricultura Sinica, 2005, 38(8): 1591−1599 doi: 10.3321/j.issn:0578-1752.2005.08.014
    [16]
    LIU J A, SHU A P, SONG W F, et al. Long-term organic fertilizer substitution increases rice yield by improving soil properties and regulating soil bacteria[J]. Geoderma, 2021, 404: 115287 doi: 10.1016/j.geoderma.2021.115287
    [17]
    ZHANG J Z, BEI S K, LI B S, et al. Organic fertilizer, but not heavy liming, enhances banana biomass, increases soil organic carbon and modifies soil microbiota[J]. Applied Soil Ecology, 2019, 136: 67−79 doi: 10.1016/j.apsoil.2018.12.017
    [18]
    鲍士旦. 土壤农化分析[M]. 3版. 北京: 中国农业出版社, 2000

    BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000
    [19]
    麻仲花, 刘吉利, 吴娜, 等. 深旋耕配施有机肥对盐碱地玉米根际土壤细菌群落结构及其功能的影响[J]. 中国农业气象, 2023, 44(6): 479−491 doi: 10.3969/j.issn.1000-6362.2023.06.003

    MA Z H, LIU J L, WU N, et al. Effects of deep rotary tillage combined with organic fertilizer on bacterial community structure and function of maize rhizosphere soil in saline alkali land[J]. Chinese Journal of Agrometeorology, 2023, 44(6): 479−491 doi: 10.3969/j.issn.1000-6362.2023.06.003
    [20]
    张蕾, 王强, 杨新月, 等. 黄土丘陵区退耕还林对土壤真菌群落的影响[J]. 环境科学, 2023, 44(3): 1758−1767

    ZHANG L, WANG Q, YANG X Y, et al. Effect of the process of returning farmland to forest in the loess hilly area on soil fungal communities[J]. Environmental Science, 2023, 44(3): 1758−1767
    [21]
    李学平, 刘萍. 深旋耕秸秆还田对内陆盐碱地土壤肥力和作物产量的效应[J]. 江苏农业科学, 2016, 44(1): 133−135

    LI X P, LIU P. Effect of deep rotary tillage straw returning to field on soil fertility and crop yield in inland saline-alkali land[J]. Jiangsu Agricultural Sciences, 2016, 44(1): 133−135
    [22]
    李磊, 王晶, 朱志明, 等. 氮肥减施与有机肥/秸秆配施对盐碱地土壤肥力指标及玉米产量的影响[J]. 土壤通报, 2020, 51(4): 928−935

    LI L, WANG J, ZHU Z M, et al. Effects of nitrogen fertilizer reduction combined with organic fertilizer / straw on soil fertility index and maize yield in saline-alkali land[J]. Chinese Journal of Soil Science, 2020, 51(4): 928−935
    [23]
    邓小华, 邓永晟, 刘勇军, 等. 垂直深旋耕配施改土物料改良酸性土壤并提高烟草种植效益研究[J]. 中国烟草学报, 2021, 27(1): 64−73

    DENG X H, DENG Y S, LIU Y J, et al. Restoration of acid soil and improvement of tobacco cultivation efficiency by deep vertical rotary tillage combined with application of soil ameliorative materials[J]. Acta Tabacaria Sinica, 2021, 27(1): 64−73
    [24]
    LAZCANO C, GÓMEZ-BRANDÓN M, REVILLA P, et al. Short-term effects of organic and inorganic fertilizers on soil microbial community structure and function[J]. Biology and Fertility of Soils, 2013, 49(6): 723−733 doi: 10.1007/s00374-012-0761-7
    [25]
    HERENCIA J F, MAQUEDA C. Effects of time and dose of organic fertilizers on soil fertility, nutrient content and yield of vegetables[J]. The Journal of Agricultural Science, 2016, 154(8): 1343−1361 doi: 10.1017/S0021859615001136
    [26]
    MORRISSEY E M, GILLESPIE J L, MORINA J C, et al. Salinity affects microbial activity and soil organic matter content in tidal wetlands[J]. Global Change Biology, 2014, 20(4): 1351−1362 doi: 10.1111/gcb.12431
    [27]
    JIN L, JIN N, WANG S Y, et al. Changes in the microbial structure of the root soil and the yield of Chinese baby cabbage by chemical fertilizer reduction with bio-organic fertilizer application[J]. Microbiology Spectrum, 2022, 10(6): e0121522 doi: 10.1128/spectrum.01215-22
    [28]
    YAO R J, GAO Q C, LIU Y X, et al. Deep vertical rotary tillage mitigates salinization hazards and shifts microbial community structure in salt-affected anthropogenic-alluvial soil[J]. Soil and Tillage Research, 2023, 227: 105627 doi: 10.1016/j.still.2022.105627
    [29]
    赵娇, 谢慧君, 张建. 黄河三角洲盐碱土根际微环境的微生物多样性及理化性质分析[J]. 环境科学, 2020, 41(3): 1449−1455

    ZHAO J, XIE H J, ZHANG J. Microbial diversity and physicochemical properties of rhizosphere microenvironment in saline-alkali soils of the Yellow River Delta[J]. Environmental Science, 2020, 41(3): 1449−1455
    [30]
    GUAN Y P, XU B, ZHANG X M, et al. Tillage practices and residue management manipulate soil bacterial and fungal communities and networks in maize agroecosystems[J]. Microorganisms, 2022, 10(5): 1056 doi: 10.3390/microorganisms10051056
    [31]
    SHI Y W, NIU X X, CHEN B Z, et al. Chemical fertilizer reduction combined with organic fertilizer affects the soil microbial community and diversity and yield of cotton[J]. Frontiers in Microbiology, 2023, 14: 1295722 doi: 10.3389/fmicb.2023.1295722
    [32]
    王燚敏. 有机培肥下滨海盐碱地土壤微生物群落结构演替特征及驱动因子研究[D]. 扬州: 扬州大学, 2023

    WANG Y M. Study on succession characteristics and driving factors of soil microbial community structure in coastal saline-alkali soil under organic fertilization[D]. Yangzhou: Yangzhou University, 2023
    [33]
    何海锋, 吴娜, 刘吉利, 等. 不同施肥处理对柳枝稷土壤理化性质及细菌多样性的影响[J]. 中国土壤与肥料, 2022(3): 164−172 doi: 10.11838/sfsc.1673-6257.20728

    HE H F, WU N, LIU J L, et al. Effects of different fertilization treatments on soil chemical properties and bacterial diversity in switchgrass field[J]. Soil and Fertilizer Sciences in China, 2022(3): 164−172 doi: 10.11838/sfsc.1673-6257.20728
    [34]
    WANG L, YANG F, YAOYAO E, et al. Long-term application of bioorganic fertilizers improved soil biochemical properties and microbial communities of an apple orchard soil[J]. Frontiers in Microbiology, 2016, 7: 1893
    [35]
    LI X Q, WANG D Z, LU Q J, et al. Effects of SMOF on soil properties, root-zone microbial community structure, metabolites, and maize (Zea mays L.) response on a reclaimed barren mountainous land[J]. Frontiers in Microbiology, 2023, 14: 1181245 doi: 10.3389/fmicb.2023.1181245
    [36]
    BU C F, WU S F, YANG Y S, et al. Identification of factors influencing the restoration of cyanobacteria-dominated biological soil crusts[J]. PLoS One, 2014, 9(3): e90049 doi: 10.1371/journal.pone.0090049
    [37]
    LI X N, YAO S, BIAN Y R, et al. The combination of biochar and plant roots improves soil bacterial adaptation to PAH stress: Insights from soil enzymes, microbiome, and metabolome[J]. Journal of Hazardous Materials, 2020, 400: 123227 doi: 10.1016/j.jhazmat.2020.123227
    [38]
    孙慧, 张建锋, 许华森, 等. 余姚滨海不同盐碱度土壤微生物群落组成及土壤酶活性的变化[J]. 应用生态学报, 2016, 27(10): 3361−3370

    SUN H, ZHANG J F, XU H S, et al. Variations of soil microbial community composition and enzyme activities with different salinities on Yuyao coast, Zhejiang, China[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3361−3370
    [39]
    DONG Y, ZHANG J W, CHEN R R, et al. Microbial community composition and activity in saline soils of coastal agro-ecosystems[J]. Microorganisms, 2022, 10(4): 835 doi: 10.3390/microorganisms10040835
    [40]
    SPAIN A M, KRUMHOLZ L R, ELSHAHED M S. Abundance, composition, diversity and novelty of soil Proteobacteria[J]. The ISME Journal, 2009, 3(8): 992−1000 doi: 10.1038/ismej.2009.43
    [41]
    PHILIPPOT L, RAAIJMAKERS J M, LEMANCEAU P, et al. Going back to the roots: The microbial ecology of the rhizosphere[J]. Nature Reviews Microbiology, 2013, 11(11): 789−799 doi: 10.1038/nrmicro3109
    [42]
    HARTMANN M, FREY B, MAYER J, et al. Distinct soil microbial diversity under long-term organic and conventional farming[J]. The ISME Journal, 2015, 9(5): 1177−1194 doi: 10.1038/ismej.2014.210
    [43]
    SUN R B, ZHANG X X, GUO X S, et al. Bacterial diversity in soils subjected to long-term chemical fertilization can be more stably maintained with the addition of livestock manure than wheat straw[J]. Soil Biology and Biochemistry, 2015, 88: 9−18 doi: 10.1016/j.soilbio.2015.05.007
    [44]
    ZHANG T, WANG N F, ZHANG Y Q, et al. Diversity and distribution of fungal communities in the marine sediments of Kongsfjorden, Svalbard (High Arctic)[J]. Scientific Reports, 2015, 5: 14524 doi: 10.1038/srep14524
    [45]
    GAO Z Y, HAN M K, HU Y Y, et al. Effects of continuous cropping of sweet potato on the fungal community structure in rhizospheric soil[J]. Frontiers in Microbiology, 2019, 10: 2269 doi: 10.3389/fmicb.2019.02269
    [46]
    GE Z, LI S Y, BOL R, et al. Differential long-term fertilization alters residue-derived labile organic carbon fractions and microbial community during straw residue decomposition[J]. Soil and Tillage Research, 2021, 213: 105120 doi: 10.1016/j.still.2021.105120
    [47]
    ROUSK J, BROOKES P C, BÅÅTH E. The microbial PLFA composition as affected by pH in an arable soil[J]. Soil Biology and Biochemistry, 2010, 42(3): 516−520 doi: 10.1016/j.soilbio.2009.11.026
    [48]
    EVELIN H, KAPOOR R, GIRI B. Arbuscular mycorrhizal fungi in alleviation of salt stress: A review[J]. Annals of Botany, 2009, 104(7): 1263−1280 doi: 10.1093/aob/mcp251
    [49]
    PEAY K G, KENNEDY P G, TALBOT J M. Dimensions of biodiversity in the earth mycobiome[J]. Nature Reviews Microbiology, 2016, 14(7): 434−447 doi: 10.1038/nrmicro.2016.59
    [50]
    LAUBER C L, STRICKLAND M S, BRADFORD M A, et al. The influence of soil properties on the structure of bacterial and fungal communities across land-use types[J]. Soil Biology and Biochemistry, 2008, 40(9): 2407−2415 doi: 10.1016/j.soilbio.2008.05.021
    [51]
    RILLIG M C, MUMMEY D L. Mycorrhizas and soil structure[J]. New Phytologist, 2006, 171(1): 41−53 doi: 10.1111/j.1469-8137.2006.01750.x
    [52]
    LINDAHL B D, TUNLID A. Ectomycorrhizal fungi — potential organic matter decomposers, yet not saprotrophs[J]. New Phytologist, 2015, 205(4): 1443−1447 doi: 10.1111/nph.13201
    [53]
    杨胜香, 李凤梅, 彭禧柱, 等. 不同碳氮磷源改良剂对铅锌尾矿废弃地土壤微生物群落结构的影响[J]. 农业环境科学学报, 2019, 38(6): 1256−1264 doi: 10.11654/jaes.2018-1594

    YANG S X, LI F M, PENG X Z, et al. Effects of amendments with different C/N/P ratios on the microbial community structure in Pb-Zn mine tailings[J]. Journal of Agro-Environment Science, 2019, 38(6): 1256−1264 doi: 10.11654/jaes.2018-1594
    [54]
    SUI X, FREY B, YANG L B, et al. Soil Acidobacterial community composition changes sensitively with wetland degradation in northeastern of China[J]. Frontiers in Microbiology, 2022, 13: 1052161 doi: 10.3389/fmicb.2022.1052161
    [55]
    代金霞, 田平雅, 张莹, 等. 银北盐渍化土壤中6种耐盐植物根际细菌群落结构及其多样性[J]. 生态学报, 2019, 39(8): 2705−2714

    DAI J X, TIAN P Y, ZHANG Y, et al. Rhizobacteria community structure and diversity of six salt-tolerant plants in Yinbei saline soil[J]. Acta Ecologica Sinica, 2019, 39(8): 2705−2714
    [56]
    YOON J H, KANG S J, LEE S Y, et al. Ohtaekwangia koreensis gen. nov., sp. nov. and Ohtaekwangia kribbensis sp. nov., isolated from marine sand, deep-branching members of the Phylum Bacteroidetes[J]. International Journal of Systematic and Evolutionary Microbiology, 2011, 61(Pt 5): 1066–1072
    [57]
    OKANYA P W, MOHR K I, GERTH K, et al. Marinoquinolines A-F, pyrroloquinolines from Ohtaekwangia kribbensis (Bacteroidetes)[J]. Journal of Natural Products, 2011, 74(4): 603−608 doi: 10.1021/np100625a
    [58]
    ZHANG L, TANG C, YANG J S, et al. Salinity-dependent potential soil fungal decomposers under straw amendment[J]. Science of the Total Environment, 2023, 891: 164569 doi: 10.1016/j.scitotenv.2023.164569
    [59]
    ZHU S S, LEI Y H, WANG C, et al. Patterns of yeast diversity distribution and its drivers in rhizosphere soil of Hami melon orchards in different regions of Xinjiang[J]. BMC Microbiology, 2021, 21(1): 170 doi: 10.1186/s12866-021-02222-1
    [60]
    SHI M F, GUO A X, KANG Y C, et al. Effects of plastic film mulching and legume rotation on soil nutrients and microbial communities in the Loess Plateau of China[J]. Chemical and Biological Technologies in Agriculture, 2023, 10(1): 38 doi: 10.1186/s40538-023-00411-w
    [61]
    PELTONIEMI K, VELMALA S, LLORET E, et al. Soil and climatic characteristics and farming system shape fungal communities in European wheat fields[J]. Agriculture, Ecosystems & Environment, 2024, 370: 109035
    [62]
    NIRANJAN M. Ascobolus gomayapriya: A new coprophilous fungus from Andaman Islands, India[J]. Studies in Fungi, 2018, 3(1): 73−78 doi: 10.5943/sif/3/1/9
    [63]
    RICHARDSON M J. Diversity and occurrence of coprophilous fungi[J]. Mycological Research, 2001, 105(4): 387−402 doi: 10.1017/S0953756201003884

Catalog

    Figures(10)

    Article Metrics

    Article views (322) PDF downloads (100) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return