Volume 29 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
CHEN X, LI X L, DU X, LIU J Y, LIU Q Q, YUAN J C, KONG F L. Changes of maize lodging resistance after physiological maturity and its influencing factors in Sichuan[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1524−1532 doi: 10.13930/j.cnki.cjea.210044
Citation: CHEN X, LI X L, DU X, LIU J Y, LIU Q Q, YUAN J C, KONG F L. Changes of maize lodging resistance after physiological maturity and its influencing factors in Sichuan[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1524−1532 doi: 10.13930/j.cnki.cjea.210044

Changes of maize lodging resistance after physiological maturity and its influencing factors in Sichuan

doi: 10.13930/j.cnki.cjea.210044
Funds:  This study was supported by the National Key Research and Development Program of China (2017YFD0301704, 2018YFD0301206, 2016YFD0300307) and Sichuan Maize Innovation Team Program (SCCXTD-2020-02)
More Information
  • Corresponding author: E-mail: kflstar@163.com
  • Received Date: 2021-01-21
  • Accepted Date: 2021-06-05
  • Available Online: 2021-07-26
  • Publish Date: 2021-09-06
  • Densification planting and delayed harvesting are important measures for the promotion and development of mechanized grain harvesting technology of maize, but they also reduce the lodging resistance of stalks and increase the risk of lodging. The appearance of maize lodging not only increases the difficulty of mechanical harvesting and reduces the speed of mechanical harvesting, but also increases the loss of ear caused by lodging and reduces the yield of mechanical grain harvest. Therefore, the purpose of this experiment was to explore the changing law of the lodging resistance ability of maize stalks after physiological maturity under different densities and to provide a scientific basis for the development of maize dense planting and high-yielding mechanical grain harvest technology. This experiment used ‘Zhenghong 6’ as the material and set 6 density treatments: 3.0×104 plants∙hm−2 (B1), 4.5×104 plants∙hm−2 (B2), 6.0×104 plants∙hm−2 (B3), 7.5×104 plants∙hm−2 (B4), 9.0×104 plants∙hm−2 (B5), and 10.5×104 plants∙hm−2 (B6). In the physiological maturity period (August 6, A1), 11 d after physiological maturity (August 17, A2), 22 d after physiological maturity (August 28, A3), and 35 d after physiological maturity (September 10, A4), 5 plants in each plot were sampled and the changing laws of stalk strength, internode morphology, internode dry matter, moisture content, etc. were determined. The results showed that the internode stalk strength of maize decreased after physiological maturity, but the decreasing range gradually reduced with time. After physiological maturity, the dry weight per unit length and water content of stalk decreased, while the internode length-to-diameter ratio increased slightly. Stalk strength and it’s change with time were significantly different among different densities after physiological maturation. In the density range of 4.5×104 plants∙hm−2 to 10.5×104 plants∙hm−2, the decreased amplitude of stalk strength showed a decreasing trend with the increase of density, and that of stalk strength of low density was greater than that of high density. The increase in planting density resulted in a significant decrease in stalk dry weight per unit length and a significant increase in the internode length-to-diameter ratio. The results showed that the decrease of stalk dry weight per unit length after physiological maturity was the main reason for the decrease of stalk strength. The increase of planting density significantly reduced the stalk strength, and with the extension of standing time, the stalk strength further decreased. The stalk strength of different densities decreased differently, and the decrease rate of low density was greater, but the stalk strength of high density was still lower than that of low density treatment all the time. Therefore, properly dense planting and harvest at the right time can reduce the risk of lodging caused by the decline of the standing capacity of culms after physiological maturity of maize.
  • loading
  • [1]
    李少昆, 赵久然, 董树亭, 等. 中国玉米栽培研究进展与展望[J]. 中国农业科学, 2017, 50(11): 1941−1959 doi: 10.3864/j.issn.0578-1752.2017.11.001

    LI S K, ZHAO J R, DONG S T, et al. Advances and prospects of maize cultivation in China[J]. Scientia Agricultura Sinica, 2017, 50(11): 1941−1959 doi: 10.3864/j.issn.0578-1752.2017.11.001
    [2]
    李璐璐, 薛军, 谢瑞芝, 等. 夏玉米籽粒含水率对机械粒收质量的影响[J]. 作物学报, 2018, 44(12): 1747−1754 doi: 10.3724/SP.J.1006.2018.01747

    LI L L, XUE J, XIE R Z, et al. Effects of grain moisture content on mechanical grain harvesting quality of summer maize[J]. Acta Agronomica Sinica, 2018, 44(12): 1747−1754 doi: 10.3724/SP.J.1006.2018.01747
    [3]
    孔凡磊, 赵波, 詹小旭, 等. 四川省夏玉米机械粒收适宜品种筛选与影响因素分析[J]. 中国生态农业学报(中英文), 2020, 28(6): 835−842

    KONG F L, ZHAO B, ZHAN X X, et al. Variety screening of mechanical grain harvest and analysis of influencing factors of summer maize in Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(6): 835−842
    [4]
    赵波, 李小龙, 周茂林, 等. 西南玉米机械粒收籽粒破碎率现状及影响因素分析[J]. 作物学报, 2020, 46(1): 74−83 doi: 10.3724/SP.J.1006.2020.93026

    ZHAO B, LI X L, ZHOU M L, et al. Current status and influencing factors of broken rate in mechanical grain harvesting of maize in Southwest China[J]. Acta Agronomica Sinica, 2020, 46(1): 74−83 doi: 10.3724/SP.J.1006.2020.93026
    [5]
    赵波, 詹小旭, 李小龙, 等. 四川省夏玉米机械化籽粒收获质量及其影响因素[J]. 中国农业大学学报, 2020, 25(4): 31−40 doi: 10.11841/j.issn.1007-4333.2020.04.04

    ZHAO B, ZHAN X X, LI X L, et al. Mechanical grain harvesting quality of summer maize in Sichuan and its influencing factors[J]. Journal of China Agricultural University, 2020, 25(4): 31−40 doi: 10.11841/j.issn.1007-4333.2020.04.04
    [6]
    孔凡磊, 赵波, 吴雅薇, 等. 收获时期对四川春玉米机械粒收质量的影响[J]. 中国生态农业学报(中英文), 2020, 28(1): 50−56

    KONG F L, ZHAO B, WU Y W, et al. Effects of harvesting date on mechanical grain-harvesting quality of spring maize in Sichuan Province[J]. Chinese Journal of Eco-Agriculture, 2020, 28(1): 50−56
    [7]
    薛军, 王群, 李璐璐, 等. 玉米生理成熟后倒伏变化及其影响因素[J]. 作物学报, 2018, 44(12): 1782−1792 doi: 10.3724/SP.J.1006.2018.01782

    XUE J, WANG Q, LI L L, et al. Changes of maize lodging after physiological maturity and its influencing factors[J]. Acta Agronomica Sinica, 2018, 44(12): 1782−1792 doi: 10.3724/SP.J.1006.2018.01782
    [8]
    赵波, 吴雅薇, 李小龙, 等. 四川春玉米生理成熟后穗下茎秆倒折的影响因素[J]. 湖南农业大学学报: 自然科学版, 2020, 46(3): 278−284

    ZHAO B, WU Y W, LI X L, et al. The influencing factors of the stalk lodging under ear after physiological maturity of spring maize in Sichuan[J]. Journal of Hunan Agricultural University: Natural Sciences, 2020, 46(3): 278−284
    [9]
    李少昆, 王克如, 谢瑞芝, 等. 实施密植高产机械化生产 实现玉米高产高效协同[J]. 作物杂志, 2016, (4): 1−6

    LI S K, WANG K R, XIE R Z, et al. Implementing higher population and full mechanization technologies to achieve high yield and high efficiency in maize production[J]. Crops, 2016, (4): 1−6
    [10]
    STANGER T F, LAUER J G. Corn stalk response to plant population and the bt-European corn borer trait[J]. Agronomy Journal, 2007, 99(3): 657−664 doi: 10.2134/agronj2006.0079
    [11]
    TETIO-KAGHO F, GARDNER F P. Responses of maize to plant population density. I. canopy development, light relationships, and vegetative growth[J]. Agronomy Journal, 1988, 80(6): 930−935 doi: 10.2134/agronj1988.00021962008000060018x
    [12]
    VAN ROEKEL R J, COULTER J A. Agronomic responses of corn to planting date and plant density[J]. Agronomy Journal, 2011, 103(5): 1414−1422 doi: 10.2134/agronj2011.0071
    [13]
    勾玲, 黄建军, 张宾, 等. 群体密度对玉米茎秆抗倒力学和农艺性状的影响[J]. 作物学报, 2007, 33(10): 1688−1695 doi: 10.3321/j.issn:0496-3490.2007.10.019

    GOU L, HUANG J J, ZHANG B, et al. Effects of population density on stalk lodging resistant mechanism and agronomic characteristics of maize[J]. Acta Agronomica Sinica, 2007, 33(10): 1688−1695 doi: 10.3321/j.issn:0496-3490.2007.10.019
    [14]
    刘海, 段宏凯, 郑丽萍, 等. 玉米品种与密度对植株性状的影响[J]. 中国农学通报, 2017, 33(13): 21−25 doi: 10.11924/j.issn.1000-6850.casb17010096

    LIU H, DUAN H K, ZHENG L P, et al. Effects of maize variety and planting density on plant characters[J]. Chinese Agricultural Science Bulletin, 2017, 33(13): 21−25 doi: 10.11924/j.issn.1000-6850.casb17010096
    [15]
    THOMISON P R, MULLEN R W, LIPPS P E, et al. Corn response to harvest date as affected by plant population and hybrid[J]. Agronomy Journal, 2011, 103(6): 1765−1772 doi: 10.2134/agronj2011.0147
    [16]
    XUE J, XIE R Z, ZHANG W F, et al. Research progress on reduced lodging of high-yield and -density maize[J]. Journal of Integrative Agriculture, 2017, 16(12): 2717−2725 doi: 10.1016/S2095-3119(17)61785-4
    [17]
    薛军, 董朋飞, 胡树平, 等. 玉米倒伏对机械粒收损失的影响及倒伏减损收获技术[J]. 玉米科学, 2020, 28(6): 116−120, 126

    XUE J, DONG P F, HU S P, et al. Effect of lodging on maize grain loss and loss reduction technology in mechanical grain harvest[J]. Journal of Maize Sciences, 2020, 28(6): 116−120, 126
    [18]
    薛军, 李璐璐, 谢瑞芝, 等. 倒伏对玉米机械粒收田间损失和收获效率的影响[J]. 作物学报, 2018, 44(12): 1774−1781 doi: 10.3724/SP.J.1006.2018.01774

    XUE J, LI L L, XIE R Z, et al. Effect of lodging on maize grain losing and harvest efficiency in mechanical grain harvest[J]. Acta Agronomica Sinica, 2018, 44(12): 1774−1781 doi: 10.3724/SP.J.1006.2018.01774
    [19]
    赵波, 吴雅薇, 袁继超, 等. 四川省夏玉米生理成熟后穗下茎秆倒折位置分析[J]. 中国农业大学学报, 2021, 26(1): 18−25 doi: 10.11841/j.issn.1007-4333.2021.01.02

    ZHAO B, WU Y W, YUAN J C, et al. Analysis of the position of the stalk lodging under ear after physiological maturity of Sichuan summer maize[J]. Journal of China Agricultural University, 2021, 26(1): 18−25 doi: 10.11841/j.issn.1007-4333.2021.01.02
    [20]
    ROBERTSON D, SMITH S, GARDUNIA B, et al. An improved method for accurate phenotyping of corn stalk strength[J]. Crop Science, 2014, 54(5): 2038−2044 doi: 10.2135/cropsci2013.11.0794
    [21]
    JAMPATONG S, DARRAH L L, KRAUSE G F, et al. Effect of one- and two-eared selection on stalk strength and other characters in maize[J]. Crop Science, 2000, 40(3): 605−611 doi: 10.2135/cropsci2000.403605x
    [22]
    丰光, 刘志芳, 吴宇锦, 等. 玉米抗倒性与茎秆穿刺力和拉力关系的初步研究[J]. 玉米科学, 2010, 18(6): 19−23

    FENG G, LIU Z F, WU Y J, et al. Primary study on correlation between corn variety lodging resistances and its stem puncture-pull strength[J]. Journal of Maize Sciences, 2010, 18(6): 19−23
    [23]
    XUE J, ZHAO Y S, GOU L, et al. How high plant density of maize affects basal internode development and strength formation[J]. Crop Science, 2016, 56(6): 3295−3306 doi: 10.2135/cropsci2016.04.0243
    [24]
    ANDERSON B. Evaluation of methods for identification of corn genotypes with stalk rot and lodging resistance[J]. Plant Disease, 1994, 78(6): 590 doi: 10.1094/PD-78-0590
    [25]
    刘晓林, 马晓君, 豆攀, 等. 种植密度对川中丘陵夏玉米茎秆性状及产量的影响[J]. 中国生态农业学报, 2017, 25(3): 356−364

    LIU X L, MA X J, DOU P, et al. Effect of planting density on stem characteristics and yield of summer maize in the Hilly Central Sichuan Basin, China[J]. Chinese Journal of Eco-Agriculture, 2017, 25(3): 356−364
    [26]
    姚敏娜, 施志国, 薛军, 等. 种植密度对玉米茎秆皮层结构及抗倒伏能力的影响[J]. 新疆农业科学, 2013, 50(11): 2006−2014

    YAO M N, SHI Z G, XUE J, et al. The effects of different planting densities on the cortex structure of steam and lodging resistance in maize[J]. Xinjiang Agricultural Sciences, 2013, 50(11): 2006−2014
    [27]
    程云, 王枟刘, 杨静, 等. 种植密度对夏玉米基部节间性状与倒伏的影响[J]. 玉米科学, 2015, 23(5): 112−116

    CHENG Y, WANG T L, YANG J, et al. Effects of planting density on characteristics of basal internodes and lodging in summer maize[J]. Journal of Maize Sciences, 2015, 23(5): 112−116
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(3)

    Article Metrics

    Article views (284) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return