Volume 29 Issue 9
Sep.  2021
Turn off MathJax
Article Contents
HU K, ZHANG H X, GUO L M, WU F Y, ZHOU B Q, XING S H, MAO Y L. Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of adlay soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1592−1603 doi: 10.13930/j.cnki.cjea.210127
Citation: HU K, ZHANG H X, GUO L M, WU F Y, ZHOU B Q, XING S H, MAO Y L. Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of adlay soil[J]. Chinese Journal of Eco-Agriculture, 2021, 29(9): 1592−1603 doi: 10.13930/j.cnki.cjea.210127

Effects of tobacco stalk biochar-based fertilizer on the organic carbon fractions and microbial community structure of adlay soil

doi: 10.13930/j.cnki.cjea.210127
Funds:  This study was supported by the Central Finance Forestry Technology Promotion Demonstration Project of China (Min[2018]TG15), the Science and Technology Innovation Special Fund of Fujian Agriculture and Forestry University (KFA17397A, CXZX2017226)
More Information
  • Corresponding author: E-mail: fafum@126.com
  • Received Date: 2021-03-08
  • Accepted Date: 2021-04-30
  • Available Online: 2021-08-19
  • Publish Date: 2021-09-06
  • Long-term continuous cropping of adlay ( Coix lacryma-jobi L.) and the indiscriminate application of chemical fertilizers have led to soil fertility declines and acidification. To explore the effects of tobacco stalk biochar-based fertilizer on the soil organic carbon (SOC) fractions and microbial community structure and abundance, tobacco stalk biochar-based fertilizer was used in a field experiment with four treatments: no fertilizer, conventional fertilizer, low tobacco stalk biochar-based fertilizer, and high tobacco stalk biochar-based fertilizer. Changes in the activities of four enzymes related to soil carbon cycling and microbial activity were evaluated, and the relationships between the soil pH, SOC fractions, soil enzymes, and soil bacterial abundance were analyzed. The results showed that: 1) The application of tobacco stalk carbon-based fertilizer significantly increased the soil pH and the contents of SOC, dissolved organic carbon (DOC), particulate organic carbon (POC), and microbial biomass carbon (MBC) (P<0.05). The MBC was most affected, increasing by 41.09%−76.04% compared to conventional fertilizer application. 2) The application of tobacco stalk biochar-based fertilizer significantly increased the activities of soil amylase and dehydrogenase (P<0.05). Compared to conventional chemical fertilizers, amylase and dehydrogenase activities increased by 44.28% and 57.54%, respectively, whereas the soil invertase activity was unaffected when tobacco stalk biochar-based fertilizer was applied. 3) The application of tobacco stalk biochar-based fertilizer increased the Chao1 and Shannon indexes, abundance and diversity of the soil bacterial communities. 4) The application of tobacco stalk biochar-based fertilizer affected the composition and structure of the soil bacterial community, increased the relative abundance of Actinomycetes and Bacteroides, and reduced the relative abundance of Proteobacteria and Chloroflexus. It also significantly increased the abundance of Nitrospira, Bryobacter, and other bacterial genera, and significantly reduced the abundance of Aciditerrimonas and Crenothrix. 5) Redundancy anaylsis showed that soil pH, carbon fraction, soil enzymes activities, and soil bacterial community abundance were correlated each other after the application of tobacco stalk biochar-based fertilizer; soil pH, SOC, POC, DOC, MBC were significantly positively correlated with the activities of various soil enzymes (P<0.05), but were significantly negatively correlated with Proteobacteria (P<0.05). In summary, tobacco stalk biochar-based fertilizer increased the soil pH, SOC fractions, soil enzymes activities, and soil bacterial abundance, which improved the soil bacterial community structure and the adlay planting soil and optimized the soil ecology. This study provides a reference for the resource utilization of tobacco stalk and improvements in soil fertility.
  • loading
  • [1]
    李祥栋, 潘虹, 陆秀娟, 等. 薏苡种质的主要营养组分特征及综合评价[J]. 中国农业科学, 2018, 51(5): 835−850 doi: 10.3864/j.issn.0578-1752.2018.05.003

    LI X D, PAN H, LU X J, et al. Characteristics and comprehensive assessment of principal nutritional components in adlay landraces[J]. Scientia Agricultura Sinica, 2018, 51(5): 835−850 doi: 10.3864/j.issn.0578-1752.2018.05.003
    [2]
    杨荔阳, 易志辉, 林斌, 等. 福建省耕地质量空间自相关分析与耕地保护分区[J]. 中国农业资源与区划, 2018, 39(11): 52−58

    YANG L Y, YI Z H, LIN B, et al. Analysis for the characteristics of spatial difference of cultivated land quality in Fujian Province[J]. Chinese Journal of Agricultural Resources and Regional Planning, 2018, 39(11): 52−58
    [3]
    冀拯宇, 周吉祥, 张贺, 等. 不同土壤改良剂对盐碱土壤化学性质和有机碳库的影响[J]. 农业环境科学学报, 2019, 38(8): 1759−1767 doi: 10.11654/jaes.2019-0426

    JI Z Y, ZHOU J X, ZHANG H, et al. Effect of soil conditioners on the soil chemical properties and organic carbon pool of saline-sodic soil[J]. Journal of Agro-Environment Science, 2019, 38(8): 1759−1767 doi: 10.11654/jaes.2019-0426
    [4]
    李衍亮, 黄玉芬, 魏岚, 等. 施用生物炭对重金属污染农田土壤改良及玉米生长的影响[J]. 农业环境科学学报, 2017, 36(11): 2233−2239 doi: 10.11654/jaes.2017-0522

    LI Y L, HUANG Y F, WEI L, et al. Impacts of biochar application on amelioration of heavy metal-polluted soil and maize growth[J]. Journal of Agro-Environment Science, 2017, 36(11): 2233−2239 doi: 10.11654/jaes.2017-0522
    [5]
    王光飞, 马艳, 郭德杰, 等. 不同用量秸秆生物炭对辣椒疫病防控效果及土壤性状的影响[J]. 土壤学报, 2017, 54(1): 204−215 doi: 10.11766/trxb201604140027

    WANG G F, MA Y, GUO D J, et al. Application-rate-dependent effects of straw biochar on control of Phytophthora blight of chilli pepper and soil properties[J]. Acta Pedologica Sinica, 2017, 54(1): 204−215 doi: 10.11766/trxb201604140027
    [6]
    LAIRD D, FLEMING P, WANG B Q, et al. Biochar impact on nutrient leaching from a midwestern agricultural soil[J]. Geoderma, 2010, 158(3/4): 436−442
    [7]
    SOHI S P, KRULL E, LOPEZ-CAPEL E, et al. A review of biochar and its use and function in soil[J]. Advances in Agronomy, 2010, 105: 47−82
    [8]
    陈坤, 徐晓楠, 彭靖, 等. 生物炭及炭基肥对土壤微生物群落结构的影响[J]. 中国农业科学, 2018, 51(10): 1920−1930 doi: 10.3864/j.issn.0578-1752.2018.10.011

    CHEN K, XU X N, PENG J, et al. Effects of biochar and biochar-based fertilizer on soil microbial community structure[J]. Scientia Agricultura Sinica, 2018, 51(10): 1920−1930 doi: 10.3864/j.issn.0578-1752.2018.10.011
    [9]
    高梦雨, 江彤, 韩晓日, 等. 施用炭基肥及生物炭对棕壤有机碳组分的影响[J]. 中国农业科学, 2018, 51(11): 2126−2135 doi: 10.3864/j.issn.0578-1752.2018.11.010

    GAO M Y, JIANG T, HAN X R, et al. Effects of applying biochar-based fertilizer and biochar on organic carbon fractions and contents of brown soil[J]. Scientia Agricultura Sinica, 2018, 51(11): 2126−2135 doi: 10.3864/j.issn.0578-1752.2018.11.010
    [10]
    常栋, 马文辉, 张凯, 等. 生物炭基肥对植烟土壤微生物功能多样性的影响[J]. 中国烟草学报, 2018, 24(6): 58−66

    CHANG D, MA W H, ZHANG K, et al. Effect of biochar fertilizer on microbial functional diversity in tobacco growing soil[J]. Acta Tabacaria Sinica, 2018, 24(6): 58−66
    [11]
    IBRAHIM M M, TONG C X, HU K, et al. Biochar-fertilizer interaction modifies N-sorption, enzyme activities and microbial functional abundance regulating nitrogen retention in rhizosphere soil[J]. Science of the Total Environment, 2020, 739: 140065 doi: 10.1016/j.scitotenv.2020.140065
    [12]
    何伟, 王会, 韩飞, 等. 长期施用有机肥显著提升潮土有机碳组分[J]. 土壤学报, 2020, 57(2): 425−434

    HE W, WANG H, HAN F, et al. Effect of long-term application of organic manure expanding organic carbon fractions in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(2): 425−434
    [13]
    王毅, 张俊清, 况帅, 等. 施用小麦秸秆或其生物炭对烟田土壤理化特性及有机碳组分的影响[J]. 植物营养与肥料学报, 2020, 26(2): 285−294 doi: 10.11674/zwyf.19078

    WANG Y, ZHANG J Q, KUANG S, et al. Effects of wheat straw and its biochar application on soil physiochemical properties and organic carbon fractions in flue-cured tobacco field[J]. Journal of Plant Nutrition and Fertilizers, 2020, 26(2): 285−294 doi: 10.11674/zwyf.19078
    [14]
    包建平, 袁根生, 董方圆, 等. 生物质炭与秸秆施用对红壤有机碳组分和微生物活性的影响[J]. 土壤学报, 2020, 57(3): 721−729

    BAO J P, YUAN G S, DONG F Y, et al. Effects of biochar application and straw returning on organic carbon fractionations and microbial activities in a red soil[J]. Acta Pedologica Sinica, 2020, 57(3): 721−729
    [15]
    WANG X P, IBRAHIM M M, TONG C X, et al. Influence of pyrolysis conditions on the properties and Pb2+ and Cd2+ adsorption potential of tobacco stem biochar[J]. BioResources, 2020, 15(2): 4026−4051 doi: 10.15376/biores.15.2.4026-4051
    [16]
    陈懿, 林英超, 黄化刚, 等. 炭基肥对植烟黄壤性状和烤烟养分积累、产量及品质的影响[J]. 土壤学报, 2019, 56(2): 495−504 doi: 10.11766/trxb201806060133

    CHEN Y, LIN Y C, HUANG H G, et al. Effect of biochar-based fertilizer on properties of tobacco-planting yellow soil, and nutrient accumulation, yield and quality of flue-cured tobacco[J]. Acta Pedologica Sinica, 2019, 56(2): 495−504 doi: 10.11766/trxb201806060133
    [17]
    宋大利, 习向银, 黄绍敏, 等. 秸秆生物炭配施氮肥对潮土土壤碳氮含量及作物产量的影响[J]. 植物营养与肥料学报, 2017, 23(2): 369−379 doi: 10.11674/zwyf.16399

    SONG D L, XI X Y, HUANG S M, et al. Effects of combined application of straw biochar and nitrogen on soil carbon and nitrogen contents and crop yields in a fluvo-aquic soil[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(2): 369−379 doi: 10.11674/zwyf.16399
    [18]
    DEMISIE W, LIU Z Y, ZHANG M K. Effect of biochar on carbon fractions and enzyme activity of red soil[J]. Catena, 2014, 121: 214−221 doi: 10.1016/j.catena.2014.05.020
    [19]
    刘园, M. Jamal Khan, 靳海洋, 等. 秸秆生物炭对潮土作物产量和土壤性状的影响[J]. 土壤学报, 2015, 52(4): 849−858

    LIU Y, KHAN M J, JIN H Y, et al. Effects of successive application of crop-straw biochar on crop yield and soil properties in cambosols[J]. Acta Pedologica Sinica, 2015, 52(4): 849−858
    [20]
    IBRAHIM M M, HU K, TONG C X, et al. De-ashed biochar enhances nitrogen retention in manured soil and changes soil microbial dynamics[J]. Geoderma, 2020, 378: 114589 doi: 10.1016/j.geoderma.2020.114589
    [21]
    周际海, 郜茹茹, 魏倩, 等. 旱地红壤不同土地利用方式对土壤酶活性及微生物多样性的影响差异[J]. 水土保持学报, 2020, 34(1): 327−332

    ZHOU J H, GAO R R, WEI Q, et al. Effects of different land use patterns on enzyme activities and microbial diversity in upland red soil[J]. Journal of Soil and Water Conservation, 2020, 34(1): 327−332
    [22]
    周玉祥, 宋子岭, 孔涛, 等. 不同秸秆生物炭对露天煤矿排土场土壤微生物数量和酶活性的影响[J]. 环境化学, 2017, 36(1): 106−113 doi: 10.7524/j.issn.0254-6108.2017.01.2016041703

    ZHOU Y X, SONG Z L, KONG T, et al. Effect of straw biochar on soil microbe number and soil enzyme activities in opencast coal mine dump[J]. Environmental Chemistry, 2017, 36(1): 106−113 doi: 10.7524/j.issn.0254-6108.2017.01.2016041703
    [23]
    陈心想, 耿增超, 王森, 等. 施用生物炭后土土壤微生物及酶活性变化特征[J]. 农业环境科学学报, 2014, 33(4): 751−758 doi: 10.11654/jaes.2014.04.019

    CHEN X X, GENG Z C, WANG S, et al. Effects of biochar amendment on microbial biomass and enzyme activities in loess soil[J]. Journal of Agro-Environment Science, 2014, 33(4): 751−758 doi: 10.11654/jaes.2014.04.019
    [24]
    OLESZCZUK P, JOŚKO I, FUTA B, et al. Effect of pesticides on microorganisms, enzymatic activity and plant in biochar-amended soil[J]. Geoderma, 2014, 214/215: 10−18 doi: 10.1016/j.geoderma.2013.10.010
    [25]
    CHEN J H, LIU X Y, ZHENG J W, et al. Biochar soil amendment increased bacterial but decreased fungal gene abundance with shifts in community structure in a slightly acid rice paddy from Southwest China[J]. Applied Soil Ecology, 2013, 71: 33−44 doi: 10.1016/j.apsoil.2013.05.003
    [26]
    陈懿, 吴春, 李彩斌, 等. 炭基肥对植烟黄壤细菌、真菌群落结构和多样性的影响[J]. 微生物学报, 2020, 60(4): 653−666

    CHEN Y, WU C, LI C B, et al. Effect of biochar-based fertilizer on bacterial and fungal community composition, diversity in tobacco-planting yellow soil[J]. Acta Microbiologica Sinica, 2020, 60(4): 653−666
    [27]
    FARRELL M, KUHN T K, MACDONALD L M, et al. Microbial utilisation of biochar-derived carbon[J]. Science of the Total Environment, 2013, 465: 288−297 doi: 10.1016/j.scitotenv.2013.03.090
    [28]
    MUHAMMAD N, DAI Z M, XIAO K C, et al. Changes in microbial community structure due to biochars generated from different feedstocks and their relationships with soil chemical properties[J]. Geoderma, 2014, 226/227: 270−278 doi: 10.1016/j.geoderma.2014.01.023
    [29]
    NIELSEN S, MINCHIN T, KIMBER S, et al. Comparative analysis of the microbial communities in agricultural soil amended with enhanced biochars or traditional fertilisers[J]. Agriculture, Ecosystems & Environment, 2014, 191: 73−82
    [30]
    徐民民, 黄莹, 李波, 等. 生物炭对小麦根际和根内微生物群落结构的影响[J]. 浙江农业学报, 2021, 33(3): 516−525

    XU M M, HUANG Y, LI B, et al. Effect of biochar on wheat root-associated microbial community structures[J]. Acta Agriculturae Zhejiangensis, 2021, 33(3): 516−525
    [31]
    马晓英, 马琨, 周艳, 等. 土壤细菌群落组成对有机与无机培肥措施的响应[J]. 西北农业学报, 2019, 28(10): 1698−1707

    MA X Y, MA K, ZHOU Y, et al. Response of soil bacteria community structure to application of inorganic and organic fertilizer[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(10): 1698−1707
    [32]
    王明元, 侯式贞, 董涛, 等. 香蕉假茎生物炭对根际土壤细菌丰度和群落结构的影响[J]. 微生物学报, 2019, 59(7): 1363−1372

    WANG M Y, HOU S Z, DONG T, et al. Effects of banana pseudostem biochar on bacterial abundance and community structure in rhizosphere soil[J]. Acta Microbiologica Sinica, 2019, 59(7): 1363−1372
    [33]
    赵文慧, 马垒, 徐基胜, 等. 秸秆与木本泥炭短期施用对潮土有机质及微生物群落组成和功能的影响[J]. 土壤学报, 2020, 57(1): 153−164

    ZHAO W H, MA L, XU J S, et al. Effect of application of straw and wood peat for a short period on soil organic matter and microbial community in composition and function in fluvo-aquic soil[J]. Acta Pedologica Sinica, 2020, 57(1): 153−164
    [34]
    杜思瑶, 于淼, 刘芳华, 等. 设施种植模式对土壤细菌多样性及群落结构的影响[J]. 中国生态农业学报, 2017, 25(11): 1615−1625

    DU S Y, YU M, LIU F H, et al. Effect of facility management regimes on soil bacterial diversity and community structure[J]. Chinese Journal of Eco-Agriculture, 2017, 25(11): 1615−1625
    [35]
    樊鹏飞, 刘文, 任天宝, 等. 滴灌减氮下生物炭基肥对植烟土壤无机氮组分含量的影响[J]. 河南农业大学学报, 2020, 54(5): 740−747, 761

    FAN P F, LIU W, REN T B, et al. Effects of biochar-based organic fertilizer on inorganic nitrogen composition in tobacco-growing soil under drip irrigation[J]. Journal of Henan Agricultural University, 2020, 54(5): 740−747, 761
    [36]
    莫永亮, 郑燕, 金凤, 等. 内蒙古岗更诺尔湖泊退化情景下好氧甲烷氧化的微生物过程研究[J]. 微生物学报, 2019, 59(6): 1105−1115

    MO Y L, ZHENG Y, JIN F, et al. Aerobic methane oxidation under distinct shrinkage scenario of Lake Ganggeng in Inner Mongolia Autonomous Region[J]. Acta Microbiologica Sinica, 2019, 59(6): 1105−1115
    [37]
    周之栋, 卜晓莉, 吴永波, 等. 生物炭对土壤微生物特性影响的研究进展[J]. 南京林业大学学报: 自然科学版, 2016, 40(6): 1−8

    ZHOU Z D, BU X L, WU Y B, et al. Research advances in biochar effects on soil microbial properties[J]. Journal of Nanjing Forestry University: Natural Sciences Edition, 2016, 40(6): 1−8
    [38]
    胡华英, 殷丹阳, 曹升, 等. 生物炭对杉木人工林土壤养分、酶活性及细菌性质的影响[J]. 生态学报, 2019, 39(11): 4138−4148

    HU H Y, YIN D Y, CAO S, et al. Effects of biochar on soil nutrient, enzyme activity, and bacterial properties of Chinese fir plantation[J]. Acta Ecologica Sinica, 2019, 39(11): 4138−4148
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)  / Tables(4)

    Article Metrics

    Article views (214) PDF downloads(56) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return