Volume 29 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
LIU C E, YUE M H, TAN H L, ZHANG Y, ZHANG W L, XIAO Y L, PAN Y, DUAN C Q. Effects of nano-zero-valent iron (nZVI) on earthworm-bacteria-soil systems[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1722−1732 doi: 10.13930/j.cnki.cjea.210156
Citation: LIU C E, YUE M H, TAN H L, ZHANG Y, ZHANG W L, XIAO Y L, PAN Y, DUAN C Q. Effects of nano-zero-valent iron (nZVI) on earthworm-bacteria-soil systems[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1722−1732 doi: 10.13930/j.cnki.cjea.210156

Effects of nano-zero-valent iron (nZVI) on earthworm-bacteria-soil systems

doi: 10.13930/j.cnki.cjea.210156
Funds:  The study was supported by the National Natural Science Foundation of China (U2002208), the Key Research and Development Project of Yunnan Province (2019BC001, 2018DG005) and the Students Innovations Project of Yunnan University (202004169)
More Information
  • Corresponding author: E-mail: chqduan@ynu.edu.cn
  • Received Date: 2021-03-15
  • Accepted Date: 2021-05-08
  • Available Online: 2021-06-22
  • Publish Date: 2021-10-01
  • Nano-zero-valent iron (nZVI) is widely used to remedy soil heavy metal pollution. However, the potential effects of nZVI on soil invertebrates, soil quality and microbial communities have not been well studied. In this study, we used Eisenia foetida (0, 10 pieces per kilogram soil) as the test species and examined the potential effects of nZVI (mass ratios of 0, 0.05%, 0.25%, and 0.50%) on the earthworm-bacteria-soil ecosystems after 15, 30, and 45 days of exposure. The results showed that after 45 days of exposure, there was no significant difference in survival rate and biomass of earthworms. The earthworm survival rate and content of malondialdehyde in the 0.50% nZVI system decreased by 27.66% and 0.86 nmol∙g−1, respectively, compared with those on day 15. However, the earthworm biomass increased by 1.20 times, and the catalase activity increased by 2.62 times. At the phylum or genus level, nZVI had no significant effects on the relative abundance, diversity index, and abundance index of soil microorganisms. Compared with the 0 nZVI system, the proportion of soil large aggregates (>250 μm), the average weight diameter of soil aggregates, and the content of available phosphorus (P) in the 0.50% nZVI system increased by 15.69%, 12.59%, and 21.20% under earthworm-mediated conditions, respectively. The proportion of soil macroaggregates and the average weight diameter of soil aggregates in the earthworm and nZVI composite systems were significantly higher than those in the corresponding single nZVI system, and earthworm activity significantly improved the stability of soil aggregates under nZVI stress (P<0.01). In this study, we found that long-term exposure to nZVI had no significant toxic effects on the community characteristics of soil microorganisms but promoted the growth of earthworms, which further improved the bioavailability of soil nutrients. This study provides a scientific basis for environmental safety assessments of nZVI in soil restoration applications.
  • loading
  • [1]
    VILARDI G, DI PALMA L. Kinetic study of nitrate removal from aqueous solutions using copper-coated iron nanoparticles[J]. Bulletin of Environmental Contamination and Toxicology, 2017, 98(3): 359−365 doi: 10.1007/s00128-016-1865-9
    [2]
    EL-TEMSAH Y S, JONER E J. Effects of nano-sized zero-valent iron (nZVI) on DDT degradation in soil and its toxicity to Collembola and ostracods[J]. Chemosphere, 2013, 92(1): 131−137 doi: 10.1016/j.chemosphere.2013.02.039
    [3]
    LI Z T, WANG L, WU J Z, et al. Zeolite-supported nanoscale zero-valent iron for immobilization of cadmium, lead, and arsenic in farmland soils: Encapsulation mechanisms and indigenous microbial responses[J]. Environmental Pollution, 2020, 260: 114098 doi: 10.1016/j.envpol.2020.114098
    [4]
    KLAINE S J, ALVAREZ P J J, BATLEY G E, et al. Nanomaterials in the environment: behavior, fate, bioavailability, and effects[J]. Environmental Toxicology and Chemistry, 2008, 27(9): 1825 doi: 10.1897/08-090.1
    [5]
    LI S L, WANG W, LIANG F P, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application[J]. Journal of Hazardous Materials, 2017, 322: 163−171 doi: 10.1016/j.jhazmat.2016.01.032
    [6]
    LEE C, KIM J Y, LEE W I, et al. Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli[J]. Environmental Science & Technology, 2008, 42(13): 4927−4933
    [7]
    CHEN P J, SU C H, TSENG C Y, et al. Toxicity assessments of nanoscale zerovalent iron and its oxidation products in medaka (Oryzias latipes) fish[J]. Marine Pollution Bulletin, 2011, 63(5/6/7/8/9/10/11/12): 339−346
    [8]
    KELLER A A, GARNER K, MILLER R J, et al. Toxicity of nano-zero valent iron to freshwater and marine organisms[J]. PLoS One, 2012, 7(8): e43983 doi: 10.1371/journal.pone.0043983
    [9]
    CHEN X, YAO X Y, YU C N, et al. Hydrodechlorination of polychlorinated biphenyls in contaminated soil from an e-waste recycling area, using nanoscale zerovalent iron and Pd/Fe bimetallic nanoparticles[J]. Environmental Science and Pollution Research, 2014, 21(7): 5201−5210 doi: 10.1007/s11356-013-2089-8
    [10]
    HUANG D L, HU Z X, PENG Z W, et al. Cadmium immobilization in river sediment using stabilized nanoscale zero-valent iron with enhanced transport by polysaccharide coating[J]. Journal of Environmental Management, 2018, 210: 191−200
    [11]
    PHILLIPS H R, GUERRA C A, BARTZ M L C, et al. Global distribution of earthworm diversity[EB/OL]. 2019. https://www.researchgate.net/publication/334304076_Global_distribution_of_earthworm_diversity
    [12]
    KEMPER W D, ROSENAU R C. Aggregate Stability and Size Distribution[M]//SSSA Book Series. Madison, WI, USA: Soil Science Society of America, American Society of Agronomy, 2018: 425–442
    [13]
    LIANG J, XIA X Q, YUAN L, et al. The reproductive responses of earthworms (Eisenia fetida) exposed to nanoscale zero-valent iron (nZVI) in the presence of decabromodiphenyl ether (BDE209)[J]. Environmental Pollution, 2018, 237: 784−791 doi: 10.1016/j.envpol.2017.10.130
    [14]
    LIANG J, XIA X Q, ZHANG W, et al. The biochemical and toxicological responses of earthworm (Eisenia fetida) following exposure to nanoscale zerovalent iron in a soil system[J]. Environmental Science and Pollution Research, 2017, 24(3): 2507−2514 doi: 10.1007/s11356-016-8001-6
    [15]
    LUKKARI T, HAIMI J. Avoidance of Cu- and Zn-contaminated soil by three ecologically different earthworm species[J]. Ecotoxicology and Environmental Safety, 2005, 62(1): 35−41 doi: 10.1016/j.ecoenv.2004.11.012
    [16]
    EL-TEMSAH Y S, JONER E J. Ecotoxicological effects on earthworms of fresh and aged nano-sized zero-valent iron (nZVI) in soil[J]. Chemosphere, 2012, 89(1): 76−82 doi: 10.1016/j.chemosphere.2012.04.020
    [17]
    YIRSAW B D, MEGHARAJ M, CHEN Z L, et al. Environmental application and ecological significance of nano-zero valent iron[J]. Journal of Environmental Sciences, 2016, 44: 88−98 doi: 10.1016/j.jes.2015.07.016
    [18]
    YIRSAW B D, MAYILSWAMI S, MEGHARAJ M, et al. Effect of zero valent iron nanoparticles to Eisenia fetida in three soil types[J]. Environmental Science and Pollution Research, 2016, 23(10): 9822−9831 doi: 10.1007/s11356-016-6193-4
    [19]
    KıZıLKAYA R. The role of different organic wastes on zinc bioaccumulation by earthworm Lumbricus terrestris L. (Oligochaeta) in successive Zn added soil[J]. Ecological Engineering, 2005, 25(4): 322−331 doi: 10.1016/j.ecoleng.2005.06.006
    [20]
    GANGULY P, BREEN A, PILLAI S C. Toxicity of nanomaterials: exposure, pathways, assessment, and recent advances[J]. ACS Biomaterials Science & Engineering, 2018, 4(7): 2237−2275
    [21]
    KWAK J I, AN Y J. Ecotoxicological effects of nanomaterials on earthworms: a review[J]. Human and Ecological Risk Assessment: an International Journal, 2015, 21(6): 1566−1575
    [22]
    LIU C G, DUAN C Q, MENG X H, et al. Ecotoxicological effects of nanomaterials on earthworms: a review[J]. Human and Ecological Risk Assessment: an International Journal, 2015, 21(6): 115410
    [23]
    FAJARDO C, COSTA G, NANDE M, et al. Heavy metals immobilization capability of two iron-based nanoparticles (nZVI and Fe3O4): Soil and freshwater bioassays to assess ecotoxicological impact[J]. Science of the Total Environment, 2019, 656: 421−432 doi: 10.1016/j.scitotenv.2018.11.323
    [24]
    JIAO W Z, SONG Y, ZHANG D S, et al. Nanoscale zero-valent iron modified with carboxymethyl cellulose in an impinging stream-rotating packed bed for the removal of lead (Ⅱ)[J]. Advanced Powder Technology, 2019, 30(10): 2251−2261 doi: 10.1016/j.apt.2019.07.005
    [25]
    WU S L, VOSÁTKA M, VOGEL-MIKUS K, et al. Nano zero-valent iron mediated metal(loid) uptake and translocation by arbuscular mycorrhizal symbioses[J]. Environmental Science & Technology, 2018, 52(14): 7640−7651
    [26]
    BAI H C, LUO M, WEI S Q, et al. The vital function of humic acid with different molecular weight in controlling Cd and Pb bioavailability and toxicity to earthworm (Eisenia fetida) in soil[J]. Environmental Pollution, 2020, 261: 114222 doi: 10.1016/j.envpol.2020.114222
    [27]
    BEAUMELLE L, VILE D, LAMY I, et al. A structural equation model of soil metal bioavailability to earthworms: confronting causal theory and observations using a laboratory exposure to field-contaminated soils[J]. Science of the Total Environment, 2016, 569/570: 961−972 doi: 10.1016/j.scitotenv.2016.06.023
    [28]
    LATIF A, SHENG D, SUN K, et al. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications[J]. Environmental Pollution, 2020, 264: 114728 doi: 10.1016/j.envpol.2020.114728
    [29]
    MATHESON L J, TRATNYEK P G. Reductive dehalogenation of chlorinated methanes by iron metal[J]. Environmental Science & Technology, 1994, 28(12): 2045−2053
    [30]
    朱玲. 蚯蚓对土壤生物学性质、活性有机碳组分和土壤团聚体稳定性的影响[D]. 南京: 南京农业大学, 2006

    ZHU L. Earthworm effects soil biological properties, active organic carbon and stabilization of soil aggregates[D]. Nanjing: Nanjing Agricultural University, 2006
    [31]
    崔莹莹, 吴家龙, 张池, 等. 不同生态类型蚯蚓对赤红壤和红壤团聚体分布和稳定性的影响[J]. 华南农业大学学报, 2020, 41(1): 83−90 doi: 10.7671/j.issn.1001-411X.201903034

    CUI Y Y, WU J L, ZHANG C, et al. Impacts of different ecological types of earthworm on aggregate distribution and stability in typical latosolic red and red soils[J]. Journal of South China Agricultural University, 2020, 41(1): 83−90 doi: 10.7671/j.issn.1001-411X.201903034
    [32]
    SHIPITALO M J, PROTZ R. Chemistry and micromorphology of aggregation in earthworm casts[J]. Geoderma, 1989, 45(3/4): 357−374
    [33]
    AL-MALIKI S, SCULLION J. Interactions between earthworms and residues of differing quality affecting aggregate stability and microbial dynamics[J]. Applied Soil Ecology, 2013, 64: 56−62 doi: 10.1016/j.apsoil.2012.10.008
    [34]
    BEDANO J C, VAQUERO F, DOMÍNGUEZ A, et al. Earthworms contribute to ecosystem process in no-till systems with high crop rotation intensity in Argentina[J]. Acta Oecologica, 2019, 98: 14−24 doi: 10.1016/j.actao.2019.05.003
    [35]
    PENG D H, WU B, TAN H, et al. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil[J]. Chemosphere, 2019, 228: 44−53 doi: 10.1016/j.chemosphere.2019.04.106
    [36]
    BYERS A K, CONDRON L, O’CALLAGHAN M, et al. Soil microbial community restructuring and functional changes in ancient kauri (Agathis australis) forests impacted by the invasive pathogen Phytophthora agathidicida[J]. Soil Biology and Biochemistry, 2020, 150: 108016 doi: 10.1016/j.soilbio.2020.108016
    [37]
    GONG X, JIANG Y Y, ZHENG Y, et al. Earthworms differentially modify the microbiome of arable soils varying in residue management[J]. Soil Biology and Biochemistry, 2018, 121: 120−129 doi: 10.1016/j.soilbio.2018.03.011
    [38]
    FROUZ J, KRIŠTŮFEK V, LIVEČKOVÁ M, et al. Microbial properties of soil aggregates created by earthworms and other factors: spherical and prismatic soil aggregates from unreclaimed post-mining sites[J]. Folia Microbiologica, 2011, 56(1): 36−43 doi: 10.1007/s12223-011-0011-7
    [39]
    XUE W J, HUANG D L, ZENG G M, et al. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: a review[J]. Chemosphere, 2018, 210: 1145−1156 doi: 10.1016/j.chemosphere.2018.07.118
    [40]
    ŠEVCŮ A, EL-TEMSAH Y S, FILIP J, et al. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms[J]. Environmental Science and Pollution Research, 2017, 24(26): 21191−21202 doi: 10.1007/s11356-017-9699-5
    [41]
    FANG J, SHAN X Q, WEN B, et al. Stability of titania nanoparticles in soil suspensions and transport in saturated homogeneous soil columns[J]. Environmental Pollution, 2009, 157(4): 1101−1109 doi: 10.1016/j.envpol.2008.11.006
    [42]
    WANG Y G, LI Y S, KIM H, et al. Transport and retention of fullerene nanoparticles in natural soils[J]. Journal of Environmental Quality, 2010, 39(6): 1925−1933 doi: 10.2134/jeq2009.0411
    [43]
    NAVARRO E, BAUN A, BEHRA R, et al. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi[J]. Ecotoxicology, 2008, 17(5): 372−386 doi: 10.1007/s10646-008-0214-0
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(4)  / Tables(4)

    Article Metrics

    Article views (254) PDF downloads(32) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return