Volume 29 Issue 10
Oct.  2021
Turn off MathJax
Article Contents
CHEN Z Y, YU P H, CHEN Y Y, JIANG S, BAI S Y, GU S X. Spatio-temporal changes of water resources ecosystem services in the Hanjiang River Basin based on the shared socioeconomic pathway[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1800−1814 doi: 10.13930/j.cnki.cjea.210160
Citation: CHEN Z Y, YU P H, CHEN Y Y, JIANG S, BAI S Y, GU S X. Spatio-temporal changes of water resources ecosystem services in the Hanjiang River Basin based on the shared socioeconomic pathway[J]. Chinese Journal of Eco-Agriculture, 2021, 29(10): 1800−1814 doi: 10.13930/j.cnki.cjea.210160

Spatio-temporal changes of water resources ecosystem services in the Hanjiang River Basin based on the shared socioeconomic pathway

doi: 10.13930/j.cnki.cjea.210160
Funds:  The study was supported by the National Natural Science Foundation of China (41771440) and the Major Scientific and Technological Project of National High Resolution Earth Observation System of China (89-Y40-G19-9001-18/20-03)
More Information
  • Corresponding author: E-mail: chenyy@whu.edu.cn
  • Received Date: 2021-03-16
  • Accepted Date: 2021-06-04
  • Available Online: 2021-08-13
  • Publish Date: 2021-10-01
  • A comprehensive assessment framework for watershed ecosystem services and trade-offs was proposed for watershed governance and regional sustainable development in this paper. The framework integrated both shared socioeconomic pathways (SSPs) and future land use simulation (FLUS) models. The socioeconomic data of China’s provincial SSPs considering domestic development and regional differences were introduced to the FLUS model, meeting the needs of regional level land-use simulation scenarios and fully considering the interaction between human socio-economic activities and the natural environment. Taking the Hanjiang River Basin as an example, the FLUS models under different SSPs scenarios were built to evaluate the ecological and environmental effects on land-use change. We further investigated the response of water conservation and water quality purification services to social development decision-making and spatiotemporal evolution by using InVEST model. Results showed that: 1) the water production depth in 2035 under all the SSP scenarios was significantly higher than that in 2015. The increment under the SSP1 and SSP2 scenarios was relatively small, and the increment under the SSP3 scenario was relatively higher with the most intense change. The areas with increased water production depth were mainly concentrated in the southeast, central, and western regions of the Hanjiang River Basin. 2) From 2015 to 2035, due to frequent human activities and rapid urban expansion, in areas where the water production depth increased, urbanized land also increased significantly. According to the land-use simulation and water production depth change results, urbanized land had a strong water production capacity due to low vegetation coverage, weak evapotranspiration, and low permeability of hardened ground. 3) The nitrogen and phosphorus loads in the SSPs scenarios in 2035 were lower than those in 2015. The reduction under the SSP1 and SSP5 scenarios was relatively large, and the SSP3 scenario was the same as that in 2015, but the change was the most intense. The areas with increased nitrogen and phosphorus loads were mainly concentrated in the southeast and western regions. 4) According to the results of land-use simulation and nitrogen and phosphorus load change, the urbanized land had more pollutants due to the frequent human socio-economic activities, while the cropland was due to the use of chemical fertilizers and pesticides in the process of agricultural production, making part of the nitrogen and phosphorus elements not absorbed by crops. The two types of land-use caused serious pollution in the water environment of the basin. The future development planning of the Hanjiang River Basin can be based on the SSP1 scenario, referring to the economic and technological development model under the SSP5 scenario, combined with the basin functional district, optimizing the land-use structure, and ensuring the water ecological environment security of the basin while paying attention to economic development. The results of this study can be used to prepare territorial spatial planning and sustainable water resource asset management in the Hanjiang River Basin, support the construction of the Hanjiang River eco-economic belt, and promote the improvement of the water ecological environment in the Yangtze River Basin.
  • loading
  • [1]
    GC D. Nature’s services: Societal dependence on natural ecosystems [M]. Washington DC: Island Press, 1997: 3–6
    [2]
    余珮珩, 冯明雪, 刘斌, 等. 顾及生态安全格局的流域生态保护红线划定及管控研究−以云南杞麓湖流域为例[J]. 湖泊科学, 2020, 32(1): 89−99 doi: 10.18307/2020.0109

    YU P H, FENG M X, LIU B, et al. Demarcation and administration of watershed ecological protection red line considering the ecological security pattern — A case of the Qilu Lake watershed, Yunnan Province[J]. Journal of Lake Sciences, 2020, 32(1): 89−99 doi: 10.18307/2020.0109
    [3]
    COSTANZA R, D’ ARGE R, DE GROOT R, et al. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387(6630): 253−260 doi: 10.1038/387253a0
    [4]
    TERRADO M, ACUÑ A V, ENNAANAY D, et al. Impact of climate extremes on hydrological ecosystem services in a heavily humanized Mediterranean basin[J]. Ecological Indicators, 2014, 37: 199−209 doi: 10.1016/j.ecolind.2013.01.016
    [5]
    叶延琼, 章家恩, 陈丽丽, 等. 广州市水生态系统服务价值[J]. 生态学杂志, 2013, 32(5): 1303−1310

    YE Y Q, ZHANG J E, CHEN L L, et al. Value evaluation of aquatic ecosystem services in Guangzhou, South China[J]. Chinese Journal of Ecology, 2013, 32(5): 1303−1310
    [6]
    段锦, 康慕谊, 江源. 东江流域生态系统服务价值变化研究[J]. 自然资源学报, 2012, 27(1): 90−103 doi: 10.11849/zrzyxb.2012.01.010

    DUAN J, KANG M Y, JIANG Y. Dynamic valuation on ecosystem services of Dongjiang River Basin[J]. Journal of Natural Resources, 2012, 27(1): 90−103 doi: 10.11849/zrzyxb.2012.01.010
    [7]
    马良, 金陶陶, 文一惠, 等. InVEST模型研究进展[J]. 生态经济, 2015, 31(10): 126−131, 179 doi: 10.3969/j.issn.1671-4407.2015.10.027

    MA L, JIN T T, WEN Y H, et al. The research progress of InVEST model[J]. Ecological Economy, 2015, 31(10): 126−131, 179 doi: 10.3969/j.issn.1671-4407.2015.10.027
    [8]
    唐尧, 祝炜平, 张慧, 等. InVEST模型原理及其应用研究进展[J]. 生态科学, 2015, 34(3): 204−208

    TANG Y, ZHU W P, ZHANG H, et al. A review on principle and application of the InVEST model[J]. Ecological Science, 2015, 34(3): 204−208
    [9]
    吴瑞, 刘桂环, 文一惠. 基于InVEST模型的官厅水库流域产水和水质净化服务时空变化[J]. 环境科学研究, 2017, 30(3): 406−414

    WU R, LIU G H, WEN Y H. Spatiotemporal variations of water yield and water quality purification service functions in Guanting Reservoir Basin based on InVEST model[J]. Research of Environmental Sciences, 2017, 30(3): 406−414
    [10]
    贾芳芳. 基于InVEST模型的赣江流域生态系统服务功能评估[D]. 北京: 中国地质大学(北京), 2014

    JIA F F. Invest model based ecosystem services evaluation with case study on Ganjiang River Basin[D]. Beijing: China University of Geosciences, 2014
    [11]
    李屹峰, 罗跃初, 刘纲, 等. 土地利用变化对生态系统服务功能的影响−以密云水库流域为例[J]. 生态学报, 2013, 33(3): 726−736 doi: 10.5846/stxb201205280787

    LI Y F, LUO Y C, LIU G, et al. Effects of land use change on ecosystem services: a case study in Miyun reservoir watershed[J]. Acta Ecologica Sinica, 2013, 33(3): 726−736 doi: 10.5846/stxb201205280787
    [12]
    顾晋饴, 李一平, 杜薇. 基于InVEST模型的太湖流域水源涵养能力评价及其变化特征分析[J]. 水资源保护, 2018, 34(3): 62−67 doi: 10.3880/j.issn.1004-6933.2018.03.10

    GU J Y, LI Y P, DU W. Evaluation on water source conservation capacity and analysis of its variation characteristics of Taihu Lake Basin based on InVEST model[J]. Water Resources Protection, 2018, 34(3): 62−67 doi: 10.3880/j.issn.1004-6933.2018.03.10
    [13]
    张舒瑾, 余珮珩, 白少云, 等. 面向国土空间规划的流域景观时空分异特征及驱动因子研究[J]. 生态经济, 2020, 36(10): 219−227

    ZHANG S J, YU P H, BAI S Y, et al. Study on the spatio-temporal stratified heterogeneity and driving factors of watershed landscape for national spatial planning[J]. Ecological Economy, 2020, 36(10): 219−227
    [14]
    田贺, 梁迅, 黎夏, 等. 基于SD模型的中国2010―2050年土地利用变化情景模拟[J]. 热带地理, 2017, 37(4): 547−561

    TIAN H, LIANG X, LI X, et al. Simulating multiple land use scenarios in China during 2010-2050 based on system dynamic model[J]. Tropical Geography, 2017, 37(4): 547−561
    [15]
    杨俊, 解鹏, 席建超, 等. 基于元胞自动机模型的土地利用变化模拟−以大连经济技术开发区为例[J]. 地理学报, 2015, 70(3): 461−475 doi: 10.11821/dlxb201503009

    YANG J, XIE P, XI J C, et al. LUCC simulation based on the cellular automata simulation: a case study of Dalian Economic and Technological Development Zone[J]. Acta Geographica Sinica, 2015, 70(3): 461−475 doi: 10.11821/dlxb201503009
    [16]
    张大川, 刘小平, 姚尧, 等. 基于随机森林CA的东莞市多类土地利用变化模拟[J]. 地理与地理信息科学, 2016, 32(5): 29−36 doi: 10.3969/j.issn.1672-0504.2016.05.005

    ZHANG D C, LIU X P, YAO Y, et al. Simulating spatiotemporal change of multiple land use types in Dongguan by using random forest based on cellular automata[J]. Geography and Geo-Information Science, 2016, 32(5): 29−36 doi: 10.3969/j.issn.1672-0504.2016.05.005
    [17]
    卞子浩, 马小雪, 龚来存, 等. 不同非空间模拟方法下CLUE-S模型土地利用预测−以秦淮河流域为例[J]. 地理科学, 2017, 37(2): 252−258

    BIAN Z H, MA X X, GONG L C, et al. Land use prediction based on CLUE-S model under different non-spatial simulation methods: a case study of the Qinhuai River Watershed[J]. Scientia Geographica Sinica, 2017, 37(2): 252−258
    [18]
    李桢, 刘淼, 薛振山, 等. 基于CLUE-S模型的三江平原景观格局变化及模拟[J]. 应用生态学报, 2018, 29(6): 1805−1812

    LI Z, LIU M, XUE Z S, et al. Landscape pattern change and simulation in the Sanjiang Plain based on the CLUE-S model[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1805−1812
    [19]
    汪佳莉, 吴国平, 范庆亚, 等. 基于CA-Markov模型的山东省临沂市土地利用格局变化研究及预测[J]. 水土保持研究, 2015, 22(1): 212−216

    WANG J L, WU G P, FAN Q Y, et al. Change and prediction of the land use in Linyi City, Shandong Province, based on CA-Markov model[J]. Research of Soil and Water Conservation, 2015, 22(1): 212−216
    [20]
    许月卿, 田媛, 孙丕苓. 基于Logistic回归模型的张家口市土地利用变化驱动力及建设用地增加空间模拟研究[J]. 北京大学学报: 自然科学版, 2015, 51(5): 955−964

    XU Y Q, TIAN Y, SUN P L. Study on driving forces and spatial simulation of land use change in Zhangjiakou City based on logistic regression model[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2015, 51(5): 955−964
    [21]
    LIU X P, LIANG X, LI X, et al. A future land use simulation model (FLUS) for simulating multiple land use scenarios by coupling human and natural effects[J]. Landscape and Urban Planning, 2017, 168: 94−116 doi: 10.1016/j.landurbplan.2017.09.019
    [22]
    JIANG L W, O’NEILL B C. Global urbanization projections for the Shared Socioeconomic Pathways[J]. Global Environmental Change, 2017, 42: 193−199 doi: 10.1016/j.gloenvcha.2015.03.008
    [23]
    O’NEILL B C, KRIEGLER E, EBI K L, et al. The roads ahead: Narratives for shared socioeconomic pathways describing world futures in the 21st century[J]. Global Environmental Change, 2017, 42: 169−180 doi: 10.1016/j.gloenvcha.2015.01.004
    [24]
    丁小江, 钟方雷, 毛锦凰, 等. 共享社会经济路径下中国各省城市化水平预测[J]. 气候变化研究进展, 2018, 14(4): 392−401 doi: 10.12006/j.issn.1673-1719.2018.018

    DING X J, ZHONG F L, MAO J H, et al. Provincial urbanization projected to 2050 under the shared socioeconomic pathways in China[J]. Climate Change Research, 2018, 14(4): 392−401 doi: 10.12006/j.issn.1673-1719.2018.018
    [25]
    姜彤, 王艳君, 袁佳双, 等. “一带一路”沿线国家2020—2060年人口经济发展情景预测[J]. 气候变化研究进展, 2018, 14(2): 155−164

    JIANG T, WANG Y J, YUAN J S, et al. Projection of population and economy in the Belt and Road countries (2020−2060)[J]. Climate Change Research, 2018, 14(2): 155−164
    [26]
    潘金玉, 苏布达, 翟建青, 等. 基于共享社会经济路径的中国经济发展趋势及其影响要素分析[J]. 气候变化研究进展, 2019, 15(6): 607−616 doi: 10.12006/j.issn.1673-1719.2019.028

    PAN J Y, SU B D, ZHAI J Q, et al. Development of economy and its influencing factors in China under the shared socioeconomic pathways[J]. Climate Change Research, 2019, 15(6): 607−616 doi: 10.12006/j.issn.1673-1719.2019.028
    [27]
    DONG N, YOU L, CAI W J, et al. Land use projections in China under global socioeconomic and emission scenarios: Utilizing a scenario-based land-use change assessment framework[J]. Global Environmental Change, 2018, 50: 164−177 doi: 10.1016/j.gloenvcha.2018.04.001
    [28]
    翁宇威, 蔡闻佳, 王灿. 共享社会经济路径(SSPs)的应用与展望[J]. 气候变化研究进展, 2020, 16(2): 215−222

    WENG Y W, CAI W J, WANG C. The application and future directions of the Shared Socioeconomic Pathways (SSPs)[J]. Climate Change Research, 2020, 16(2): 215−222
    [29]
    CHEN J, LIU Y J, PAN T, et al. Population exposure to droughts in China under 1.5 ℃ global warming target[J]. Earth System Dynamics Discussions, 2017: 1−13
    [30]
    姜彤, 赵晶, 景丞, 等. IPCC共享社会经济路径下中国和分省人口变化预估[J]. 气候变化研究进展, 2017, 13(2): 128−137 doi: 10.12006/j.issn.1673-1719.2016.249

    JIANG T, ZHAO J, JING C, et al. National and provincial population projected to 2100 under the shared socioeconomic pathways in China[J]. Climate Change Research, 2017, 13(2): 128−137 doi: 10.12006/j.issn.1673-1719.2016.249
    [31]
    陈华, 郭生练, 郭海晋, 等. 汉江流域1951—2003年降水气温时空变化趋势分析[J]. 长江流域资源与环境, 2006, 15(3): 340−345 doi: 10.3969/j.issn.1004-8227.2006.03.014

    CHEN H, GUO S L, GUO H J, et al. Temporal and spatial trend in the precipitation and temperature from 1951 to 2003 in the Hanjiang basin[J]. Resources and Environment in the Yangtze Basin, 2006, 15(3): 340−345 doi: 10.3969/j.issn.1004-8227.2006.03.014
    [32]
    YANG N, ZHANG K, HONG Y, et al. Evaluation of the TRMM multisatellite precipitation analysis and its applicability in supporting reservoir operation and water resources management in Hanjiang basin, China[J]. Journal of Hydrology, 2017, 549: 313−325 doi: 10.1016/j.jhydrol.2017.04.006
    [33]
    卢金友, 林莉. 汉江生态经济带水生态环境问题及对策[J]. 环境科学研究, 2020, 33(5): 1179−1186

    LU J Y, LIN L. Problems and countermeasures on water eco-environment in Hanjiang River Ecological Economic Belt[J]. Research of Environmental Sciences, 2020, 33(5): 1179−1186
    [34]
    李斌, 李丽娟, 覃驭楚, 等. 基于Budyko假设评估洮儿河流域中上游气候变化的径流影响[J]. 资源科学, 2011, 33(1): 70−76

    LI B, LI L J, QIN Y C, et al. Impacts of climate variability on streamflow in the upper and middle reaches of the Tao’er River based on the Budyko hypothesis[J]. Resources Science, 2011, 33(1): 70−76
    [35]
    TALLIS H, RICKETTS T, GUERRY A, et al. InVEST 3.2.0 User’s Guide: Integrated Valuation of Environmental Services and Tradeoffs[M]. Stanford: the Natural Capital Project, 2015: 124–125
    [36]
    范亚宁. 秦岭北麓及周边生态系统水源涵养与水质净化功能评估[D]. 西安: 西北大学, 2017

    FAN Y N. Evaluation of water retention and water purification function in the northern slope of Qinling mountains and the surrounding ecosystem[D]. Xi’an: Northwest University, 2017
    [37]
    吴哲. 基于InVEST模型的海南岛氮磷营养物负荷的风险评价[D]. 海口: 海南大学, 2014

    WU Z. Risk assessment of nitrogen and phosphorus loads in Hainan island based on InVEST model[D]. Haikou: Hainan University, 2014
    [38]
    ZHANG L, HICKEL K, DAWES W R, et al. A rational function approach for estimating mean annual evapotranspiration[J]. Water Resources Research, 2004, 40(2): W02502
    [39]
    张凯. 内陆河流域水资源开发利用潜力研究——以黑河流域中游地区为例[D]. 兰州: 西北师范大学, 2004

    ZHANG K. Study on the potential of water resources exploitation and utilization in the inland river basin—A case study of the middle reaches of Heihe River Valley[D]. Lanzhou: Northwest Normal University, 2004
    [40]
    张晓琳, 熊立华, 林琳, 等. 五种潜在蒸散发公式在汉江流域的应用[J]. 干旱区地理, 2012, 35(2): 229−237

    ZHANG X L, XIONG L H, LIN L, et al. Application of five potential evapotranspiration equations in Hanjiang Basin[J]. Arid Land Geography, 2012, 35(2): 229−237
    [41]
    周文佐, 刘高焕, 潘剑君. 土壤有效含水量的经验估算研究−以东北黑土为例[J]. 干旱区资源与环境, 2003, 17(4): 88−95 doi: 10.3969/j.issn.1003-7578.2003.04.017

    ZHOU W Z, LIU G H, PAN J J. Soil available water capacity and it’s empirical and statistical models—with s special reference to black soils in northeast China[J]. Journal of Arid Land Resources & Environment, 2003, 17(4): 88−95 doi: 10.3969/j.issn.1003-7578.2003.04.017
    [42]
    WIJESEKARA G N, GUPTA A, VALEO C, et al. Assessing the impact of future land-use changes on hydrological processes in the Elbow River watershed in southern Alberta, Canada[J]. Journal of Hydrology, 2012, 412/413: 220−232 doi: 10.1016/j.jhydrol.2011.04.018
    [43]
    王亚慧, 戴尔阜, 马良, 等. 横断山区产水量时空分布格局及影响因素研究[J]. 自然资源学报, 2020, 35(2): 371−386 doi: 10.31497/zrzyxb.20200210

    WANG Y H, DAI E F, MA L, et al. Spatiotemporal and influencing factors analysis of water yield in the Hengduan Mountain region[J]. Journal of Natural Resources, 2020, 35(2): 371−386 doi: 10.31497/zrzyxb.20200210
    [44]
    赵亚茹, 周俊菊, 雷莉, 等. 基于InVEST模型的石羊河上游产水量驱动因素识别[J]. 生态学杂志, 2019, 38(12): 3789−3799

    ZHAO Y R, ZHOU J J, LEI L, et al. Identification of drivers for water yield in the upstream of Shiyang River based on InVEST model[J]. Chinese Journal of Ecology, 2019, 38(12): 3789−3799
    [45]
    张建, 雷刚, 漆良华. 南水北调中线水源区丹江口市域景观格局变化及氮磷净化能力[J]. 生态学报, 2021, 41(6): 2261−2271

    ZHANG J, LEI G, QI L H. Change of landscape pattern and nitrogen and phosphorus removal in Danjiangkou City, the Middle Route of the South-to-North Water Diversion Project[J]. Acta Ecologica Sinica, 2021, 41(6): 2261−2271
    [46]
    杨旭. 气候和土地利用变化背景下中国西北干旱区产水和水质净化服务评估[D]. 上海: 华东师范大学, 2020

    YANG X. Assessment of water yield and water purification services in arid inland river basins of northwest China under the background of climate and land use change[D]. Shanghai: East China Normal University, 2020
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(11)  / Tables(3)

    Article Metrics

    Article views (208) PDF downloads(42) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return